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Journal of Business & Economic Statistics, April 1990, Vol. 8, No, 2 

Influential Observations in Time Series 

Daniel Peha 
Laboratory of Statistics, Escuela Superior de Ingenieros Industriales, Universidad Polit6cnica de Madrid, 
Madrid 28006, Spain 

This article studies how to identify influential observations in univariate autoregressive integrated 
moving average time series models and how to measure their effects on the estimated param- 
eters of the model. The sensitivity on the parameters to the presence of either additive or 
innovational outliers is analyzed, and influence statistics based on the Mahalanobis distance 
are presented. The statistic linked to additive outliers is shown to be very useful for indicating 
the robustness of the fitted model to the given data set. Its application is illustrated using a 
relevant set of historical data. 

KEY WORDS: Diagnostic checks; Missing data; Outliers; Robust methods. 

1. INTRODUCTION AND SUMMARY 

Observed time series almost always have atypical 
points. These anomalous values can be produced by 
nonsystematic changes in the variables that are driving 
the series or affecting them. Since the forecasts from 
any time series model are based on the extrapolation 
of the historical patterns, if the parameters of the model 
are very dependent on a few atypical observations re- 
sulting from isolated or nonrepeatable events, then the 
quality of the forecasts can be expected to be poor. 
Moreover, when these parameters have physical or ec- 
onomic interpretations, the presence of undetected in- 
fluential observations can mislead the scientist about 
the properties of the model. Finally, the study of these 
observations provides meaningful information about 
the robustness of the fitted model to the given data set. 

This problem is related to, though different from, the 
study of outliers, because, as is well known, the fact 
that an observation is an outlier does not imply that 
this observation substantially affects the parameter es- 
timates of the assumed model, although in general it 
will affect the variance of the estimates. 

Cook and Weisberg (1982) and Belsley, Kuh, and 
Welsch (1980) presented an overview of influential ob- 
servations in the regression model. This study has been 
extended to some other members of the generalized- 
linear-model family (Pregibon 1981). The main idea of 
this approach is to delete suspicious observations and 
measure the change that this deletion produces in rel- 
evant features of the model such as the estimated pa- 
rameter values or the forecasts. 

This article attempts to extend these ideas to depen- 
dent observations in the context of time series analysis 
and is organized as follows. Section 2 summarizes the 
literature on outliers in time series models and discusses 
the two basic types of outliers that can occur in a dy- 
namic situation. Sections 3 and 4 show how to build 
measures of influence for additive outliers and for in- 
novational outliers. Section 5 discusses the computation 

of these statistics, which are compared in Section 6. 
Section 7 presents an example. 

The main result in this article is a statistic that seems 
to be useful in indicating which observations have strong 
influence on the estimated parameter values. This sta- 
tistic is based on substituting the anomalous data by its 
interpolated value, using all of the sample information, 
and can be considered a natural generalization of sta- 
tistics suggested for independent data. Furthermore, 
this statistic is linked to additive outliers, known to be 
the most influential. Second, it has been shown that in 
time series models the deleting approach is linked to 
innovational outliers, and the statistic resulting from 
this procedure is unstable and does not seem to be 
useful in the time series context. Third, simple expres- 
sions are found to relate the parameter values estimated 
with and without outliers in autoregressive integrated 
moving average (ARIMA) models, allowing the study 
of the influence problem within a unified framework. 

2. OUTLIERS IN TIME SERIES 

Fox (1972) defined two types of outliers that may 
occur in time series data. The first, called the Type I 
outlier by Fox, corresponds to a modification of the 
value of the series due to some external cause such as 
a gross recording error. Assuming that the observed 
series z, follows an ARIMA process, the model for a 
Type I outlier at time T is 

(B)Vdy, = (B)a,, Yt = Zt t T 

= Zt - WT, t = T, 

(2.1) 

where B is the backshift operator, Bky, = Yt-k, o(B) 
= 1 - 0iB - * - PBP and 9(B) = 1 - 91B - .** 
- 9qBq are the autoregressive (AR) and moving av- 
erage (MA) polynomials that will have roots outside 
the unit circle, and Vd = (1 - B)d. This model can also 
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be written as 

7r(B)(z, - WTI(T) = a,, I T) = 0, t T 

=1, t= T, 

(2.2) 

where n(B) = Vd1(B)SO-(B) is the autoregressive rep- 
resentation of the process. Therefore, it is a special case 
of the intervention analysis model (Box and Tiao 1975) 
with an instantaneous response function, WT. Model 
(2.2) was called the additive-outlier model by Denby 
and Martin (1979) and Chang and Tiao (1983) and the 
aberrant observation model by Abraham and Box 
(1979). 

The Type I outlier can be interpreted as the effect 
on the series of some external error or exogenous 
change. On the other hand, a Type II outlier can be 
considered as the effect of some internal change or 
endogenous effect. If we think of a univariate time se- 
ries model as an aggregate representation of the pattern 
of behavior of a vector x, of explicative time series that 
are causing the observed series zt, the noise of the uni- 
variate model represents the aggregate of the nonsys- 
tematic variations of the components x,, and, therefore, 
an exogenous intervention outlier in any of the com- 
ponents will produce an anomalous value on the noise 
of the univariate process. The model for this type of 
effect will be 

/(B)Vdz = O(B)(a, + wlI(T), (2.3) 

where the atypical behavior appears in the innovation. 
This model has been called the innovational outlier 
(Chang and Tiao 1983) or the aberrant innovation 
model (Abraham and Box 1979). 

Both types of outlier can be written as 7r(B)(z, - 
WTv(B)I T)) = at, showing that, as indicated by Chang, 
Tiao, and Chen (1988), both can be modeled as par- 
ticular cases of the intervention-analysis model. For an 
additive outlier, v(B) = 1, whereas for an innovational 
outlier, v(B)7(B) = 1. 

Fox (1972) derived the maximum-likelihood-ratio 
test for both types of outliers for autoregressive pro- 
cesses. Abraham and Box (1979) used the normal con- 
taminated model as the basic setup for making 
inferences in these models. Denby and Martin (1979) 
developed generalized M estimators for the first-order 
autoregressive process and showed that the loss of ef- 
ficiency in estimating the parameter by least squares is 
expected to be much larger for additive than for in- 
novational outliers. Martin (1980) presented a class of 
bounded-influence estimates for pth-order autoregres- 
sions, and Martin, Samarov, and Vandaele (1983) pro- 
posed robust M estimators for ARIMA models using 
the state-space representation. Pefia and Guttman 
(1988, 1989) developed a robust Kalman filter to esti- 
mate the time series parameters in the presence of out- 
liers. Chang and Tiao (1983) and Chang et al. (1988) 
extended Fox's results to general ARIMA models and 

suggested a useful iterative procedure for outlier de- 
tection and parameter estimation. They recommended 
computing the likelihood-ratio statistics 21,r and A. T to 
check if the observation Tis either an innovational (2,7T) 
or an additive outlier (A.rT). These statistics are given 
by 

_ WI, T 

Ua 

and 

j A _ WA,T 
A,T x 

where ^I,T and WA,^ are the estimated values of the 
outlier wr, assuming that it belongs to the innovational 
type or additive type, and 7i are the parameters of the 
autoregressive representation of the process. In the 
same spirit, Tsay (1986, 1988) proposed an iterative 
procedure to specify a tentative model for a time series 
that accounts for outliers, level shifts, and variance 
changes. Finally Martin and Yohai (1986) defined in- 
fluence functionals for time series and related them to 
the influence curve due to Hampel (1974), and Brillin- 
ger (1986) applied a missing-value technique, together 
with principal-components analysis, to identify influ- 
ential observations. 

3. A MEASURE OF INFLUENCE FOR 
ADDITIVE OUTLIERS 

3.1 The Change in the Parameter Estimates 

Suppose we have a stochastic process y, that follows 
a univariate ARIMA(p, d, q). It is assumed in what 
follows that y, represents deviations from some origin 
,u that will be the mean if the series is stationary and 
that the moving average part has a characteristic equa- 
tion with roots outside the unit circle so that the process 
is invertible. Then the process can be represented as 

h 

Yt = E 7ryt,- + at 
1=1 

for some lag h. If the process is purely autoregressive, 
h = p + d. Otherwise, the 7r coefficients are obtained 
from ir(B) = 0(B)(1 - B)dO(B)-1 and, because of the 
invertibility of 0(B), these coefficients will decrease and 
will become practically 0 for some lag h. 

Let us now assume that an additive outlier happens 
at time T; that is, instead of observing yt we observe 
z,, where z, = y, (t 7 T) and ZT = Yr + WT. Then, as 
the Jacobian of the transformation from y, to z, is 1, 
the likelihood function for the observed series z, con- 
ditional on the first h values is 

1(7, a2, W)= n-h) lna ( - t lX)2 a 
z / Lo'a I2 

1 
h 

2r 2E (ZT+/ + 71,TWT 
- 

7TXT+l) 2 a 1=0 

This content downloaded from 163.117.20.121 on Tue, 24 Nov 2015 09:39:13 UTC
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


Pefa: Influential Observations in Time Series 237 

where a2 is the variance of the noise process a,, x = 

(Z,-1, . . . Zt-h), STr = (l,r.T, h,T), and 70 T = 

-1. The set of indexes Il is (h + 1, . . ., T - 1, T + 
h + 1, . . ., n). The conditional maximum likelihood 
estimate of rTT is 

'IT = (XyXy-) XyY (3.1) 

when we have called Xy the matrix of estimated values 
for the real process yt that is unobserved at T and Y 
the vector of responses: 

Yh Yh - .. i Yh+1 

Ay 
- . . . . I. , 

Yn-1 Yn-2 Yn-h Yn 

where 9y = z; for j ? T and YT = ZT - WT is obtained 

by 

WT = ZT - ZTln 

YT = ZT/n E 6i(ZT+i + ZT-i), 
i=l 

where 

6i = 
(Ti,T 

h h 
- Z T7r7i+iT/ E I 

,i 
/=1 1=0 

(3.2) 

0To,r = -1. 

Consequently, the residual at time T is Z^n - Eh= 

7iZt-i, and ZTin can be interpreted as the best estimate 
of the unobserved process YT using all of the sample 
information. Neither this residual nor ZT,n depends on 
the value Z.T 

The estimate of the additive outlier is the difference 
between the observed data and its interpolation given 
the rest of the sample. Note that the computation of 
ZTln is done applying some weighting coefficients to the 
new series 

s(j) = ZT+j + ZT-j- (3.3) 
These weights are such that - 6i is the ith coefficient 

in the generating function (7r2) - n(B)7r(F) and, there- 
fore, can be interpreted as the coefficients of the inverse 
autocorrelation function of the process. It is well known 

(see Grenander and Rosenblatt 1957, p. 83) that the 

expected value of a missing value given the rest of the 
data, Z(T) = (Z1, . , ZT+- , ZT+ , * , n)', is 

E[ZT Z(T)] = - pijs(j), 
j=1 

where pij is the jth inverse autocorrelation coefficient 
and s(j) is the process defined by (3.3). Therefore, it 
can be concluded that, given the parameters, the esti- 
mation of the additive outlier is the difference between 
the observed data and its optimum interpolation (in the 
mean squared error sense). 

The system of equations given by (3.1) and (3.2) has 
to be resolved iteratively. Starting with an initial value 
'Tr(O) for iT, the weights 6i can be calculated and a 
value 4T(O) computed. This value is then used to com- 
pute YT(O) = ZT - wT(O), which provides a new estimate 
rTT(1). The process is repeated until convergence. 

To study the effect of the outlying value on the es- 
timated parameters, let us call *r the conditional max- 
imum likelihood (ML) estimator of nr, assuming no 
outliers. Then, *r = (X'Xz)-I'XZ, where the matrix 

X, and the vector Z correspond to the observed data 
and have the same structure as Xy and Y and the same 
data values except at time T. Of course, the two sets 
will be identical if 9T = ZT. Therefore, 

X, = Xy + WTM, 

where the matrix M is given by 

M' = [OhxT-k; Ihxh; Ohx(n-h-T)], 

(3.4) 

(3.5) 

Oaxb is a null rectangular matrix, and lhxh is the identity 
matrix. Moreover, 

Z = Y + WTV, 

where V can be partitioned as 

V = [0,. . . , 01; 0,1; 0(--T)x ]. ~ ' ~ ~hxl (n-h- Tx 1? 

(3.6) 

(3.7) 

To relate *'T and i, let us partition the matrices X, 
and Xy and the vectors Z, Y in the same way as (3.5) 
and (3.7). If we state that X; = [X'(1)X;(2)X;(3)], 
where 

Zh ..... Z 

Xz(1) = : , 
ZT-1 .... ZT-h 

ZT 
...... 

ZT-h+1 

X,(2) = 
ZT+h- 1 ZT 

and 

ZT+h ... ZT+1 

X,(3) = : : , 
Zn - 1 .... 

Zn - h 

then 

(XyXY) = X;XZ + W2TI - WT(XZ(2) + XZ(2)) 

= XXz - WTAT, (3.8) 

where AT = X,(2) + X;(2) - 1TI is a symmetric ma- 
trix with aij = aji = s(i) = ZT+i + ZT-i and aii = ZT + 

Z,n,. Moreover, let us partition the vector Z accordingly 
as 

Z' = 
[Zh+l, ? . . , ZT; ZT+1, ? 

. * , ZT+h; 

ZT+h+l, ? . . , Zn] 

= [Z'(1)Z'(2)Z'(3)]. 

Then, from (3.4) and (3.6), XY = (X - M)(Z 
- WTV) and, since M'V = 0, M'Z = Z(2), and V'Xz 

[z,t-, ... , ZT-h], 

Xyy = x;z - WTST, (3.9) 
where ST = (s(1), . .. , s(h)) and s(j) is given by (3.3). 
Expressing the estimated parameters rT as a function 
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of the observed data, for (3.8), (3.9), and (3.1), (X;X, 
- WTAT)^T = XZZ - WTST, which leads to 

iTr = Tr - WT(XXZ)-l(ST - ATTr), (3.10) 

calling adr+ the residuals from Estimation (3.1), 

aT+l = ZT+l 
- 

l1,TZT+I-1 

- ."- - i,T(ZT- WT) - ..- hZT+l-h, 

and 

r-I = ZT-1 - fl,TZT-l+1 

~- - 
~ 

l,TZT - .. -h,TZT-l+h, 

the backward residuals, then stating that ET = [dT+1 + 
br_1, . . . , dr+h + bT-hI] It is clear that ET = ST - 
ATrT is a vector of pseudoresiduals and that (3.10) can 
be written as 

T = ITT + WT(XXZ) 1E (3.11) 

For instance, for the AR(1) model, 

E = YT+1 - 4TYT + YT-1 - T(T + WT) 

= s(1) T - 2? Tr- TT 

and, using (3.8), Szt = Y92 + WT(2YT + WT); then 
= (1 - a))T + a(s(1) - 2TTYT)WT1, where a = 

92T(2T + 2WTYT- + -) -1. Clearly, as Tr - - 0, a- 1 
and - ->0. This result, that gross errors pull all of the 
autocorrelation coefficients and estimated parameters 
toward 0, was indicated by Martin and Jong (1977), 
Guttman and Tiao (1978), and Treadway (1978). See 
Pefia and Sanchez-Albornoz (1983) for examples with 
economic data. 

= XZTT. The Euclidean distance between both vectors 
of forecasts is 

(Z - ZT) (Z - ZT) = (T -TT) XZXZ(T - T ) 

(3.13) 
so D2(T) can also be interpreted as a standardized mea- 
sure of the Euclidean distance between the vectors of 
one-step-ahead forecasts built with ir and *rT. 

Using (3.11), the statistic can be written as 

W 2 Et(XXz) l1ET 2( T) = - T w) 
a2 h (3.14) 

That shows clearly that the influence statistic depends 
on two factors; the first measures the size of the outlier 
relative to the innovation standard deviation, the sec- 
ond the relative size of the observations before and after 
the outlier. 

The likelihood-ratio test to check for additive outliers 
is asymptotically equivalent (see Chang et al. 1988) to 

T = Wi/(t (sc)-1), 

so D2(T) can be written as a function of this statistic, 

D2(T) = 22'T E(XzXz) -ET (D_T) 2) 7rI 
(3.15) 

4. A MEASURE OF INFLUENCE FOR 
INNOVATIONAL OUTLIERS 

The model (2.3) for innovational outliers can be writ- 
ten using the autoregressive approximation of Section 
3.1, 

Zt = ITl)Xt + W(i)T) + at, (4.1) 

3.2 A Statistic to Measure Influential Outliers 

A natural way to measure the influence of observa- 
tion ZT is to relate it to the change in the parameter 
estimates when this observation is assumed to be an 
outlier. Since *r and rr are vectors, the usual way to 
measure their distance is to build a metric using some 
relevant positive semidefinite matrix. A natural selec- 
tion is to use the variance-covariance matrix of either 
of these two estimated vectors and to build a Mahal- 
anobis distance. To have a common ground to compare 
all of the observations, it seems more useful to choose 
the covariance matrix of the parameters, assuming no 
outliers (see Cook, Pefia, and Weisberg 1987). Then 

D2(T) = - )(X , (3.12) hba 
where we have divided the distance by the dimension 
of the vectors involved, h, to have a proper standard- 
ization. 

The statistic (3.12) can also be interpreted as mea- 
suring the change in the vector of one-step-ahead fore- 
casts. Using the estimated parameters, assuming no 
outliers, this vector is Z = XZ,r, and using the param- 
eters estimated assuming an additive outlier at T, ZT 

where T(,) represents the vector of parameters assuming 
an innovational outlier w(,) at time T and, as before, 
x; = (Zt-l, . . . Zt-h). This is a linear model with a 
dummy variable and, therefore, calling r(,) and w'(, the 
ML estimators and Tr the usual estimator if w(I) = 0, 

I(i) = Tr + W(l)(XZXz) -XT (4.2) 

and 

W(I) = (1 - dT)-ler, (4.3) 

where eT = ZT - Tr'XT and dT = XT(XzXZ)-lXT is the 
distance between the vector of regressors at the time 
of the intervention, XT, and the origin. It is well known 
(Cook and Weisberg 1982) that rT() is computed delet- 
ing the Tth row of the regressor matrix, Xz, and the 
data vector, Z. Therefore, the observation is not com- 
pletely disregarded in the computation of the param- 
eters as in the additive outlier case, because it appears 
as one of the regressors in the rows T + 1 to T + h, 
which do not change. This result shows the difference 
from the standard regression setup in which the deleting 
procedure leads to estimators that do not depend on 
the response variable. 

As an example, consider the AR(1) case. Then, call- 
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ing 4(s) the parameter estimated assuming an innova- 
tional outlier at T, 

AI, =S- Z/t-i 
and note that ZT appears in the numerator (in the term 
ZT+1ZT) as well as in the denominator. This estimator 
according to (4.2) also can be written as 

ZT-1 
)(I) 

= + () ZZ2 
2Zt-1 

and +(,) can be greater or smaller than 0, depending on 
the sign of ZT-1. When n -> oo, ()(I --> , so 0(,) is a 
consistent estimator of (. This result was first obtained 
by Mann and Wald (1943), and Martin and Jong (1977) 
showed that, although consistent, this estimator can be 
quite inefficient. 

The change in the parameters can be measured by 

D (T)- ( - 'I(T))XXz - T 
D1(T) = ha' 

and it is easy to see that this statistic can be written as 

1 e2T dT 
D,(T) = h o2(l - dT) (1 - dT) 

which is identical to the statistic suggested by Cook 
(1977) to measure the effect of an observation on the 
parameters of a regression model. This statistic can be 
interpreted as the product of two terms; the first, 
e2ja 2(1 - dT)-1, is the standardized residual at the 

point of the intervention; the second, dr(l - dT)-l, 

represents the distance of XT from the origin but with 
relation to a metric built without taking into account 
XT. D1(T) can also be expressed as a function of the 
likelihood criteria advocated by Fox (1972) and Chang 
and Tiao (1983) to test for innovational outliers: 

2 rT dT 
D1(T) - h (1 - d)2' 

where )I,T = W(l)/o is the likelihood-ratio test for ob- 
servation Tth being an innovational outlier. Note that 
D1(T) now depends only on the relative values of the 
h previous observations before the intervention (the 
regressors at t = T), in contrast with D2(T) that de- 
pends on the observations after the intervention as well. 

5. COMPUTATION OF THE STATISTICS 

The two statistics for influence that we have derived 
can be written as 

Di(T) (Z - 
Z 

i) = 1, 2, (5.1) 
e Z) Z2 = , t ahe e, 

where Zt = Xttiti(, Zw = Xznl(T), and, therefore, to 
compute i ttetfe nl n the statistics we only need the vector of fore- 
casts using parameters computed assuming an innova- 
tional outlier (T'r()) or additive outlier (*'T). 

These forecasting vectors can be easily obtained with 
the ARIMA representation of the model. The auto- 
regressive approximation that has been used throughout 
the article to develop the procedure and to show the 
nature of the statistics is not needed to compute them. 
Therefore, the order h need not be specified, and in 
(5.1) h should always be taken as the number of pa- 
rameters estimated to compute the forecast (p + q). 

Note that the autoregressive approximation is needed 
to define in a meaningful way the change in the param- 
eters in an ARIMA model. The parameters ) and 9 of 
the ARIMA representation (2.1) cannot be used di- 
rectly because of the possible near cancellation between 
the AR and MA structures. For instance, if we consider 
the models 

Ml : (1 - .70B)Z, = (1 - .69B)a,, 

M2: (1 - .75B)Z, = (1 - .10B)a,, 

M3 : (1 - .11B)Zt = (1 - .10B)a,, 

and metrics for the vector (0, L9) like D(ij) = (4i - 
(j)2 + (i9 - 

9j)2, model Ml will be closer to M2 than 
to M3, although both M1 and M3 are almost white noise 
and M2 has a strong autoregressive structure. 

One might consider using the ,y(B) weights given by 
Ad((B)q)(B) = 9(B), but the y/ weights do not converge 
for nonstationary models, whereas the nr weights are 
always well defined and allow a clear comparison with 
the regression setup. 

In summary, these statistics can be computed in a 
routine way for any ARIMA model with any statistical 
package that has an intervention-analysis option. We 
only need to estimate the parameters, assuming an in- 
novational or additive outlier at every point and after- 
ward use these parameters to compute a forecast vector 
for the whole sample. 

6. DISCUSSION 

It has been shown that building a measure of influ- 
ence for additive outliers leads to procedures based on 
interpolating the suspicious observation given the rest 
of the data, whereas the innovational outlier leads to a 
deleting approach similar to the regression setup. 

The first approach seems much more relevant for 
dependent data, and, furthermore, computer simula- 
tions (Pefia 1984) have shown that the statistic D1 is 
very unstable, whereas the statistic D2, introduced in 
Section 3, seems to be always able to identify points 
with strong influence on the estimated parameters. The 
superiority of D2 to detect heterogeneity can be fore- 
seen, because it is known that time series models are 
much more robust to innovational than to additive out- 
liers. 

These ideas can be extended in a straightforward way 
to deal with multiple cases. For instance, (3.12) is still 
valid if *T represents the parameter estimated when it 
is assumed that additive outliers occur at the set of 
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Figure 1. Plots of the Extinction-Rate Series, of the Diagnostic 
Statistics Recommended in the Article (D2T), and of the Diagnostic 
Statistics for Innovational Outliers (DiT). 

points indicated by T = (tl, . . ., t). On the other 
hand, the computation of the statistic becomes more 
difficult. A possible strategy is to first compute D2(T) 
for all of the individual points and all of the (2) com- 
binations. Then select only the a% points (between 
10% and 25%) with highest influence either individually 
or in pairs and compute the statistics for all of the 3, 
4, ... combinations of this small set of points. This 

strategy seems to be useful given our limited experience 
on the problem. 

7. AN APPLICATION 

The data that will be used to illustrate the previous 
statistics are the series of extinctions of marine animals 
over the past 250 million years displayed in Figure 1. 
These data were studied by Raup and Sepkoski (1984) 
and show periodicity in the peaks of extinctions that 
they attribute to deterministic extraterrestrial causes. 
Kitchell and Pefia (1984) showed that the observed 
pseudoperiodicity can be explained by a fifth-order non- 
stationary autoregressive process with one root equal 
to 1 and four others complex. 

Table 1 displays the original death-rate series, the 
residuals of the best estimated model, and the values 
of the DI and D2 statistics. Both of those influence 
statistics are plotted in Figure 1. It can be seen that D1 
is more unstable than D2; besides, DI fails to indicate 
the influential points clearly and shows peaks in the 

32th and 34th observations. D2 pinpoints observation 
30 without any doubt, however. The atypical value of 
this observation is clear from Figure 1, and the residual 
at this point is outstanding and bigger than three stan- 
dard deviations. The small value of D2 for this point 
(.389) suggests, however, that this observation is not 
very influential as far as the parameter values are con- 
cerned. So, although there are only 39 observations, 
the autoregressive model is very robust to the effect of 
a single outlier. 

Model A of Table 2 presents the estimated autore- 
gressive model with and without outliers. As the data 
are proportions, different transformations have been 
used to test the sensitivity to the metric of the data. 
Model B, Table 2, presents the estimated models for the 
raw data and for transformation y, = In z,/(1 - z,). 
The results are very similar, and the same holds for 
other possible transformations that have been applied. 
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Table 1. Original Series (Z), Estimated Residual From the AR(5) 
Model (at), and Statistics D,(T) and D2(T) 

Observation Zt at D,(T) D2(T) 

1 52.500 -.000 .000 
2 21.000 - .000 .000 
3 24.000 - .000 .000 
4 12.800 - .000 .000 
5 15.900 - .000 .000 
6 26.400 -.142 .002 .005 
7 38.600 .703 .005 .051 
8 15.900 -.643 .011 .030 
9 2.600 -1.867 .104 .044 

10 10.100 .140 .001 .000 
11 15.200 -.306 .004 .021 
12 7.100 -1.429 .097 .047 
13 11.600 .361 .003 .004 
14 3.500 .567 .006 .003 
15 7.600 .014 .000 .000 
16 6.000 -.527 .005 .006 
17 9.800 .289 .002 .028 
18 19.500 .949 .016 .012 
19 3.900 -.823 .014 .047 
20 3.600 -.479 .005 .010 
21 9.500 .650 .011 .000 
22 6.000 -.679 .010 .003 
23 10.200 .087 .000 .008 
24 12.000 .859 .016 .051 
25 18.900 1.111 .021 .000 
26 9.900 -.167 .000 .047 
27 5.800 -.374 .001 .031 
28 9.200 .107 .000 .001 
29 14.700 .257 .001 .087 
30 66.300 2.384 .056 .381 
31 22.200 -.054 .001 .011 
32 21.900 .760 .216 .022 
33 11.100 -.230 .020 .019 
34 36.700 .851 .250 .033 
35 45.800 .031 .000 .000 
36 29.400 .080 .000 .000 
37 20.000 -.114 .000 .000 
38 12.500 -.417 .000 .000 
39 25.000 -.076 .000 .000 

I I I _ _ 
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Table 2. The Estimated Autoregressive Model With and Without Outliers 

Model Q(11 ) c2 

A 

(1 + .66B + .56B2 + .71B3 + .38B4)VZ, = a, 6.2 122.8 

Zt = 42.68130 + a 4.1 63.65 
(6.71) V(1 + .32B + .56B2 + .45B3 + .22B4) 

(1.94) (3.75) (2.71) (1.55) 
B 

(1 + .62B + .59B2 + .62B3 + .42B4)Vy, = a, 7.9 .574 
(4.0) (3.8) (3.9) (2.7) 

t = 2.05/30+ V(1 + .49B + .65B2 + .43B3 + .40B4) 
5.0 .440 

(3.68) 
(3.1) (4.2) (2.5) (2.7) 

NOTE: Zt is the extinction-rate series and Yt is its logit transformation [Yt = In Zt/(100 - Zt)], B is the backshift operator, V = 1 - 

B, 130 is an indicator variable with 1(30) = 1 and 1(i) = 0 for all i : 30, Q(g) is the Ljung-Box statistic with g df, and b2 is the residual 
variance of the model. 

also indebted to Arthur B. Treadway, who taught me 
the importance of outliers in time series models. This 
research was accomplished when I was a visiting pro- 
fessor at the Mathematics Research Center, University 
of Wisconsin-Madison. 
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