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A Note on Likelihood Estimation of Missing Values 
in Time Series 

DANIEL PENA and GEORGE C. TIAO* 

Missing values in time series can be treated as unknown 
parameters and estimated by maximum likelihood or as 
random variables and predicted by the expectation of the 
unknown values given the data. The difference between 
these two procedures is illustrated by an example. It is 
argued that the second procedure is, in general, more 
relevant for estimating missing values in time series. 

KEY WORDS: ARIMA models; Interpolation; Mean 
squared error. 

The use of the maximum likelihood method to esti- 
mate missing observations or, in general, unobserved 
values of random variables is a controversial topic be- 
cause different authors use different likelihoods to obtain 
the estimators [see Bayarri, DeGroot, and Kadane (1986) 
and discussion and Fuller (1987)]. 

To illustrate the problem in time series models, sup- 
pose that the time series {zt} follows the stationary first- 
order autoregressive process 

zt = zt-l + at, 1'A1< 1, 

where the at's are iid N(0, au2). For simplicity, let us 
assume that 4 and a2 are known. Suppose that out of n 
observations zt (t = 1, .. ., n), the observation ZT iS miss- 
ing (1 ? T ? n). Then, denoting Z,, by the n X 1 vector 
Zn = (zI, ... ., zn)' and Z(T) by the (n- 1) x I vector 
obtained from Z,, by dropping ZT, the joint density func- 
tion of the available data Z(T) for given ZT iS 

f(Z(T) IZT) = f(z1) ~ (1) 
f(ZT) 91 

where 

f(Zn) = (2 ro-2) (1/2)n(1 - (2)1/2 

x exp- 22 (- I4 + E (Z Zt_1)2 (2) 
207 - ~t=2 J 

and 

f(ZT) = (27r(J ) 2(1 - oP2)/2 expi( T( - 4/2)z4 

(3) 

In (1), ZT is now an unknown parameter of the model 
for Z(T)- The likelihood function of ZT can be written as 
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l(ZT I Z(T)) = (2 ro2) 212(n1) expX, 2 

-T-1 n-A 

X I (Zt 
_ 

(pZt+ 1)2 + E (Zt 
_ 

(pZt _1) 2 
J> (4) 

_t=l t=T+ll 

where it is understood that in the exponent a term dis- 
appears if the range of summation is not positive. 

Hence the maximum likelihood estimator of ZT takes 
the form 

^ g-1 T = I or n ZT (A ZT?8 5lr 

= (204Y(ZT+1 + ZT-1), 1 < T < n, (5) 

with 8 = l if T = 1 and 8 = - if T = n. It is easy to 
verify from (4) that the mean squared error (MSE) of Z^T 

is 

MSE(2T) =022 T = 1 or n 

=(2 () r-, 1 < T< n. (6) 

Several authors have computed least squares or "maxi- 
mum likelihood" estimators by maximizing the joint 
density functionf(Zn) in (2) with respect to missing ob- 
servations for known data. [See, for instance, Brubacher 
and Tunnicliffe-Wilson (1976)]. Then, in the present case, 
it is easy to verify that the estimator is given by 

ZT (AZT+,69 T = I orn 

= (1 ? -2) 4(ZT+l + ZT-1), 1 < T < n. (7) 

This estimator Zt cannot be called a maximum likelihood 
estimator, however, because the function f(Zn) for ZT 

considered as an unknown parameter is not a joint den- 
sity function, and, therefore, f(Zn) for unobserved ZT and 
known Z(T) is not a likelihood function as it is usually 
defined in standard texts. 

To interpret the meaning of (7), let us consider ZT as 
a random variable following the probabilistic structure 
in (2). Then, the distribution of ZT given the data Z(T) is 

f(ZT IZ(T)) =f(Z(T) ) (8) 

where f(Z(T)) can be obtained by integrating out ZT from 
f(Zn). As is well known [see, for example, Penia (1987)], 
the distribution in (8) is normal with 

E(ZT Z(T)) = ZT, 

var(zT Z(T)) = 2T= 1 orn 

=(1 + 4Y1o2, 1 <T<n. (9) 
We see that the conditional expectation, E(ZT I Z(T)), 

is equal to ZT in (7); this is becausef(Zn) is proportional 
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to f(z, I Z(T)) and, for the present example, the mode and 
the mean of the distributionf(zT I Z(T)) are identical. More 
important, we see that E(ZT I Z(T)), which is the minimum 
MSE estimator of ZT, can be very different from the max- 
imum likelihood estimator ZT in (5). Indeed, the MSE of 
ZT in (6) always exceeds, and can be very much larger 
than, var(zT I Z(T)) in (9), which is, of course, also the 
MSE of the estimator E(ZT I Z(T)). 

The difference between the two estimators, ZT and ZT, 

is not surprising if we look at the problem from a Bayes- 
ian point of view. The estimator ZT is the mean (or mode) 
of the posterior distribution f(ZT I Z(T)) in (8), which is 
proportional to the product of the likelihood function l(ZT 
I Z(T)) in (4) and the prior distribution f(ZT) in (3). On 
the other hand, the estimator ^T can be regarded as the 
mean (or mode) of a posterior distribution of ZT propor- 
tional to the product l(ZT I Z(T))PO(ZT), where PO(ZT) is a 
"locally uniform" or noninformative prior distribution 
(Box and Tiao 1973). Thus, in the stationary case, |+| 
< 1, the two means can be very different because very 
different prior distributions are employed. This also ex- 
plains the fact that when 4 goes to 1 (the model ap- 
proaches a nonstationary one) the difference between these 
two estimators goes to 0 simply because in this case the 
prior distribution f(ZT) also becomes nearly locally 
uniform. 

It may be argued from a frequentist point of view that 
the optimal properties of ^T and ZT in (6) and (9), re- 
spectively, are not really comparable, because they are 
obtained under very different assumptions. For the max- 
imum likelihood estimator ^T the unknown observation 
ZT is regarded as a fixed parameter, and the MSE(iT) in 
(6) is obtained under (or at least motivated by) such an 
assumption; for the estimator fT, however, the MSE(zT) 
= var(zT I Z(T)) in (9) is obtained when ZT is regarded as 
random following the structure in (2). Indeed, it can be 
verified from (4) that, for fixed ZT, the MSE of -T iS 

MSE*(fT) 

= A2072 + (i - (2)2Z2 =1o Tg ~ Tl=Iorn 

= (1 + 42)-2{242o2 ? (1 - 42)2ZT}, 1< TI < n, 

(10) 

so for some values of ZT, MSE*(zT) can be larger than 
MSE(2T). 

The point of the foregoing discussion is to show that, 
in estimating missing values in time series, the method 
of maximum likelihood can lead to results very different 
from those obtained by optimal prediction under station- 
ary assumptions. Except for the initial value at t = 0, 
we do not think, however, that it is appropriate to treat 
missing observations as fixed parameters. This seems al- 
most a contradiction in terms. In time series analysis we 
believe that it is natural in most applications to regard 
the missing observations as random variables following 
the same probabilistic structure as the remaining ones 
and hence adopt the conditional expectation or posterior 
mean as their optimal estimator. 

[Received July 1989. Revised May 1990.] 
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