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J. R. Statist. Soc. B (1989) 
51, No. 3, pp. 363-424 

Leave-k-out Diagnostics for Time Series 

By ANDREW G. BRUCE and R. DOUGLAS MARTINt 

University of Washington, Seattle, USA 

[Read before The Royal Statistical Society at a meeting organized by the Research Section on Wednesday, 
March 8th, 1989, Professor A. P. Dawid in the Chair] 

SUMMARY 
We propose diagnostics for autoregressive integrated moving average (ARIMA) model 
fitting for time series formed by deleting observations from the data and measuring the 
change in the estimates of the parameters. The use of leave-one-out diagnostics is a 
well-established tool in regression analysis. We demonstrate the efficacy of observation- 
deletion-based diagnostics for ARIMA models, addressing issues special to the time series 
setting. It is shown that the dependency aspect of time series data gives rise to a 'smearing' 
effect, which confounds the diagnostics for the coefficients. It is also shown that the 
diagnostics based on the innovations variance are much clearer and more sensitive than 
those for the coefficients. A 'leave-k-out' diagnostics approach is proposed to deal with 
patches of outliers, and problems caused by 'masking' are handled by use of iterative 
deletion. An overall strategy for ARIMA model fitting is given and applied to two data sets. 

Keywords: AUTOREGRESSIVE MOVING AVERAGE MODELS; DIAGNOSTICS; INFLUENCE; 
MISSING DATA; OUTLIERS; TIME SERIES 

1. INTRODUCTION 

Regression diagnostics are becoming a well-accepted tool in the practice of statistics. 
This is evidenced not only by books devoted to the subject (e.g. Belsley et al. (1980), 
Cook and Weisberg (1982) and Atkinson (1985) but also by the penetration of the 
concepts into standard texts on regression (e.g. Weisberg (1980)) and the increasingly 
widespread availability of software for computing the diagnostics. We also see the 
basic leave-one-out diagnostic idea for linear regression being carried over to some- 
what more complicated settings such as logistic regression (Pregibon, 1981) and Cox 
regression (Storer and Crowley, 1985). 

However, the literature appears to be relatively devoid of analogous results in the 
time series setting, in spite of a rather obvious way to obtain leave-one-out diagnostics 
in the context of autoregressive integrated moving average (ARIMA) model fitting for 
time series: one deletes a single observation at a time, and for each deletion computes 
a Gaussian maximum likelihood estimate (MLE) for missing data (see, for example, 
Jones (1980), Harvey and Pierse (1984) and Kohn and Ansley (1986)). The use of 
Gaussian MLEs for missing data entails intuitively appealing use of predictions 
in place of missing data. A diagnostic display is obtained by comparing the leave- 
one-out MLEs with the Gaussian MLEs for the full data set versus time, on an 
appropriate comparison scale. This idea was articulated by Brillinger (1966), but only 
the advent of powerful computers and algorithms for fitting autoregressive moving 
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364 BRUCE AND MARTIN [No. 3, 
average (ARMA) and ARIMA models with missing data has placed actual use of the 
procedure within reach. 

In this paper we demonstrate the efficacy of observation deletion diagnostics for 
time series, addressing in the process some issues which are special to the time series 
setting. In particular, we consider not only diagnostics based on ARIMA model 
coefficients but also diagnostics based on the innovations variance. We show that the 
time series problem gives rise to a 'smearing' effect which is not encountered in the 
usual independent observation setting. For diagnostics based on coefficients, this 
smearing can result in considerable ambiguity concerning the numbers and locations 
of outliers. By both examples and theoretical calculations, we show that diagnostics 
based on the innovations variance are far superior to coefficient-based diagnostics in 
this regard. 

Furthermore, outliers and other influential observations frequently occur in patches 
in the time series setting. Thus we propose a 'leave-k-out' diagnostic approach which 
is both effective and within computational reach. 

The paper is organized as follows. Section 2 presents the basic leave-k-out diag- 
nostic, based on the coefficients and innovations variance, including a proposal for 
scaling. Some artificial examples are given in Section 3 which illustrate that the 
innovations variance is a better diagnostic tool. Analytical results on smearing effects 
associated with leave-k-out diagnostics are also presented. Section 4 presents a 
strategy for detecting influential patches. An iterative deletion procedure is given to 
overcome problems caused by 'masking'. Techniques are also discussed for handling 
other types of disturbance, such as level shifts and variance changes. Finally, we give 
an overall strategy for ARIMA model identification and fitting using the leave-k-out 
diagnostics. This strategy is applied in Section 5 to two real data sets. Section 6 yields 
some insight into the diagnostic based on the innovations variance by decomposing 
the influence. The relationship is explored in Section 7 between maximum likelihood 
estimation with missing data and maximum likelihood estimation using a special 
additive outliers (AO) model, revealing an important connection between the diag- 
nostic and Fox (1972) tests for the presence of AO. Finally, some comments about 
scaling and other related work are given in Section 8. 

2. DIAGNOSTICS FOR AUTOREGRESSIVE INTEGRATED MOVING 
AVERAGE MODELS 

We define two different diagnostics for ARIMA models based on deleting obser- 
vations, and measuring the change in the estimated parameters. The diagnostic DV 
measures the change in the estimated innovations variance, and the diagnostic DC 
measures the change in the estimated ARIMA coefficients. 

2.1. The Model 
Consider a non-stationary process xi, t = l,... ,n, which can be represented by 

an ARIMA(p, d, q) x (P, D, Q) model 

F(Bs)WB)VdVf Xt y y + O(Bs)O(B)e, (2.1) 
where the v, are the innovations. These are assumed to be independent Gaussian 
random variables with zero mean and variance &2. B is the backshift operator, and 
the regular and seasonal difference operators are V = 1 - B and V, = 1 - BS 
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1989] LEAVE-k-OUT DIAGNOSTICS 365 

respectively. The intercept term is y, the ordinary autoregressive and moving average 
operators are 

+(B) = 1 - 0B- -0 Bq 
@(B) = 1-O1B- -.OqBq 2.a 

and the corresponding 'seasonal' operators are 

ED(BS) = 1 -(D} Bs - 
_p - BsP, 

0(Bs) = 1 - 0IBs - OQBsQ. (2.2b) 
Let a denote the r x 1 vector of parameters, 

a = (4 1, , Op, (DI, . , (DP, 0l, *,' ,1, * q)T . .,)q ) (2.3) 

where r = p + P + q + Q. Assume that the polynomials in equations (2.2) have 
their roots outside the unit circle, so that the process w = VdVDx, is stationary and 
invertible. 

2.2. Estimation of Autoregressive Integrated Moving Average Models with 
Missing Data 

Exact MLEs with missing data can be obtained using the state space representation 
of an ARIMA model. Various formulations have been given by Jones (1980), Harvey 
and Pierse (1984), Kohn and Ansley (1986) and Bell and Hillmer (1987). We have 
implemented the Harvey and Pierse approach, which has the advantage of simplicity, 
but the disadvantage that missing values are not allowed in the first d + sD obser- 
vations. If a missing value does occur at the beginning of a series, we deal with this 
problem in the current version of our diagnostic by computing the likelihood for the 
reversed series. 

The Kohn and Ansley approach has the attractive feature that missing values are 
allowed anywhere in the series, and we hope to implement their version in the near 
future. 

2.3. Diagnostics for Coefficients DC 
Denote the MLE of a by a. Let A = {t,, t2, . . . , tk} be an arbitrary subset of 

{ 1, 2, . .. , n}, and let &A denote the MLE with observations ytt, . . .Y, Ytk treated as 
missing. If some of the observations in A have an undue influence on the estimate MAA 
then this will often reveal itself in the form of a substantial difference between a and 
OA. We define the empirical influence on the coefficients of the subset A by 

EIC(A) = -n(&A - a). (2.4) 

Standardizing by the factor n leads to a non-degenerate asymptotic form for equation 
(2.4). 

The empirical influence EIC(A) is an r-dimensional vector, and as such is difficult 
to interpret. Further, the empirical influence is relative and comparable only within 
a data set. Following the ordinary regression approach, we would use a diagnostic on 
a quadratic form of the empirical influence function, namely 

DC(A) = - EICT(A)C 'EIC(A) (2.5) n 
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366 BRUCE AND MARTIN [No. 3, 

where C is an estimate of the covariance matrix C of oc. This estimate is easily 
constructed via the following considerations. 

Under regularity conditions that a is asymptotically normal (see, for example, 
Fuller (1976)), 

(a- a)Vn -- Nr(O, C(a)) 

with asymptotic covariance matrix C(z) which is related to I(oc), the asymptotic 
information matrix, by 

C(a) -= I(a). (2.6) 

If I(%) is a consistent estimator of I(zt), then the Mann-Wald theorem implies that 

n(a- -)TI(a)(a -2 (2.7) 
where X2 denotes a chi-squared random variable with r degrees of freedom. Thus, it 
is natural to choose C- to be I(a). 

One estimator of I(cx) is I(a), the expected information evaluated at the MLE. 
Although not commonly available in the literature, a closed form expression for I(zc) 
in terms of a exists (see Appendix A). Using this expression, we take as our leave-k-out 
diagnostic for coefficients 

DC(A) = - EICT(A)I(&)EIC(A) (2.8) n 

= n(a-A A) I()(& - A) 

Although the distribution of DC(A) is not known, the use of the X2 distribution 
allows us to view DC(A) on a familiar scale. Namely, this measures the influence of 
a subset A with respect to the approximate confidence intervals about I'. It corre- 
sponds to using the F distribution as a reference for Cook's distance (Cook and 
Weisberg, 1982) and DFFITS (Belsley et al., 1980). The X 2 distribution is used in the 
time series case, rather than an F distribution, since I(a) does not involve the nuisance 
parameter 2. 

While the exact definition of what is influential depends on the problem, a rough 
guide is to judge a subset A of points to be influential if the 'p value' of DC(A) based 
on the X2 reference distribution is smaller than 0.5 (not 0.05; see Cook and Weisberg 
(1982)). Empirical evidence shows that this guideline is quite useful, except near the 
region of non-invertibility or non-stationarity. This guideline is not a significance test 
and merely serves as a general purpose indication of influence. See Section 8 for more 
about scaling and reference distributions. 

2.4. Diagnostics for the Innovations Variance DV 
The influence of a subset A can also be measured by evaluating the effect of its 

removal on the MLE of the innovations variance a2. We define the empirical influence 
on the innovations variance of a subset A by 

EIV(A) = -n(kA - C2) (2.9) 
where CA is the MLE of 62 with observations at times t E A treated as missing. The 
diagnostic is formed in the same manner as earlier: a standardized version of EIV(A) 
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1989] LEAVE-k-OUT DIAGNOSTICS 367 

is computed, based on asymptotic theory. Under regularity conditions, a2 is asymp- 
totic4lly normal (and independent of a): 

(cY2 _ a2)n -+ N(O, 2u4). (2.10) 

Then by the Mann-Wald theorem 

_ 
- 

I- 1 
X 

n(2 )2 

Thus, we propose to use as leave-k-out diagnostic for innovations variance 

DV(A) = 2j- 1) (2.11) 

with the reference distribution being a chi-squared distribution with one degree of 
freedom (x2). Again, we suspect a subset A of observations to be influential if the p 
value for DV(A) is less than 0.5 using a x2 distribution. 

2.5. Diagnostics for Patches 
For independent observations, computational considerations usually result in 

deletion of a single observation at a time. The corresponding hope is that masking will 
not prevent us from discovering all influential data by iterative deletion. However, the 
time series situation differs from the case of independent observations in at least two 
important ways: 

(a) structure is imposed by time ordering and 
(b) influential observations often come in the form of an 'outlier patch' or other 

local 'structural' change extending over several observations. 

Leave-one-out diagnostics can fail to give clear evidence of influence in the case of 
patchy disturbances such as outliers, as we show later in a concrete example. Such 
behaviour might be regarded as a form of masking since the effect of any single outlier 
in such a patch can be overwhelmed by the effect of the other outliers. Fortunately, 
this kind of situation is easily dealt with in time series (unlike as in unstructured 
independent observation problems) by leaving out k consecutive observations, i.e. by 
taking A = Ak,, to consist of the k time points centred at t: (t - [(k - 1)/2], ... 
t + [k/2]), where [x] denotes the largest integer less than or equal to x. For even k, 
t is the point closest to the left of the centre of the patch Ak, . To simplify notation, 
we denote DC(Ak,A) DV(Ak,,), Ak, and &Ak, by DC(k, t), DV(k, t), &k, and Sk 
respectively. When k = 1, we shall often simply write DC(t), DV(t), 'a and ut. 

For patches at the ends of the series, where t < [(k - 1)/2] or t > n - [k/2], 
DC(k, t) and DV(k, t) are computed with the patch truncated in the obvious manner. 
For non-stationary models, the series will be reversed to obtain DC(k, t) and DV(k, t) 
for t = 1, . . ., do + [(k - 1)/2] where do is the order of the differencing. 

3. SUPERIORITY OF DV OVER DC 

At first thought, DC might appear to be the diagnostic of choice since it is the 
ARIMA model analogue to Cook's distance (Cook and Weisberg, 1982). In the 
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368 BRUCE AND MARTIN [No. 3, 
regression case, the error variance is a nuisance parameter and therefore has less 
intuitive appeal as the basis for a diagnostic. However, in time series models, the 
innovations variance often plays a fundamental role and, for some problems, the 
innovations variance is the parameter of interest. Furthermore, as we show in this 
section, DV has better properties than DC. 

The major difference between leave-k-out coefficients DC for time series (including 
k = 1) and the usual regression coefficients diagnostics for independent data is a 
smearing of the effect of an isolated outlier or patch of outliers to adjacent points. A 
given point may be judged influential using the diagnostics for the coefficients because 
of an outlier at an adjacent point. For example, in the AR(p) case, an isolated outlier 
can result in significant values for DC at p times before and after the occurrence of 
the outlier. Hence, interpretation of leave-k-out diagnostics for DC is not so clear as 
in the usual regression case. In contrast, diagnostics for the innovations variance 
display much smaller, and often negligible, smearing effects. In this section, we first 
demonstrate this using some artificial examples. Then an asymptotic approximation 
is given to establish an analytical rationale for these different smearing effects. 

3.1. Outlier Models and Examples 
In the following examples, we focus on influential points caused by outliers. 

Influential observations may also be the result of structural changes, such as level 
shifts or variance changes. We discuss the application of leave-k-out diagnostics to 
such problems in Sections 4 and 5. 

We examine the performance of DC and DV under two types of contamination 
commonly used in other studies (see, for example, Fox (1972), Denby and Martin 
(1979), Martin and Yohai (1986) and Tsay (1986)): the AO model and the innovations 
outliers (10) model. 

Let xt be a Gaussian ARIMA process specified by model (2.1). Then yt behaves 
according to a fixed magnitude AO model if 

Yt = xt + 4tzt (3.1) 
where St is fixed (but may depend on t) and zt is a 0-1 process. The magnitude of the 
outliers is S,; isolated outliers and patches are created by appropriate choice of zeros 
and ones for zt. 

A fixed magnitude JO model is formed through contamination in the innovations 
process st. Let Et be a contaminated white noise process, with 

Et = Et + 'tzt (3.2) 
where Zt are independent Gaussian random variables with zero mean and variance a2, 
and ct, zt are as before. Then yt follows an ARIMA 10 model if it is generated by 
model (2.1) with the Et given by model (3.2). 

The models (3.1) and (3.2) are rather special AO and 10 forms. More general AO 
and 10 (and other) outlier models for time series are possible (see Martin and Yohai 
(1986) for a very flexible 'general replacement' model). 

3.1.1. Example 1: AR(J), k = 0.4, U2 = 1, additive outliers model with one 
isolated outlier 

Starting with a simple case, we examine a simulated AR(1) series of 100 points from 
Gaussian white noise with 0 = 0.4 and a single AO of + 4 at point 28. The MLE fit 

This content downloaded from 163.117.20.121 on Tue, 24 Nov 2015 09:52:22 UTC
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


19893 LEAVE-k-OUT DIAGNOSTICS 369 

esfimated phi = 0.17 

es_imated sigma = 1.09 

-Z 

0 10 20 30 40 50 60 70 80 90 100 

(a) 
0.16 

0.22 

OoF Tl 0.32 U 

U',_ 0.48 

0 10 20 30 40 so 60 70 80 90 100 

(b) 
0.01 

0.03 

0.05 

> cf) - - ~~~~~~~~~~~~~~~~~~~~~~~~~0.08 ( 

C%J - - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~0.16 

0 0.32 

o - ' 't ''i''?''''''.......... ....... ......... ......... .......... ......... I 1.00 

0 10 20 30 40 50 60 70 80 90 100 

(c) 

Fig. 1. Example 1, simulated AR(Q.4) model with one isolated AO: (a) plot of data; (b) scaled 
leave-one-out diagnostics-pO; (c) scaled leave-one-out diagnostics-innovations variance 

of an AR(l) model with the entire series yields j = 0.17 and a = 1.09. The data are 
plotted in Fig. l(a) and the outlier is marked by 'o'. The leave-one-out diagnostics, 
DC(-) and DV(-), for 4 and '2 are displayed in Figs 1(b) and 1(c). The p values 
corresponding to a X2 distribution are displayed on the right-hand axis. The p values 
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for DC(t) at t values of 27, 28 and 29 are all smaller than 0.5, while the p value for 
DC(t) is considerably greater than 0.5 for all other times. Thus Y27, Y28 and Y29 are 
judged to be influential. By contrast, among all DV(t) values, only DV(28) is signifi- 
cant, and its p value of about 0.02 is much smaller than DC(28). This example is 
indicative of a general pattern which we establish analytically later: an outlier is 
smeared across several values of DC(-) but is identified exactly by DV(-) and with 
greater power! In particular, for AR(l) processes, the smearing for DC(-) extends by 
one time unit in each direction from t = 28. 

3.1.2. Example 2: AR(]), + = 0.4, o2 = 1, innovations outliers model with one 
isolated outlier 

Example 2 is the same series as in example 1, except that the outlier at point 28 is 
of the IO type. The MLEs of the parameters are 0 = 0.27 and ̂ 2 = 1.06. Fig. 2 
displays the data and leave-one-out diagnostics DC(-) and DV(-). The problem of 
smearing for DC is considerably worse than in example 1. The diagnostic DC is 
significant only at time t = 27, while the p value of about 0.7 at t = 28 is quite 
insignificant. However, there is no smearing with DV(-): DV(28) is several mag- 
nitudes larger than DV(t) for any other t, and hence DV identifies the outlier quite 
clearly. Again, this is general behaviour, established later. For the AR(1) case, DC is 
large at the time point just before the occurrence of an isolated 10-type outlier but 
is small at the time of occurrence of the outlier, while DV is large only at the time of 
occurrence of the outlier. 

3.2. Smearing and Expected Asymptotic Diagnostic 
To understand the smearing behaviour of the diagnostic (2.8) for coefficients, it is 

helpful to use an asymptotic representation of DC(A) for general subset deletions A. 
For subsets Ak,1 offixed size k, the 'usual' In asymptotics do not apply, and typically 
a- Ck = O(n-'). Correspondingly, we are interested in the asymptotic behaviour 
of n DC(A). Since the asymptotic distribution of this quantity is quite complicated, we 
work with an expected asymptotic diagnostic for the coefficients, defined by 

EDC(A) = E [lim nDC(A)1 

2 )I 00 
= F [lim n2( - &A)TI(&)(& - 1A)].* (3.3) 

In the same spirit as in equation (3.3), we shall use an expected asymptotic diagnostic 
for the innovations variance: 

EDV(A) = E [lim nDV(A)]. (3.4) 

Calculation of EDC and EDV is very tedious, so we restrict our attention to the 
AR(1) case. The computations are based on a Taylor series expansion of the efficient 
score functions for the full likelihood and for the likelihood with subset A treated as 
missing. Details of the calculations made for the discussion to follow may be found 
in Bruce and Martin (1987). 
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Fig. 2. Example 2, simulated AR(O.4) model with one isolated IO: (a) plot of data; (b) scaled leave-one- 
out diagnostics-0; (c) scaled leave-one-out diagnostics-innovations variance 
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Fig. 3. Expected asymptotic diagnostic curves: (a) EDC for AO-type outlier of size + 4 at time T; 
(b) EDV for AO-type outlier of size + 4 at time T; (c) EDC for 10-type outlier of size + 4 at time T; 
(d) EDV for 10-type outlier of size + 4 at time T 

3.2.1. Smearing for AR(I) model: additive outliers case 
We can understand the problem of smearing by computing the expected asymptotic 

diagnostic for various outlier models. For the AO case, the expectation 1in equations 
(3.3) and (3.4) is with respect to the process y, given by model (3. 1). In particular, if 
xt is a Gaussian ARIMA process and A is a fixed subset of time indices, then for the 
process 

xt t 0 A 
Yt 

Xt + t E- A 

we shall denote the expected asymptotic diagnostics by EDCA?X and EDVAO?X 
Fig. 3(a) displays ED (+?4;T)(t)1100, i.e. the expected asymptotic diagnostic for the 

coefficients assuming a single outlier of size 4 at time T, for t = T - 3 
T- 2, . .. S T + 3 with 0 values of 0.3, 0.6 and 0.9. Fig. 3(b) gives the corresponding 
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1989] LEAVE-k-OUT DIAGNOSTICS 373 

plot for EDVT(+ 4.)(t)/100. The scaling factor of 1/100 approximates the expected 
value of the diagnostics for a sample size of 100. The asymptotic approximations 
verify what was observed in example 1 for AO models: the smearing is worse for DC, 
and DV tends to be more sensitive. 

Because of sampling fluctuation, the patterns of diagnostics observed in example 
1 differ from the expected diagnostics in two regards: the magnitude of DC and DV 
is larger than EDC and EDV, and the pattern over time for DC is not the same in that 
the largest diagnostic occurs after the outlier (t = 28). 

In Fig. 4(a), we graphically compare the amount of smearing for DC and DV as 
a function of 0. The ratios 

EDC(+4;T)(T - 1) 
EDC(+4;T) (T) 

(full line) and 

EDV(+4;T)(T - 1) 

EDVA+?4;T) (T) 

(broken line) represent the proportional amount of smearing for an outlier of size 4 
at T. These ratios are always less than unity. However, the expected asymptotic 
smearing for DV is small in absolute terms for all 0 and also substantially smaller 
than that of DC for all but quite large values of 0. The smearing for DC is greater 
than 0.5 for a large range of 0 values, and in such situations smearing may lead to 
some confusion when examining DC. 

The potential for confusion becomes unquestionably serious in situations where 
there is more than one outlier. We demonstrate this in the very simplest context. 
Suppose y, is observed with two isolated AO-type outliers of size 4 at times T - 1 and 
T + 1. Fig. 4(b) exhibits 

EDC(+4;T- 1,T+ ) (T) 
EDC(+4;T-1,T+I)(T - 1) 

(full line) and 

EDV(+4; T-1, T+ ) (T) 
EDV(+4;T- ,T+ 1)(T 1) 

(broken line) as a function of 0. The expected asymptotic value of DC(T) with 
outliers at T - 1 and T + 1 is larger than the expected asymptotic diagnostic at the 
T - 1 (and, by symmetry, T + 1) outlier position for all 0 and has a maximum value 
almost six times larger! Thus, DC will be totally ineffective in revealing such a 
configuration of outliers. By contrast, the ratio for EDV stays below unity for all 0 
and is substantially smaller than unity except for 101 greater than about 0.6. We 
therefore expect DV to be far superior to DC in revealing such outlier configurations. 

3.2.2. Smearing for AR(J) model: innovations outliers case 
The analysis of smearing for JO models parallels that for AO models. However, 

since the outliers occur in the innovations of the process, the difference in the score 
functions for k is not symmetric. Here, the expected asymptotic diagnostics are not 
symmetric, as was the case for AO models. Suppose y, is observed with an 10-type 
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Fig. 4. Expected asymptotic diagnostics-smearing plots: (a) proportion of smearing due to an isolated 
AO; (b) proportion of smearing due to two adjacent isolated AOs; (c) proportion of smearing due to an 
isolated IO 

outlier of magnitude C at T, so e, is given by model (3.2) with z, = 0 except at t = T 
where Zt = 1. If xt represents the series without the innovations outlier, then it is easy 
to check that 

Y Xt = } qT t < T 
Yt - XI + Cot- T t >, T. 

This content downloaded from 163.117.20.121 on Tue, 24 Nov 2015 09:52:22 UTC
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


1989] LEAVE-k-OUT DIAGNOSTICS 375 

We use the notation EDCoT) and EDVWT) to denote the corresponding expected 
asymptotic diagnostics. 

With 10 models, the behaviour of the smearing effects of an outlier differ even more 
dramatically for EDC and EDV. For EDC, the effect of smearing is not restricted to 
points immediately adjacent to the time of occurrence T of an outlier. Specifically, an 
outlier affects EDCW(T)(t) for all t > T - 1 and has the maximum effect at 
t = T - 1! This is quite misleading. By way of contrast, the effects of an outlier at 
T are seen only at t = T - 1 and t = T for EDV'( T)(t) and the maximum value 
occurs at t = T, as we wish. Figs 3(c) and 3(d) display EDC (4;T)(t)/100 and 
EDV'(4;T)(t)/100 for t = T - 3, T - 2, ..., T + 3 with 4 values of 0.3, 0.6 and 
0.9. The severe smearing of DC at t = T - 1 is reflected in Fig. 3(c), where 
EDC'(4,T)(T - 1) dominates EDC(?4;T)(T). This is also demonstrated by Fig. 4(c), 
which shows 

EDC (4;T)(T - 1) 
EDC?4;) (T) 

(full line) and 

EDV (4;T)(T - 1) 
EDVo4; T) (T) 

(broken line). For most values of 0, the ratio for EDC'0 is greater than unity, while 
the ratio for EDV stays well below unity. For 101 close to unity, we cannot expect such 
good results from even EDV in the presence of an 10. 

These results extend to AR(p) models: dominant values of EDC can occur at the 
p consecutive times preceding an isolated IO. The use of EDV(t) is obviously preferred 
for IO as well as AO situations. 

4. OVERALL STRATEGY 

In this section we present an overall strategy for ARIMA model fitting using 
leave-k-out diagnostics. The diagnostics defined in Section 2 are used in a simple 
recipe to determine the length of a patch of influential points. This strategy is 
embedded in an iterative deletion procedure, which often overcomes problems caused 
by masking. Since in some cases the iterative deletion procedure fails, more flexible 
subset deletion techniques are introduced. The problem of ARIMA model identification 
is also discussed. 

4.1. Patch Length Determination Strategy 
Outliers and other influential observations typically come in patches: there are 

often several aberrant values adjacent in time. The length of the patch of influential 
observations often depends solely on the sampling interval. It is thus imperative 
to search for influential patches and not just isolated observations. Motivated 
by an example, a recipe is given for determining the length of a patch of influential 
observations using the diagnostic DV. 
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Fig. 5. Example 3, simulated MA(-0.5) model with one patch and one isolated AO: (a) plot of data; 
(b) scaled leave-one-out diagnostics-innovations variance; (c) scaled leave-two-out diagnostics- 
innovations variance; (d) scaled leave-three-out diagnostics-innovations variance; (e) scaled leave-four- 
out diagnostics-innovations variance 

4.1.1. Example 3: MA(J), 0 = -0.5, uy2 = 1, additive outliers model with one 
patch and one isolated outlier 

This example is a simulated MA(1) series with 0 =-0.5 and both a patch of three out- 
liers of size + 5 at points 60-62 and an isolated outlier of size -4 at time 15. The outliers 
are all of the AO type. Fig. 5(a) shows the data; the MLEs are 0 =-0.36 and 82 = 1.86. 
Leave-one-out to leave-four-out diagnostics for DV are displayed in Figs 5(b)-5(e). 
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Fig. 5 (continued) 

Recall that, for k > 2, DV(1k, t) represents the influence of a patch of k obser- 
vations centred at t and that, for even k, t is the closest point to the left of the 'centre' 
Of the patch. For example, with k = 2, DV(k, t) corresponds to the diagnostic 
computed when y1 and 1t+ are left out. 

Although leave-one-out diagnostics clearly identify the isolated outlier, there is 
barely an indication (using a p value of 0.5 as a guideline) of something happening at 
t = 60 and t =62. The leave-one-out diagnostics are not adequate for detecting the 
patch of outliers: leaving a single point out in the patch is insufficient because the 
remaining outliers in the patch comprise the bulk of the influence of the patch. 
Leave-two-out and leave-three-out diagnostics provide progressively stronger evi- 
dence of the patch of outliers. The value DV(3, 61) iS over five times larger than other 
neighbouring diagnostic values. 

4.1.2. Patch kength determination strategy 
The isolated outlier in Fig. 5 is smeared in the leave-k-out diagnostics for k = 2, 

3, 4. For k = 2, both DV(2, 14) and DV(2, 15) are highly significant and have nearly 
the same value as DV(l, 15). Similar behaviour is observed for k - 3 and k-=4. The 
general pattern is as follows: k - 1 values of DV(k, ) surrounding the location of 
an isolated outlier at T are significant and have nearly the same value as DV(k, T)! 
This corresponds to what we might intuitively expect for an isolated outlier: deletion 
of a patch which includes an isolated outlier has nearly the same effect as deleting only 
the isolated outlier. 
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Similar behaviour occurs for a patch of outliers. For example, DV(4, t) yields 
values at t = 60 and t = 61 which are nearly equal to DV(3, 61). In general, for a 
patch of ko outliers centred at T, the following patch property (PP) holds. 

For k > ko, there are k - ko + 1 subsets Ak, which completely overlap the patch, 
and for deletion of these subsets, the magnitude of DV(k, t) is roughly the same and 
significant (i.e. the associated p value is less that 0.5). 

Thus, we judge an influential patch to be of length ko > 1 centred at T if DV(ko, T) 
is significant, and the PP holds. If DV(ko, T) is significant and the PP fails to hold, 
then this is an indication that a broader patch of outliers is present. 

This provides us with an initial strategy for identifying the length of patches of 
influential points. 

Compute leave-k-out diagnostics for increasing k = 1, 2, . . ., until the 
magnitude of DV(k, t) does not 'significantly' increase for any t. The length of a 
patch will be estimated as one less than the first value of k for which nearly uniform 
smearing is in evidence. 

4.2. Iterative Deletion Strategy 
The masking of influential points (e.g. outliers) by other influential points is a 

problem encountered in all types of diagnostics. As we have already seen, masking 
caused by a single patch of outliers can be handled adequately by leave-k-out 
diagnostics. However, sometimes the presence of a gross outlier will have sufficient 
influence that deletion of aberrant values elsewhere in the series has little effect on the 
estimate. More subtle types of masking occur when moderate outliers occur close to 
one another. These types of masking can often be effectively uncovered by an iterative 
deletion process which consists of removing suspected outliers from the data and 
recomputing the diagnostics. 

To deal with problems caused by masking, we build on the initial patch length 
determination strategy as follows. 

(a) Run leave-k-out diagnostics on the data, for k = 1, 2, . . ., until either the 
length of the most influential (significant) patch is determined using the 
guidelines of Section 4.1 or k = Kmax, where Kmax is determined by the user. 
In principle, Kmax is the length of the longest patch of outliers thought to be 
present in the data. However, computational costs may require that Kmax be 
reasonably small. For 'short' time series, i.e. n < 250, setting Kmax = 5 will 
often reveal most if not all problems with the data. The second case can result 
from two possibilities: either no influential observations were detected or the 
length of an influential patch is ill determined (according to the guidelines of 
Section 4.1). The latter case may be due to a patch of length greater than Kmax, 
or perhaps the patch length simply cannot be determined from the data. In 
this case, we determine the 'most influential' patch as that corresponding to 
the most significant diagnostic. 

(b) If no influential points are found, then conclude the analysis. If influential 
points are found, then delete the most influential points as identified In step 
(a) and go back to step (a). The new leave-k-out coefficients should be scaled 

This content downloaded from 163.117.20.121 on Tue, 24 Nov 2015 09:52:22 UTC
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


1989] LEAVE-k-OUT DIAGNOSTICS 379 

according to the MLE computed with the outliers removed, to gauge 
additional influence of the remaining points. 

The next artificial example illustrates the efficacy of the iterative deletion procedure 
in handling problems caused by masking. 

4.2.1. Example 4: simulated MA (1), 0 = 0.5, additive outliers model with one 
patch and one adjacent isolated outlier 

The data are the same as those used in example 3, except that the isolated outlier 
is moved from point 15 to point 58, adjacent to the patch of outliers at points 60-62. 
The data are plotted in Fig. 6(a). Leave-one-out to leave-four-out diagnostics for DV 
are given in Figs 6(b)-6(e). 

The masking is much more severe than in example 3: the isolated outlier is now 
completely masked for the leave-one-out case (cf. example 3), though the patch still 
shows up prominently in the leave-three-out diagnostics. However, leave-four-out 
diagnostics are only slightly more significant than the leave-three-out diagnostics, and 
the pattern of smearing is reasonably consistent with a patch of three outliers. So, 
following our strategy, we delete points 60-62 and recompute the diagnostics. The 
isolated outlier is now easily identified by the recomputed leave-one-out diagnostics 
of Fig. 6(f): removal of the patch eliminates the masking problem. 

4.3. Structural Changes and Flexible Subset Deletion Techniques 
Until now, we have concentrated on influential points in the form of outliers. 

However, influential points may also be due to other types of disturbance, such 
as level shifts or variance changes. The iterative deletion procedure of Section 4.2 is 
often effective for uncovering these types of problem. However, the procedure 
will sometimes fail in the presence of an influential patch longer than Kmax; an 
example of this is provided in Section 5. Masking may prevent a long patch, or any 
points in the patch, from being detected. Even when the patch is detected, if the 
disturbance spans a time period considerably greater than Kmax, the iterative deletion 
may require an intolerable number of iterations. To handle these failures, one should 
be prepared to adopt a flexible approach to subset deletion guided by the data at 
hand. 

We consider abandoning the iterative deletion procedure and using the flexible 
deletion approach primarily in two kinds of situation. First, when examining the data 
and the residuals, the analyst may suspect a structural change in the data. Secondly, 
the leave-k-out diagnostics may indicate a local disturbance of duration greater than 
Kmax (e.g. when the patch length is ill determined; see step (a) of Section 4.2). In either 
case, flexible subset deletion techniques can help to identify the structure more 
precisely. 

An attractive way of carrying out flexible subset deletions is through the use of 
interactive graphics on a computer workstation. Candidate subsets are identified on 
computer graphics plots of the data and/or the residuals, and DV is computed for 
such subsets. For example, if the analyst believes a local level shift is present some- 
where between the times to and tl, then DV could be computed for a judicious 
selection of patches between to and t, to clarify the jump points. This procedure may 
easily be carried out with the aid of a 'mouse' and appropriate software. 
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Fig. 6. Example 4, simulated MA(-0.5) model with one patch and one adjacent isolated IO: 
(a) plot of data; (b) scaled leave-one-out diagnostics-innovations variance; (c) scaled leave-two-out 
diagnostics-innovations variance; (d) scaled leave-three-out diagnostics-innovations variance; 
(e) scaled leave-four-out diagnostics-innovations variance; (f) scaled leave-one-out diagnostics after 
iterative deletion 
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Fig. 6 (continued) 

A non-interactive and computationally expensive approach is to run leave-k-out 
diagnostics on the data for selected values of k between Kmax and n/2. We might for 
example choose k = [n/2], [n/4], . . . , [n/2r] where r is the largest integer such that 
n/2r > Kmax. An alternative would be to choose k = 2S, 2S+ .. , 2' where s is the 
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smallest integer such that 25 > Kmax and t is the largest integer such that 2t < n/2. 
From these diagnostics, the disturbances can often be clarified. 

Another application of the 'bottom-up' or 'top-down' diagnostics would be to 
provide a final check on the model after the analysis is completed. This ensures 
detection of long patches of influential points and structural changes. 

4.4. Model Identification and Analysis of Residuals 
4.4.1. Model identification 

The foregoing analysis presumes that the degree of differencing and the order for 
the model was known. In practice, this is rarely the case, and the model must be 
determined by some criteria such as the Box-Jenkins identification procedure. How- 
ever, outliers may cause improper model specification. To handle order selection in 
the presence of outliers and structural changes, we can embed the iterative deletion 
strategy in an iterative procedure similar to that used by Tsay (1986). The initial 
model order is selected, and the iterative deletion strategy performed on the initial 
model. After removing all influential points, the model is identified again. If the 
same model is selected, then the analysis is concluded. Otherwise, iterative deletion is 
performed again, and the cycle is repeated until the same model is identified in 
successive rounds. 

While this procedure is usually adequate, it may fail in some situations where a 
poor initial model is selected. If the wrong model is identified, then removal of the 
influential points under that model may lead to selection of the same model (see Bruce 
(1988) for an example). 

4.4.2. Analysis of residuals and influential points 
In the presence of outliers and structural changes, the usual prediction residuals are 

often misleading for identifying the influential observations. Instead, we recommend 
the examination of the residuals based on the predictions formed when the obser- 
vations identified as influential are treated as missing. Since the predictions are not 
distorted by influential observations, this procedure reveals outliers and structural 
changes more clearly. 

After selecting the final model, a careful analysis of the influential data points 
should be carried out. Of particular interest is the determination of any physical 
causes or events related to such points. Also, one may be able to categorize influential 
points as isolated or patches of outliers, or perhaps associate them with a level shift 
or variance change. 

Points diagnosed as outliers can be further classified by type (AO versus JO). 
A formal way of determining whether an outlier identified by DV is IO or AO is to 
use a robust version of Fox's (1972) test, as described in Martin and Zeh (1977). 
See also the non-robust use of Fox-type tests in the outlier identification and model 
fitting scheme proposed by Chang and Tiao (1983), Hillmer et al. (1983) and 
Tsay (1986). 

A less formal way of determining whether an outlier is JO or AO is to examine a 
lag-I scatter plot of the residuals. As was pointed out by Martin and Zeh (1977), lOs 
tend to fall near the abscissa and ordinate of such a plot, whereas AOs tend to appear 
away from the abscissa and ordinate, assuming that robust parameter estimates have 
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been used to form the residuals. In the present context, we recommend the use of the 
parameter estimates obtained with the outliers identified by DV deleted. 

4.4.3. Use of intervention analysis 
A variety of structural changes, such as outlier patches, level shifts and even 

variance shifts, which may be detected by the leave-k-out strategy, can be handled by 
intervention analysis, as in Box and Tiao (1975). The prediction residuals for local 
structural changes provide information which may suggest a small palette of interven- 
tion 'shapes'. We note that the diagnostics may suggest intervention analysis which 
might be otherwise overlooked because the investigator was unaware of any 
particular cause (e.g. policy change). 

4.4.4. Need forflexible approach 
The analyst will often want to deviate from the procedures outlined as dictated by 

the data. Our initial attempts at specifying a fixed 'overall strategy' failed because the 
data that we wanted to analyse often forced us to take a very flexible and improv- 
isational approach. Our feeling now is that different data sets have their own special 
problems, and establishing a rigid overall framework for analysis detracts considerably 
from the potential benefits of subset deletion diagnostics. 

5. APPLICATIONS TO REAL DATA 

In this section, we analyse two economic time series using the strategy articulated 
in Section 4. The first series is relatively well behaved, except for several patches of 
outliers. The second is more difficult to model, since it contains several local non- 
stationarities and disturbances, including level shifts and a variance change. 
For brevity, we omit the details of model selection in the examples to follow and 
concentrate instead on the diagnostics. 

5.1. Example 5: Exports to Latin-American Republics-1966-83 
In this example, we study monthly unadjusted data on exports from the USA to 

Latin-American republics. This series was examined by Burman (1985), who focused 
on outliers and forecasting in US Census Bureau data. A plot of the logarithm of the 
data is given in Fig. 7(a); the circled values represent points eventually deleted from 
the series. We fit an ARIMA(0, 1, 2) model to this series, and the residuals from the 
MLE fit are plotted in Fig. 7(b). The residuals based on one-step predictions com- 
puted from the data with the outliers removed (i.e. treated as missing data) are given 
in Fig. 7(c). 

Leave-k-out diagnostics for k = 1, 2, 3 are displayed in Figs 7(d)-7(f) for DV. 
Leaving out longer patches reveals nothing new, since the series is dominated by the 
outliers at 1/69 and 2/69 (i.e. January 1969 and February 1969). The effect on the 
innovations variance of leaving these two points out is dramatic (p < 0.0001): see 
Fig. 7(e). It is unlikely that a broader patch of outliers is present in this time period, 
since leave-three-out diagnostics yield no increased significance, and the smearing is 
consistent with a patch of two outliers. The plots also hint at outliers in the last 
quarter of 1971. DV(, 2) is clearly significant for other points (e.g. 10/71) and suffers 
from masking since the scale of the diagnostic at 1/69 and 2/69 is so large. 
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Fig. 7. Example 5, logarithm of exports to Latin-America: (a) plot of data; (b) residuals from 
ARIMA(O, 1, 2) fit; (c) residuals from ARIMA(O, 1, 2) fit-utliers removed; (d) scaled leave-one-out 
diagnostics-innovations variance; (e) scaled leave-two-out diagnostics- innovations variance; 
(f) scaled leave-three-out diagnostics- innovations variance; (g) DY-leave-one-out diagnostics after 
one round of iterative deletion; (h) DY-leave-two-out diagnostics after one round of iterative deletion; 
(i) DY-leave-three-out diagnostics after one round of iterative deletion; (j) DY-leave-four-out 
diagnostics after one round of iterative deletion; (k) DY-leave-one-out diagnostics after two rotmids 
of iterative deletion; (1) DY-leave-two-out diagnostics after two rounds of iterative deletion; 
(in) DY-leave-three-out diagnostics after two rounds of iterative deletion; (n) DY-leave-four-out 
diagnostics after two rounds of iterative deletion 
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Fig. 7 (continued) 

Following the strategy of Section 4, we remove the points at 1/69 and 2/69 and 
recompute the diagnostics for k = 1, 2, 3, 4. The results of the first round of iterative 
deletion are displayed in Figs 7(g)-7(j). Using the guidelines of Section 3, DV identifies 
the patch 9/71, 10/71 and 11/71 as outliers, withp < 0.01. Evidence for including 9/71 
as part of the patch is weaker than for 10/71 and 11/71: the increase of DV(3, t) over 
DV(2, t) for t = 10/71 is relatively small. However, the pattern of smearing in 
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Fig. 7 (continued) 

Figs 7(h)-7(j) is more consistent with a patch of three outliers than with a patch of 
two. Hence, these points are removed, and the diagnostics are recomputed. 

Leave-k-out diagnostics for a second round of iterative deletion are performed, and 
an influential patch is identified at 12/76-2/77: see the leave-one-out to leave-foui-out 
diagnostics plotted in Figs 7(k)-7(n). The significance of this patch is much smaller 
than in previous rounds (p = 0.29). Another round of diagnostics is run and an 
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Fig. 7 (continued) 

influential patch at 1/78-2/78 is detected. The plots are omitted for this round, since 
the pattern of diagnostics is similar to the previous round: see Figs 7(k)-7(n). One 
interesting feature is that leave-one-out diagnostics do not pick up the patch 
(1/78-2/78): we need leave-two-out diagnostics to identify these points as influential. 

Other potential outliers are weakly indicated at 10/68 and 10/70 (see Fig. 7(k)); they 
are associated with fairly high p values of 0.74 and 0.71. These points correspond to 
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Fig. 7 (continued ) (n) 

moderately large residuals in Figs 7(b) and 7(c), but evidently do not significantly 
influence the estimate of the innovation variance. 

In the final analysis, four groups of outliers were identified and removed using three 
rounds of iterative deletion. The points which were deleted at each stage, and the 
corresponding MLEs, are given in Table 1. Removal of the influential points results 
in a drop in the estimated innovations variance by a factor of 2. The first two groups 
of outliers at 1/69-2/69 and 9/71-11/71 correspond to dock strikes and forestalling, 
yielding large negative and positive outliers respectively. The other groups (12/76-2/77 
and 1/78-2/78) have no known cause and exert considerably less influence on the 
estimated parameters. Burman (1985) identified the first two groups as outliers, along 
with 10/68 and 10/70, using the model-based methodology of Hillmer et al. (1983). 
The points 10/68 and 10/70 show up in the leave-k-out diagnostics, but not so 
prominently as the other patches at 12/76-2/77 and 1/78-2/78, which were not 
identified by Burman. Once again, we see the importance of searching for influential 
patches as well as isolated outliers. 

5.1.1. Analysis of residuals 
Fig. 7(c) gives the residuals based on one-step predictions from the data with the 

outliers removed, where the predicted values are computed from the MLE estimated 
with the outliers removed. The general pattern is similar to the original set of residuals 
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TABLE 1 

Parameter fit to export data 

Iteration 0, 02 a2 Points deleted p value 
step 

0 0.367 0.160 0.0114 
1 0.460 0.003 0.0083 1/69, 2/69 0.00010 
2 0.448 -0.041 0.0066 9/71, 10/71, 11/71 0.0075 
3 0.431 -0.058 0.0060 12/76, 1/77, 2/77 0.29 
4 0.43 -0.08 0.0056 1/78, 2/78 0.45 

(see Fig. 7(b)), but with an important difference: the large residuals in Fig. 7(c) 
correspond to the points identified as outliers in this analysis. Specifically, that last 
outlier in each patch, masked in Fig. 7(b), shows up prominently in the residual plot 
of Fig. 7(c). Correspondingly, the residuals following the patch of outliers, which are 
large in Fig. 7(b), reveal nothing unusual in Fig. 7(c). Thus, the plot of residuals with 
the influential data points treated as missing provides a useful graphical display to be 
compared with the raw residual plot. 

5.2. Example 6: Value of Unfilled Orders, Radio and Television 
Fig. 8(a) displays the monthly value UNFTV (in millions of dollars) of unfilled 

orders for radios and televisions from 1958 to 1981. This series was previously studied 
by Martin et al. (1983), who used a robust filter to fit an ARIMA(O, 1, 1) x (0, 1, 1,)12 
model. The series was also analysed by Engle and Kraft (1983), who fit an autoregressive 
conditionally heteroscedastic (ARCH) model to the data. Our initial fit is an 
ARIMA(0, 1, 1) x (0, 1, 1)12 model; the MLEs are given in Table 2 and the residuals 
from the MLE fit are given in Fig. 8(b). 

Examination of Fig. 8(b) shows that the end of series has many more large residuals 
than the rest of the series. It is quite likely that a variance change may have occurred 
towards the end of the series, so instead of following the usual procedure we adopt 
a flexible approach and look for the possibility of a variance shift. 

Using the bottom-up approach described in Section 4, we perform leave-k-out 
diagnostics for k = 16, 32, 64. The diagnostics for k = 64 are displayed in Fig. 8(c) 
and dramatically support the conjecture of non-homogeneity of variance in the series: 

TABLE 2 
Parameter fit to UNFTV data 

Time Model Step I, 8 ,2 '2 Points 
period deleted 

1958-80 (0, 1, 1) X (0, 1, 1),2 0.41 0.75 3123 
1958-75 (0, 1, 1) X (0, 1, 1),2 0.18 0.92 1303 
1976-80 (0, 1, 1) x (0, 0, 2)6 0 0.36 -0.25 -0.51 8960 

(0, 1, 1) x (0, 0, 2)6 1 0.49 -0.46 - 1.00 5340 2/78-5/78 
(0, 1, 1) x (0, 0, 2)6 2 0.36 -0.46 - 1.00 4173 9/78 
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Fig. 8. Example 6, unfilled radio and television orders: (a) plot of data; (b) plot of residuals; (c) scaled 
leave-64-out diagnostics-innovations variance; (d) scaled leave-eight-out diagnostics-innovations 
variance; (e) scaled leave-one-out diagnostics-innovations variance; (f) scaled leave-four-out 
diagnostics-innovations variance 

the maximum value for DV is over 250. The diagnostics for k = 16 and k = 32 (not 
shown) display a similar pattern, although achieving a smaller maximum value' It is 
clear that the behaviour of this series is fundamentally different towards the right- 
hand end of the data. The data are split into two series, and each part is analysed 
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Fig. 8 (continued) 

separately. We choose 1/76 as the change point, based on the residuals plot 
and on computation of DV for a few judiciously selected subsets. Specifically, 
patches of increasing size were truncated from the right-hand end of the data, 
and the data were split (approximately) according to the patch of maximum 
influence. 
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Checking the model order for the first part of the series again yielded an 
ARIMA(0, 1, 1) x (0, 1, 1)12 model. The MLEs for this model are given in Table 2. 
Note the reduction in the estimated innovations variance from 3123 to 1303. 

However, running leave-k-out diagnostics on this portion of the data reveals more 
problems. Leave-eight-out diagnostics displayed in Fig. 8(d) indicate several patches 
of influence. Two patches are especially prominent: one during 1968 and another in 
1972. The patch in 1972, which shows up only in the leave-eight-out diagnostics, is 
associated with what appears to the eye to be a local level shift spanning from 5/72 
to 10/74 (see Fig. 8(a)). The patch in 1968 corresponds to a large residual at 6/68 and 
has a less well-defined structure. It might be that there is a local level shift during 
11/67-5/68 or during 6/68-10/69, or both. In any case, the diagnostics help us to 
identify problem areas in the data and show that the large residual is associated with 
a patch of influential points rather than an isolated outlier. 

An ARIMA(0, 1, 1) x (0, 0, 2)6 model was fitted to the second part of the series, 
though the short time span makes model selection difficult. A summary of the iterative 
deletion procedure is given in Table 2. The leave-one-out diagnostics, plotted in 
Fig. 8(e), pick up the isolated outlier at 9/78 (p = 0.17), which was prominent in the 
residual plot (see Fig. 8(b)). However, leave-k-out diagnostics for k = 2, 3, 4 reveal 
a highly influential patch at 2/78-5/78 (p < 0.003): see the plot for leave-four-out 
diagnostics in Fig. 8(f). This patch is not associated with any large residual and was 
not detected by leave-one-out diagnostics! Removal of the patch 2/78-5/78 has a 
dramatic effect on the fit, which may indicate that the model is poor. Another round 
of diagnostics (not shown) identified 9/78 as an influential point, though its removal 
primarily affects just the estimated innovations variance. 

In summary, the UNFTV series shows the effectiveness of the diagnostics at 
revealing different types of influential points, and not just outliers. Also, this example 
shows the need for adopting a flexible data analytic approach, and it demonstrates, 
once again, the importance of looking for influential patches. 

Incidentally, with regard to dealing with the variance shift in the last part of the 
series, the ARCH modelling approach of Engle and Kraft (1983) appears to be a 
viable alternative. 

6. MORE ABOUT DV 

6. 1. Decomposition 
An outlier can inflate the estimated innovations variance for two reasons: first, it 

can inflate the variance by distorting the parameter estimates of the ARIMA coef- 
ficients, and hence the fit, and secondly the outlier can inflate the variance because of 
an associated large residual. To reflect the first component define 

DFIT(A) = (n - k) {Y1A - 1 } (6.1) 

where CA (aX) is the marginal MLE of U2 with subset A deleted for an arbitraryfixed 
a. Note that CA = A (aA), where CTA is a component of the joint MLE (TA, &A), with 
subset A deleted. 

Intuitively, DFIT reflects the change in fit, as measured by the innovations variance 
estimate, solely due to the change in the ARIMA coefficients. DFIT is not directly 
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influenced by a large residual caused by any outliers in a patch A, since it is based on 
an estimate of a2 with patch A removed. However, DFIT may be large if the estimated 
coefficients change substantially. In fact, it can be shown that asymptotically DFIT 
depends on x' only through the empirical influence function EIC(A) (Bruce, 1988). 

We now obtain a measure for the second component in a way which will yield a 
convenient decomposition of DV. Let XA be a vector with elements xt, t E A where A 
has k elements, and let XAC be a vector with elements x, t = 1, 2, . . , n, t ? A. Given 
a, the conditional expectation 'interpolate' XA = E(xn I an XA) is the minimum mean- 
squared error estimate of XA based on XnC. The notation is meant to indicate that the 
expectations are for a process xt generated by a. The corresponding vector of inter- 
polation residuals and their covariance matrix are 

eA XA - XA 

C2 In = cov(An I a, , XAC). (6.2) 

Define 

DRES(A) = ( CA ) {C (AA ) A }eA (e) (6.3) 

DRES is a norm of the interpolated residuals A, which involves not only &A but 
also a through equation (6.2). DRES is large whenever the interpolated residuals are 
large relative to their variance-covariance matrix based on a. This happens, for 
example, when the series contains a single additive outlier at time t and DRES is evalu- 
ated at the outlier position A = t, since the interpolated value 'xn is based on outlier- 
free data. Similarly, if a patch A of additive outliers is present, then eA will be large. 

A slight change in the definition of DV yields a linear decomposition in terms of 
DFIT and DRES. Define 

DVo =(5 -1) / (6.4) 

so that DV = DV' . Then the following theorem holds. 

Theorem 1. 

DVO(A) = {DRES(A) - k + DFIT(A)}. (6.5) 

Proof. Assume xn behaves according to a stationary ARMA process (the proof 
for ARIMA processes is virtually identical). By rearranging terms, we can write 

n - 1) = n - (n - k)CA(i)} - k + DFIT(A) (6.6) 

where k is the number of elements in A. Now 

=1 
t- A k Z {eI(A)}2/f1(A) 

t?A 
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where - '(A) andf/' I(A) are the one-step prediction residuals and their variances for 
an x, process generated by a and innovations variance &2 with subset A missing: 

t-I(A)= x - E(x, I a, xAC') 
and 

a2f'-'(A) = var(x,I&, a2 XtC) 

In the case that A is null, the notation et -' andft-1' is used. The first term in equation 
(6.6) may be written as 

I2 [~ (8t-1)2/ft-1 - {ft- (A)}2/t (A)] (6.7) 
CTA -t=I t=1 

toA 

But 
log p(XP(XA, I2 - logp(X ogP(XAI , 4) (6.8) 

where 

P(XA I, C, 4A) = XA AA) (6.9) 

with Nk(j) a standard k-variate normal density. Using equations (6.8) and (6.9) in 
equation (6.7) shows that the first term in equation (6.6) is equal to DRES(A), which 
yields equation (6.5). [1 

6.1.1. Remarks 
(a) From equations (6.8) and (6.9), the likelihood of xn depends on XA only 

through DRES(A). This gives us another way to interpret the significance of 
DRES. 

(b) For an uncontaminated Gaussian ARIMA process, DRES(A) is asymp- 
totically distributed as a chi-squared random variable on k degrees of free- 
dom. Since DRES asymptotically dominates DFIT (see Section 6.2), the 
factor k in equation (6.5) ensures that 

E [lim DVo(A)X(2n)1 = 0. 
-n oo 

(c) A more powerful diagnostic DRES(A) could be defined by evaluating the 
interpolated residuals and covariance of equations (6.2) using &A instead of a. 
However, to obtain a decomposition of DV, the definition of DFIT in 
equation (6.1) would have to be changed, resulting in a much less powerful 
diagnostic for the change in fit as measured by the innovations variance 
estimate. 

6.2. Dominance ofIDRES over DFIT 
The following result shows that DRES asymptotically dominates DFIT. 

Proposition. 

DVO(A)1(2n) = DRES(A) - k + op(1). 
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Proof. The proof is based on a Taylor series expansion of CA(a) about A: 

a=& (n ^2 
-^ 8f2} = (n - k)x- =A + oX A(l).1 (6.10) 

Since the asymptotic value of a' (a) is minimized by the true parameter value xo, and 

(XA ap +ao, 

we have 

&4(oc) a= oP(l). 
Since (Q - A) = OP(n`), it follows that 

DFIT(A) = - 2(n - k){5A (a) - CA} 

= OP(1) {Op(1)op(1) + op(1)} 
= op(l). 

However, clearly DRES(A) = Op(l), and the result follows. 

6.2.1. Remarks 
The fact that DV0I(2n) is asymptotically equal to DRES - k helps to explain why 

DV is so effective in detecting outliers. Despite the asymptotic dominance of DRES 
over DFIT, we have found that in finite samples DFIT is often non-negligible. 

Fox (1972) proposed a likelihood ratio test (LRT) procedure for testing the 
presence of a single AO-type outlier at a known time t in AR models. The Fox test 
has been used as the basis for the ARIMA model estimation scheme of Chang and 
Tiao (1983); see also Hillmer et al. (1983) and Tsay (1986). It is well known that the 
LRT is asymptotically equivalent to a test based on the Studentized interpolation 
residual DRES(t) (see Fox (1972)). This result can be extended to the LRT for a subset 
A of additive outliers (see Bruce (1988)). By this result and the above proposition, a 
test based on DVO(A) is asymptotically equivalent to the LRT for the presence of a 
subset AO at times t E A. 

6.3. Diagnostics Based on Decomposition of DV 
The decomposition (6.5) shows how the effects of an outlier on DV can be 

separated into two sources: DRES, which is a measure of the size of interpolation 
residual, and DFIT, which reflects the change in fit. This suggests a graphical display, 
i.e. plotting DVo as DV is plotted in this paper and superimposing a line plot of DFIT. 
This shows both the total change in the estimated innovations variance and the 
change due to the change in fit. 

DRES(A) - k and DFIT, and hence DVO(A), can be negative. However, in prac- 
tice all 'significant' values of DVo are positive. This is because deletion of a small patch 
of points can lead at most to a moderate increase in the estimate of a2 (but an almost 
arbitrarily large decrease). 

An attractive alternative to the use of DFIT, suggested by Yohai (1987), is to base 
a diagnostic for fit on a highly robust (i.e. breakdown point 2) estimate of the scale 
of the residuals. Computing the change in a highly robust estimate of scale for the 
residuals from the leave-k-out fit will clearly provide a measure primarily of how the 
fit is influenced by a patch of observations. 
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7. LIKELIHOOD AND MAXIMUM LIKELIHOOD ESTIMATES FOR MISSING 

DATA AND ADDITIVE OUTLIERS MODELS 

The 'fixed magnitude' AO model (3.1), where the outlier times zt are presumedfixed 
and known, has played a prominent role in ARIMA model estimation procedures. 
The parameter vector CA = (tl. . . tk) iS used to model outliers at k time points 
A = {tl, ... , tk4. For example, in intervention analysis (Box and Tiao, 1975), the 
time points A are known and typically come in patches. A special case of this model, 
where k = 1, is used in an iterative manner by Chang and Tiao (1983), Hillmer et al. 
(1983) and Tsay (1986) to handle estimation in the presence of outliers. 

We show in theorem 2 that the likelihoodfunction concentrated with respect to CA 

is related in a very simple way to the likelihood which treats subset A as missing; the 
two likelihoods differ only by a factor which does not depend on the data. Thus 
theorem 2 clarifies the distinction between estimation with missing data and estimation 
using the special AO model (3.1). 

7.1. Relating Likelihood Functions 
Assume that xt is an uncontaminated ARIMA process and we observe Yt, where 

f xt ~if t ? A 
= 

i ift 
A(7.1) Yt 

xt + St if t E A. 

Then the likelihood for the AO intervention approach is formed by treating A as a 
parameter vector to be estimated along with a and q2 and computing the usual 
ARIMA model likelihood for x1. 

Let yn be the vector ( Y , Y2, . . . , Yn) YA be the vector with elements y, t e A, and 
yfl be the vector with elements y1, t = 1, 2, . . ., n, t 0 A. Denote the AO model 
likelihood function for yf byp(yn I a , CA) and denote the missing data likelihood for 
y', by p(ynC I a, U2), where the parameter CA is dropped since yAC does not depend on 
CA. Let kn (a) be the conditional mean interpolate of XA = YA - CA given a, and let 

A2E ((a) be the associated interpolation error covariance matrix. 

Theorem 2. Suppose that y, behaves according to equations (7.1). Then the MLE 
of CA given a and c2 is the interpolation residual vector 

C = YA - XA(a) (7.2) 
and 

p(Y , CA) = (2)X (4 2 PY A)) (7.3) 

Proof. The likelihood for yn can be factored as follows: 

p(yn I , a2, 2A) = P(YAyIna,, q 'AY) p(ynCI, a, c2) 

- P(YA -A I, a,C,2 YnC) P(YnC IIX a,2). (7.4) 
Since the distribution of Ya - CA, given yn , for fixed aI, a2 is Nk (in (I), a2(n)), it is 
clear that equation (7.4) is maximized with respect to CA by equation (7.2), and 
concentrating CA out of equation (7.4) yields equation (7.3). [1 
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We can obtain the following corollary, which shows that the difference between the 
MLEs of a and a2 obtained under the two approaches is Op(n -') and converges to a 
constant. 

Corollary 1. Let (&C, ocA' ) be the joint MLE of (a2, a, ~A) for the AO model 
given ynl, and let (a", &cA4) be the joint MLE of (a2, oc) for the missing data model. Under 
suitable regularity conditions, the difference in the MLEs of the true parameters c 2 
and a is asymptotically 

(n - k)(&-2 = -ka2 + op(1) (7.5) 
and 

(n - k)(-A - 'A) = -2I(2)c(() + oX(l) (7.6) 

where I(x) is the asymptotic information matrix for a and 

c(oc) = 
a log Il' (2)I. 

Proof. See Bruce (1988). 

8. CONCLUDING COMMENTS 

8.1. Alternatives for Scaling 
The scaling used for the diagnostics has a possible shortcoming: both DV and DC 

converge to zero as the sample size increases to infinity. This is also true (under certain 
conditions) for the usual regression diagnostics, such as Cook's distance. Thus, these 
statistics fail to have a x2 distribution asymptotically as well as for finite samples. The 
fact that DV and DC tend to zero as n -* oo shows empirically, since we find that DV 
and DC tend to uncover proportionally more influential points in smaller data sets. 
For some applications, perhaps this is as it should be: relative to the (approximate) 
confidence intervals for oc and &2, an individual point tends to exert more influence in 
a small data set than in a large data set. 

An alternative approach would be to scale DC and DV to obtain an asymptotically 
non-degenerate random variable, and then to determine approximate significance 
levels for testing whether the diagnostic is significant. This is similar in spirit to the 
approach adopted by Fox (1972) and Chang and Tiao (1983). One problem with this 
approach is choosing the correct significance level, since the leave-k-out procedure 
involves many dependent 'tests'. See Atwood (1987) for an approximation to deter- 
mine the overall significance level of many dependent tests in the time series setting. 

A more fundamental problem is that the hypothesis testing framework is not 
appropriate for diagnostics (see Hampel et al. (1986)). The reference distribution is 
constructed under the null hypothesis that no outliers are present, so a Neyman-Pear- 
son testing approach would protect us in precisely the situation for which no protec- 
tion is needed! The diagnostics are useful primarily in a data analytic context, and 
attempting to establish overall significance levels is likely to be misleading and 
fruitless. 

The problem of finding an appropriate reference distribution remains a topic of 
controversy for regression diagnostics (Chatterjee and Hadi, 1986). There is no 
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absolute reference distribution which works well for all problems. Perhaps the most 
sensible approach is to combine an external reference distribution (such as that used 
in this paper) with an internal reference distribution based on exploratory data 
analysis of the diagnostic values (Welsh, 1982). These issues are not fully resolved, and 
deserve further investigation. 

8.2. Diagnostics versus Robust Filter and Smoother Cleaners 
Diagnostics can be obtained from robust model fitting based on robust filter cleaners 

or robust smoother cleaners (see Martin (1979, 1981), Martin and Thompson (1982) 
and Martin et al. (1983)). The robust model fitting diagnostics consist of looking for 
large values of the observation prediction residuals e'-' = xt - x t , where xtIt-1l 
denotes the one-step-ahead robust prediction based on filter- or smoother-cleaned 
data. There is a close connection between the prediction residuals produced by leave- 
k-out diagnostics and those produced by a rejection-type filter cleaner: the diagnostics 
obtained from the leave-k-out procedure will often closely match those resulting from 
a robust procedure based on the rejection filter (see Bruce and Martin (1987)). 

8.3. Other Related Work 
Another important direction for dealing with model changes of various types has 

been pursued by Harrison and Stevens (1976) and Smith and West (1983), who use 
a Bayesian approach. In their approach a mixture of normals is used to adapt the 
model automatically to outliers and other local structures. West (1986) and West 
et al. (1985) propose a somewhat different method based on Bayes factors, in which 
a nominal model is compared with alternative models. 

Other approaches to the problems of outliers and structural disturbances in time 
series have been explored in the literature. An approach proposed by Chang and Tiao 
(1983), Hillmer et al. (1983) and Tsay (1986) is based on iterative fitting of ARIMA 
models, utilizing Fox (1972) tests to decide whether an individual observation is an 
I0, AO or not an outlier. The approach is easily extended to cover shifts in level and 
shifts in variance. 
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APPENDIX A: COMPUTATION OF ASYMPTOTIC INFORMATION MATRIX 
This section derives an analytical expression for the asymptotic information matrix of a 

stationary and invertible ARMA(p, q) process (D(B)x, = (B)s The formulae are easily 
extended to non-stationary and seasonal models. Let g1, . . , gp and hl,. . . , hq be the roots 
of the polynomials ?)(B) and @(B), so that 

@D(B) = (1 - g1B)(1 - g2B) . .. (1 -gpB), (A.1) 
@(B) = (1 - hIB)(I - h2B) ... (1 - h1B). 

Assume that the roots are distinct: g1 # gj and hi # hj for i # j. 
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Let ci and d, be the coefficients in the expansion of (D(B)-' and 0(B)-' respectively, i.e. 
00 

1r-'(B) = E ciB', 
i=o 

0-'(B) = E diB'. (A.2) 
i =o 

The asymptotic information matrix I(x) is given by 
00 

Iij Z, CkCk+j-i if I < i S j p 
k=O 

i p+j= - E dkck+ji if i p, I < j < q, < j 
k=O 

00 (A.3) 
i p+ = E Ckdk+j i if 1 i p, 1 < j < q, j < i 

k=O 

Ip +ip+j= Z dkdk+j-i if 1 < i j s< q. 
k=O 

The coefficients can be computed recursively from the relation 1 = O(B)D(B)-' - 
0(B)0(B)', or 

D(B)c, = 0 0(B)dj = 0 t- 1, 2, .... (A.4) 

Initial conditions for the recursions are co = 1, c_p+, -*- = c = 0 and do = 1, 
d_p+1 = * = d- i = 0. Hence, equations (A.3) provide an explicit expression for I(%). 

By expressing equations (A.3) in terms of the roots 1D(B) and 0(B), the formulae can be 
reduced to a summation of a finite number of terms. For t = 1, 2, . . . , a solution to 
equations (A.4) is given by (see Box and Jenkins (1976)) 

c = k1g', + . + kpgt (A.5) 
dc = l1Ih4 + + I ht 

where k,, . . ., kp and 1, ... ., are (possibly complex-valued) constants. Since c, and d, can 
be evaluated recursively, equations (A.5) define a system of linear equations which can be 
solved for k,, . . . , kp and 1,, . .. , lq. Substituting equations (A.5) into equations (A.3), 
Fubini's theorem yields 

00 P P 

ij= 1k g Z+j kng) 
t=O m=1 n=1 

- Z {kmkngm-i E (gmgn)t} m=1 n=1 t=0 
p p 

= Z Z kmkngm-i(I - g9gn)- if i < j. (A.6a) 
m=1 n=1 

Similarly, 
p q 

Ii, p =+j X Z kmlngm-'(1 - gmhn)' if i < j, (A.6b) 
m=1 n=l 

p q 

= Z kmlnh,j-'(l - gmhn' if j S i (A.6c) 
m=1 n=1 
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and 

q q 
ip+i p+j~~, km 1, hi k m-'(1 - hmnnl i <, j. (A.6d) 
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DISCUSSION OF THE PAPER BY BRUCE AND MARTIN 
Dr A. Robinson (University of Bath): It is a great pleasure to welcome this paper which makes a 

significant contribution in adapting diagnostic techniques for application to the field of time series. In 
time series modelling we are only too well aware that rarely is the series entirely consistent with any 
standard model. It is subject to patches of outliers, level changes, variance distortions and even complete 
model changes which add to the difficulties of model selection at whatever stage. I would like to begin 
by commenting on the interplay between model criticism and the objectives of analysis. Diagnostics have 
been most widely developed in the context of multiple linear regression and this technique is used for 
many purposes all of which are paralleled in time series. These range through data exploration, data 
description and prediction. 

We may have in mind several or even all these objectives during the course of an investigation but 
at any given stage there will usually be one which is the primary concern. Starting with an exploratory 
aim, the requirement for sophisticated criticism of the putative model is likely to be quite modest but 
becomes increasingly stringent as we progress towards prediction and, for time series, forecasting. With 
regard to criticism we are also mindful of whether or not the model is theoretically meaningful and/or 
consistent with our expectations. 

Recognizing this, I must express my unease concerning the application of sophisticated diagnostics 
to the autoregressive integrated moving average (ARIMA) class of models, which many (including 
myself) regard as a 'black-box' class within which a search is made to explain the data as well as possible 
without the analyst necessarily ever being required to attempt to understand the data. 

This consideration surfaces at several points in the paper. Firstly in Section 3 the authors argue that 
the innovations variance rather than the set of coefficients is the natural focus for the construction of 
diagnostics, i.e. 'How well does it fit?' is more important than 'Does it mean anything?' I would agree, 
in that rarely do I feel inclined to interpret the coefficients of an ARIMA model other than to take them 
as some mysterious reflection of the autocorrelation in the series. In the context of multiple linear 
regression, there is often a case for consideration of both coefficient-based and overall-fit-based diagnostics 
but the former seem to have less relevance in ARIMA model fitting. One exception may be that a change 
in some coefficients could be important if the objective is to forecast a small number of steps ahead. 
Perhaps the authors would disagree? 

Box and Jenkins gave us a strategy for model selection and now Bruce and Martin offer us further 
strategies for cleaning up the series so that we may identify which bits of the data are most consistent 
with the chosen model. The residue must be accounted for in some other way. What do we learn by use 
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of such complicated black-box tools? At most we obtain a description of the series but is it widely useful? 
I certainly have reservations about this approach when the objective is forecasting because we may be 
led, for example, to underestimate forecast error drastically. Other approaches here include the use of 
diagnostics which are directly related to changes in forecasts or the use of models and model selection 
techniques which provide resistant forecasts. 

The authors may attract criticism by the use of these methods ab initio to discover first-magnitude 
defects which I consider would be better sought by other simpler, less expensive methods, e.g. robust 
filtering or smoothing (see Section 8.2) and especially looking at a plot of the series! The authors 
demonstrate (see Section 8.1) that the proposed diagnostics are less effective in long series, so that 
plotting should present no problem for the suggested area of application. We can compare this with the 
usefulness of regression diagnostics which is greatest as we move beyond one explanatory variable, where 
a good plot is still the best diagnostic. How do the authors envisage moving beyond univariate series? 
There lies the real reward. 

In spite of the foregoing reservations, I feel that the suggestions in the paper are useful in uncovering 
the not-so-obvious problems; the strategies for patch length determination and iterative unmasking are 
very interesting. I look forward to when they may be incorporated rather less rigidly-the plots are good 
but there can be very many of them if we follow the suggested strategy, in everyday time series analyses. 
I hope that other workers will be persuaded to develop a diagnostic toolkit for a wider spectrum of 
models. I have great pleasure in proposing the vote of thanks. 

Professor H. Tong (University of Kent at Canterbury): As a non-native English speaker, I sometimes 
find the English language inscrutable. For example, the word 'public' really means 'private' in many 
situations (e.g. public schools), perhaps as a result of 'privatization'. Likewise, to an outsider, the Royal 
Statistical Society must sometimes seem an equally inscrutable institution because I understand that the 
expected manner in seconding a vote of thanks to the fortunate (or unfortunate) speakers is to be critical. 
As one of the authors, Professor Martin, has come back for the second time, I can only assume that he 
enjoyed himself the last time and has somehow convinced Professor Bruce of the pleasure. I hope that 
they are not going to be disappointed. 

The paper is mainly concerned with influential data in time series, and has given some impressive 
techniques. As I am not an expert in this field of outlier detection, I find it difficult to be too critical. I 
am in complete agreement with the authors when they say that influential observations frequently occur 
in patches and there are smearing effects in the time series setting, although these points are not new. For 
example, Kiinsch (1984) was probably aware of them and Hau and Tong (1984) addressed them 
explicitly. I would also agree with the authors that methods based on deleting one observation will be 
of doubtful applicability to time series. This rather reminds me of the Chinese story of a person in the 
period of the Three Kingdoms who deleted his toes to fit his shoes. Clearly deleting one toe will not help; 
deleting five toes might. Similarly, leave-one-out diagnostics will probably not help but leave-k-out 
diagnostics might. However, although I can appreciate the logic of deletion for independent data, my 
basic concern is whether it is really necessary to have deletion for dependent data, because there are 
simpler ways of finding out whether a shoe gives a good fit or not without deleting any of one's toes, e.g. 
by measuring the strengths with which the shoe pinches each of the toes. 

Now DC(A) and DV(A) are both functions of the ith diagonal element of the hat matrix if A = {i }. 
It is well known that the diagonal elements of the hat matrix may be used to measure the influence of 
the independent observations. Kunsch (1984) and Hau and Tong (1984) have independently explored the 
efficacy of the approach based on examining the diagonal elements of the hat matrices in autoregressive 
modelling. Modifications for the autoregressive integrated moving average case are possible in principle 
but I am not convinced that it is necessary to do so in the context of influential data. 

Briefly, let X = (x, . . . , xe)' denote the data vector from the pure AR(p) model (with y = 0). Then 
we have X = F4 + s, where F is the design matrix, 4 = (41, . . . , sp)' and a = (el, . * * , n)' Let z' 
and h, denote the ith row of F and the tth diagonal element of the hat matrix rFr(F' F IF' respectively. 
Clearly h, = z' (FT`f)-z,. Now, nh, is the Mahalanobis distance between z, and Ez, (i.e. 0). (In conven- 
tional linear regression, this property is not obtained.) Under standard conditions, we may replace 
n'F'IF by I = cov(xi, xj), and z 2:l z, has a x2 distribution. Accordingly, we may use nh, to quantify 
the influence of the state vector z, = (xt, . .. ., x,p+i), with the reference value being Xp. nht incurs 
absolutely trivial computation once an AR(p) model isfitted. Also {h,} is a stationary time series if {x,} 
is, which underlines the smearing effect of influential data in time series. 

A good feature about real data is that almost surely there is at least one 'outlier' to every model fitted. 
Fig. 9 is a plot of the nh, versus t for the export data in example 5. An AR(3) model is fitted to the 
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Fig. 9. nh, versus t for the export data 

first differences of the logged data, say xt, the order being determined by one of the popular methods. 
The plot shows three patches in excess of x2 (5%). In order of decreasing influence, they lead to {X37, X38, 
X39}, {X70, X71, X72} and {x133} as influential data, broadly in agreement with the paper's conclusion. 
Fig. 10 is a plot of h, versus t for the famous (logarithmically transformed) Canadian lynx data using 
the AR(I 1) model of Tong (1977). Here, about a third of the data are influential, suggesting the necessity 
of non-linear time series models. 

Chan et al. (1988) have illustrated that the h, plots are useful even in non-linear time series modelling. 
We may also weight the data with ht to obtain robust estimates of autoregressive parameters. (See Hau 
(1984) and Kuinsch (1984).) 

This paper has led me to the following question: is there a simpler but equally effective way of 
detecting outliers in time series without deletion? It therefore gives me great pleasure in seconding the 
vote of thanks. 

Professor A. J. Lawrance (University of Birmingham): Professor Martin mentioned some earlier 
related work; for instance, Pefia in his discussion to Cook's (1986) paper on local influence referred to 
his own use of the 'missingness' idea. However, there was not the emphasis on leave-k (> 1)-out or patch 
diagnostics and the associated problems of smearing, masking and scaling, which I found most interest- 
ing in the present paper. Perhaps at a more basic level, can I raise the question about whether missingness 
is an appropriate way to handle diagnostics for time series? It seems to destroy the essential connectivity 
of the time series and to be a rather drastic assumption. Perhaps, going back to local influence, it would 
be more sympathetic to the time series structure to perturb some assumptions or data values just slightly, 
leading to 'leave-in' diagnostics. 
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Fig. 10. h, versus t for the Canadian lynx data 

I have a brief comment on the interpretation of the statistics relative to p values-I agree with the 
authors that the significance testing framework is not appropriate, so I prefer the complementary 
description of displacing parameter estimates out of 100(1 - p)% confidence regions. Also, I have found 
in regression that the guidance value of p = 0.5 is too stringent and hence too small and could be up 
to 0.9, corresponding to movement out of the much smaller 10% confidence regions. This would not 
demean the leave-one-out diagnostics quite so badly. 

The topic of masking is important, but difficult to handle analytically both in regression and in time 
series. To gain a little insight into regression, we may consider Cook's distance for the ith data case, both 
before and after deletion of the jth data case. Before deletion, it is well known, for instance (Atkinson 
(1985), equation 3.2.4) that 

C, = r,2hi/(I -hi)p, 

where r, is the ith standardized residual, hi is the ith leverage coefficient and p is the number of regression 
parameters. After jth-case deletion, this becomes 

Cj(X) = (r,?+111<rJ)2(I ih+h)/p(l 
hi ( 

n-p-1) 

where 

h,J = hij/1{(1 - hi)(I -hj), 

and hij are the off-diagonal terms of the leverage matrix. The effect of masking can be assessed as Ci(j) /CI; 
it can occur for several reasons. Important contributing factors are seen to be the off-diagonal elements 
h,j related to the leverage matrix, the size and sign of the ratio of the two standardized residuals, and 
leverage. Are there any similar analytical insights for time series? Computationally, they might arise in 
the estimation procedures. 

A. C. Harvey (London School of Economics and Political Science): It is a pity that the authors have 
based their approach on autoregressive integrated moving average (ARIMA) models. Specifying a 
suitable ARIMA model is difficult at the best of times, and when outliers are present it becomes even 
more difficult. As the authors themselves observe, the message conveyed by statistics such as the 
correlogram can be seriously distorted. As we shall see, this point is well illustrated by their treatment 
of the Latin-American export (LAX) series. 

The advantages of structural time series models have been argued elsewhere; see, for example, Harvey 
and Durbin (1986). In the possible presence of outliers these advantages become even more apparent. 
The leave-k-out diagnostics of the present paper could be applied just as easily with structural models 
as with ARIMA models. However, rather than following this route, I have chosen the much simpler 
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procedure of analysing the LAX series by fitting a structural model and then using the smoothed 
estimates of the irregular component to identify outliers. These estimates provide a better means of 
identifying outliers than do the one-step-ahead prediction errors, even though the latter have better 
statistical properties in a correctly specified model; compare Burman (1983). Since the series has a clear 
upward trend and consists of monthly observations, the obvious starting point is to fit a basic structural 
model. This was carried out on a personal computer using the STAMP package. The outliers were clearly 
detected by the Bowman-Shenton normality test, the value of which was 362, and a study of the estimates 
of the irregular component indicated outliers at 69ml, 69m2 and 71m9-ml 1. Re-estimating the model 
by treating these observations as though they were missing suggested possible outliers at 68m 1O, 76ml2 
and 77m 1. However, the model appeared to be reasonably satisfactory with these observations included. 
The seasonal component is not particularly strong, but it is clearly present and when it was omitted there 
was a marked autocorrelation in the residuals at lag 12. 

As regards model selection within the ARIMA framework, the correlogram of first differences could 
be regarded as being roughly consistent with a stationary process. The autocorrelations at lags 1 and 2 
are r(l) = -0.26 and r(2) = -0.24 respectively: hence the ARIMA(O, 1, 2) model adopted by Bruce 
and Martin. However, the correlogram for the period after the outliers, i.e. 71ml2 onwards, has 
r(l) = -0.30 and r(2) = -0.05, showing the identification of a second MA term to be completely 
spurious. Furthermore, the seasonal autocorrelation, r(12), is 0.54, as opposed to the earlier 0.26, thus 
indicating the need for including seasonal effects in the model. 

Dr I. T. Jolliffe (University of Kent at Canterbury): This is an interesting paper, not least for the 
questions it raises regarding what is meant by an 'influential' observation and the differences between 
'outliers' on the one hand and 'influential observations' on the other. The authors' main interest appears 
to be in detecting outliers, but they tackle this objective by assessing the influence of observations. In 
general, there is no guarantee that an outlier will be influential, or vice versa. The paper says little about 
this problem except in the context of different measures of influence having different powers to detect 
outliers. I would welcome the authors' thoughts on the more general question of whether examining 
influence is the most appropriate way of looking for outliers. 

The results in the paper suggest a rethink of what is meant by influential. In Fig. 2(b), for example, 
observation 27 is clearly influential for coefficients in the sense that if it is omitted then the coefficients 
change greatly, much more so than for any other observation. However, further investigation shows that 
the influence is apparent rather than real, being caused by the dependence between observation 27 and 
the outlier 28. The time series nature of the data makes clear the reasons for this misleading apparent 
influence, and I assume that such behaviour cannot occur for independent observations. Are the authors 
aware of any other, less structured, situations where calculation of influence can similarly mislead? 

The term influence needs to be qualified-influential for what? The paper examines influence on 
coefficients, and on the innovation variance. Have the authors considered influence for the autocorrela- 
tion function or partial autocorrelation function, or for the choice of model orders? 

Julian Besag and Allan Seheult (University of Durham): Anomalies also occur in data from agricultural 
field trials and are catered for in the classical framework by randomization theory. However, this can 
be very inefficient unless a sophisticated design is used and, unfortunately, most variety trials worldwide 
employ nothing more efficacious than randomized complete blocks, in which case a model-based analysis 
may be preferred. 

Here we consider the usual situation with several replicates, each arranged as a 'column' of contiguous 
long narrow plots, so that a one-dimensional model is adequate. Then the simplest plausible assumption 
is that first differences of adjacent plot values are uncorrelated and have equal variance. It can be shown 
that the corresponding estimates of variety contrasts, based on an ordinary least squares analysis of first 
differences of yields, are approximately invariant to locally linear trends in fertility (Besag and Kempton, 
1986). However, anomalies in the data, usually obscured by the variety effects, can seriously distort the 
estimates. 

Two particular problems are outliers, due to abnormal plots or false records, and abrupt jumps in 
fertility, caused by underlying geological changes (see also Papadakis (1984)). We tackle these problems, 
in this context, by first applying resistant regression to detect and remove anomalies before reverting to 
the ordinary least squares analysis: note here that, having removed an outlier, we subsequently allow 
information about fertility to flow between its neighbours but treat jumps as complete breaks in the series. 

We briefly consider two examples. The first, from Papadakis (1984), is a uniformity trial on which 13 
dummy varieties in five blocks have been superimposed. Fertility is therefore indicated by the yields 
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themselves and, assuming treatment additivity, rigorous comparisons between different additive analyses 
can be made. The variety mean square (VMS), ideally zero, is 130 in a classical analysis. Without 
consideration of outliers, the simple first-differences formulation is rejected in favour of the extended 
model in Besag and Kempton (1986), with a corresponding VMS of 84. However, a preliminary resistant 
phase suggests 11 anomalies, whose removal vindicates the simpler formulation and further reduces the 
VMS to 47. 

The second example, from Wilkinson (1984), involves 50 varieties of wheat in three replicates of a 
randomized complete block design. Strong fertility effects are evident. Resistant analysis identifies three 
outliers and 24 jumps in fertility, whose removal again supports the simple first-differences formulation 
rather than the extended one and also produces a substantially different ranking of the varieties. 

Do the authors see a role for their methods in contexts such as this? 

Professor R. M. Loynes (University of Sheffield): Time series have two properties, one of which makes 
the task of providing appropriate methods more difficult and the other easier than in ordinary regression. 
The estimating equations are usually non-linear in the parameters and the estimates themselves are all 
non-linear in the observations, and, apart from ordinary computational complexities caused by this, 
simple (and indeed elegant) formulae relating, for example, leave-one-out residuals to ordinary residuals 
no longer exist. However, because of the ordered nature of time it is much easier to contemplate 
leave-k-out quantities for k > 1: those that are likely to be of interest are fewer in number, which both 
reduces the computing needed and makes interpretation and presentation easier. As far as this second 
issue is concerned I merely point out that there are other models with somewhat similar characteristics: 
in particular design models, in which it is natural to omit a treatment or perhaps a block completely, and 
I have some results in this area. (These models, incidentally, have another interesting and complicating 
feature: the rank is reduced if a treatment is omitted completely.) 

To return to the first point, it is true that computing is much less of a problem than it used to be, but 
it can still impose a heavy burden, and, if it can be simplified, so much the better. The use of one-step 
or related approximations (see Cook and Weisberg (1982) and Pregibon (1981)) offers a useful alter- 
native, or at least a preliminary, approach: in these we find, by Taylor expansions, that 'A - is 
approximately some function of a which can be calculated without excessive difficulty, for example. I 
have some theoretical results here, but have not yet attempted to see how well they work on data. Have 
the authors tried methods of this kind directly for diagnostics? They have apparently used such 
approximations for a rather different purpose in Section 3.2. 

Professor J. P. Burman (University of Kent at Canterbury): The problem that the paper addresses can 
be illustrated from the method that I am using for outlier detection, which is a modified version of that 
proposed in Hillmer et al. (1983): if t(B)z, = a, is the autoregressive form of the model, 7r(B) r(F)z, is 
a symmetric, doubly infinite, filter of z,. This series is easily computed, using signal extraction, and has 
the character of an irregular component, so it can be searched for outliers-values above a given 
threshold. The search is applied iteratively, as suggested by Hillmer et al. (1983), i.e. each time new 
outliers are detected, their approximate magnitudes are obtained by linear regression, and the irregular 
series modified accordingly. The threshold is also reduced. 

This method is measuring only the DRES effect and not the disturbance of the parameter estimates 
(DFIT), but it seems to work well in detecting isolated outliers. My current program was applied to the 
exports to Latin-America (ELA) series and detected three additional outliers in 11/68, 10/70 and 12/76, 
apart from the five associated with dock strikes and forestalling; these are not quite the same as those 
identified in this paper. 

There is a problem with the Hillmer et al. method about when to stop iterating: in some series, the 
detection process becomes unstable, with increasingly more outlier patches appearing. This may cast 
doubt on the model; for example, a transformation is needed. At the same time, there may be evidence 
that not all outliers have been identified. The threshold is calculated at each step from a robust mean 
absolute deviation estimate of the innovation standard error, and not directly from the standard error 
which is usually larger. As more outliers are removed, the two estimates should converge. For the ELA 
series, the root-mean-square estimate is still 30% above the robust estimate, when the detection iteration 
is stopped. 

I congratulate the authors on devising a workable and theoretically sound method of deciding the size 
of the patches. I find the treatment of the ELA series entirely convincing, but I am not so sure about the 
unfilled orders series. The authors demonstrate a break around 1976, but I am puzzled by the dramatic 
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change in the seasonal operator from (0, 1, 1)12 to (0, 0, 2)6. The final values give a model of seasonality 
with moving average roots on the unit circle, i.e. it changes completely after 1 year. A more balanced 
model with a 12th difference added would be more plausible. 

Sir David Cox (Nuffield College, Oxford): I am uneasy at two aspects, one the very central role put 
on autoregressive integrated moving average (ARIMA) processes and the other, somewhat related, the 
relative failure to distinguish incisively between different objectives of time series analysis. 

It would not be feasible to list all the objectives one might have but these include the following: 

(a) the wish to isolate patches of anomalous structure against a broadly regular background and for 
this the authors' approach seems very suitable; 

(b) to estimate ARIMA parameters, probably, however, fairly rarely the ultimate objective because 
often ARIMA processes lack physical significance; 

(c) to study qualitative aspects of structure such as cointegration; 
(d) to study regression parameters in contexts where the error has a time series structure, where we 

should surely concentrate on the regression parameters and their standard errors; 
(e) prediction. 

In (b)-(e) should not the diagnostics be focused on the ultimate objective? 
For more exploratory aspects can there not be methods based directly on the estimated spectrum or 

autocorrelation or autocovariance, rather than necessarily viewing these via the ARIMA structure? 
There are many possibilities for generalization, e.g. to the statistical analysis of point processes. 

Mr E. F. Harding (University of Cambridge) and Dr K. K. K. Y. Sew-Hee (Novaction UK Ltd): Our 
contribution is inspired by two reasons. 

First, many discussants have raised the possibility of an approach different from simply leaving out 
observations. A recent doctoral thesis by one of us (Sew-Hee, 1988) deals with the real-time detection 
of change points in time series, i.e. moments at which the series changes from obeying one model to 
obeying another model, without being too specific a priori about what are the models in question. In 
other words, we were seeking a rather broad spectrum test for detection of change points. 

Thus, for example, the variation in a series might change from a regime of slow oscillation to one of 
rapid oscillation, from small to large variance, from downward trend to upward trend. 

The approach was to fix a reference window at the start of the series and to slide a test window along 
the series, and to make a comparison of suitable statistics computed for each as a function of the 
displacement of the test window. Statistics might be a serial correlation, or covariance matrix, or a 
spectrum, and the comparison in terms of a criterion such as likelihood ratio, Kolmogorov-Smirnov or 
Bayes factor. As the test window moves through the series away from the reference window, the criterion 
fluctuates; then, as the test window crosses a change point, the criterion moves to a new value about 
which it again fluctuates. It is fairly easy to detect the change point when the movement between levels 
is reasonably linear. 

Some of the series we looked at had outlying observations in them. The effect on the procedure 
described was to produce a 'temporary blip' in the criterion. The thesis describes a back-tracking 
technique for rapid recognition of such false alarms, which were not the main object of analysis. 
However, the work had, as a by-product, an approach to the detection of outliers in time series, either 
individual observations or short-lived aberrations. 

The second reason is that both of the examples of real data given by the authors (Figs 7 and 8) in 
their respective ways quite closely resemble examples of real data considered in the thesis. 

Consider Fig. 8, which has large fluctuations towards the end. We had an example that behaved in 
a very similar way: the test criterion simply moved rapidly to the end of the scale at this point and so 
the problem was clearly detected. 

In series analogous to Fig. 7, individual outliers were picked out as transients using these methods. 
Our technique for handling them was simply to interpolate linearly across them, and then to continue 
with the rest of the analysis. 

Dr Frank Critchley (University of Warwick): In welcoming the paper and, in particular, its plea for 
a flexible approach to modelling, I would like to mention two other general approaches to assessing the 
joint influence of k observations. 

The authors consider deleting influential observations. Cook's (1986) paper on local influence 
considers a less drastic change. He monitors the likelihood displacement under local perturbations. 
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The second general approach is based on what, in work in progress, I term the joint influence function. 

This methodology requires independent, identically distributed observations when used in the context of 
a probability model. However, it can be applied outside such a context, e.g. in exploratory data analysis. 
It has the advantage of handling masking naturally and thereby avoids the potential dangers of a 
sequential approach. It is not limited to local perturbations, although it includes them, and it generalizes 
easily to simultaneous influence for several aspects of a model. It is based on one simple idea: replace 
one perturbation by k. 

Returning to the paper, I note the following. 
(a) 'Influence for what?' is an important question. Observations influential for one aspect of a model 

need not be so for another. The authors discuss influence for a and for a'. Other possibilities 
meriting study include influence for prediction. In this connection see Johnson and Geisser 
(1983). 

(b) In a similar vein, whatever their value as overall summaries, norms confound detailed infor- 
mation. For example, DC confounds influence for the r parameters in a. In the present context 
this increases the smearing effect in cases where r > 1. 

(c) In considering asymptotics, it is vital to distinguish the cases where k is or is not fixed as n -+ oo. 
In the former case it is clear intuitively why diagnostic measures such as DC and DV converge 
to zero. Parameter estimates with and without a fixed number of observations both converge to 
the true value more rapidly than the estimated asymptotic covariance matrix converges to its 
true value. An entirely different asymptotic theory applies when k/n is kept fixed. 

(d) Perhaps more importantly, we need to consider the joint null distribution of our diagnostic 
measures in finite samples. How else are we to know that the values observed are not just the 
result of sampling fluctuations? In the present context this seems particularly necessary when the 
values are near the boundary of the stationary invertible region. This distribution will rarely be 
known exactly so subtle approximations and/or simulations will be required. 

Dr C. R. Muirhead (National Radiological Protection Board, Chilton): In standard regression 
diagnostics, it is helpful to distinguish between an outlying measurement on the response variable- 
detected for example by a residual plot-and a set of covariates that has a large influence on the 
fit-detected say by examining leverages. In time series, however, as has been pointed out in the paper, 
there are difficulties in separating these effects since the 'covariates' are now functions of observations 
at other time points. This is particularly evident in the plots of DC. Another way of looking at the 
problem may be as follows. 

Under an AR(p) model, standard diagnostics based on 'response variable' x, and 'covariates' 
x,_1, . .. , xt_p can be calculated. This in a sense corresponds to deleting innovations rather than 
observations. In particular, as also suggested by Professor Tong, examination of leverages based on 
x,1, .. . x, Xp will provide an idea about those time points at which the one-step-ahead prediction of 
x, has a large influence on the fit. Such high influence may not simply be due to outliers in the earlier 
observations but may arise for particular combinations of the observations used to predict x. This 
situation may not be as easy to identify using observation deletion. 

Plots of residuals based on this formulation can be helpful in detecting innovation outliers. Also, 
constructing an analogue of DRES corresponding to innovation deletion and comparing this with DRES 
based on observation deletion (in each case based on an estimate of a that is robust with respect to outlier 
type) provides a basis for distinguishing additive and innovation outliers. Such a test has been studied 
by Muirhead (1986) for a single outlier. 

The following contributions were received in writing after the meeting. 

William R. Bell (US Bureau of the Census, Washington DC): Bruce and Martin's interesting 
leave-k-out approach can be contrasted with the approach of Chang and Tiao (1983) which uses 
indicator variables. A conceptual difference for additive outliers (AOs) is that use of an indicator variable 
lets the mean at the given time point be anything while still assuming that the observation is normal with 
the same variance and covariances as other observations, whereas omitting the observation makes no 
assumptions at all about it. The latter approach is preferable theoretically, but the paper notes that the 
two approaches give approximately the same results for AOs. Other differences between the paper's 
approach and the Chang and Tiao approach (as implemented in Hillmer et al. (1983) or Bell (1983)), such 
as looking for outlier patches, could be mimicked with appropriate use of indicator variables, though 
with a computational effort closer to what is required under Bruce and Martin's approach. 
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To amplify, I shall mention two problems that I have been concerned with recently in our implemen- 
tation of the Chang and Tiao approach. First, the outlier test statistics approximate a generalized least 
squares (GLS) regression by doing an ordinary least squares regression of filtered data (model residuals) 
on filtered indicator variables. The filtering is done conditionally, corresponding to conditional maxi- 
mum likelihood estimation, though it can be done exactly, yielding the exact GLS regression (see Findley 
et al. (1988)). Exact filtering is preferable theoretically but is computationally intensive since, for moving 
average models, a different filtering must be done for the outlier indicator at each of the time points. The 
second problem is that, if there are multiple outliers or other regression variables in the model, then we 
must do a multiple regression (note Burman (1983)), because the filtered outlier and regression variables 
are not orthogonal. For multiple outliers this can lead to the masking problem referred to in the paper. 
Bruce and Martin's approach handles both these problems almost automatically; their iterative deletion 
strategy is a modification to address the problems with multiple outliers that are not sequential. 

I have two final comments. 
(a) I have found an extension to the Chang and Tiao procedure to handle level shift (LS) outliers 

(Bell, 1983) to be extremely useful in practice. Have the authors tried to apply the diagnostics 
of the paper to the differenced data to handle LS outliers? 

(b) For models with regression terms it might be useful to consider another diagnostic-say DR, 
analogous to DC but based on changes in the regression coefficients. 

Ronan Bradley and John Haslett (Trinity College, Dublin): We should not underrate simpler views 
than model-based views of the data, such as histogram and time series plots of the data and residuals 
from a model. Thus in all the authors' examples most of the 'strange' data points could, we argue, have 
been spotted rather directly with simpler views, particularly if made available in the context of 'linked' 
windows in a mouse-and-window environment. What types of 'strangeness' could only be spotted with 
the authors' tool? 

In this paper, the authors have pointed out the significant problems of smearing, and clustering of 
outliers which occur in time-referenced data. These problems also appear in spatially referenced data, 
in which our interests lie, and indeed they are added to by the lack of natural directionality in the data 
and the possibility of irregularly spatially distributed data. For these reasons, the whole question of 
outlier classification and identification for spatial data becomes much more complex and, to the best of 
our knowledge, is as yet untouched. 

In view of the added difficulty of analysis we also propose an exploratory strategy and a new spatial 
view to accompany more basic views. We illustrate this in the context of the variogram cloud (Chauvet, 
1982) but it has clear analogies in time series. This cloud (Fig. 11) for a set of data Z(x) at 
x = .xi, . ., xn (shown in Fig. 12, as the most important view, namely the data locations) is a plot of 

2= 2{Z(x) -Z(xJ)}2 against d, = dist(x,, xj). Its average for a given distance h is an estimator of the 
variogram y(h) - 2var{Z(x + h)- Z(x)}. In Fig. 11 we select yij values which are large for a given 

: - .. ~~~~~. . 

, . 

_ t 

Fig. 11. Variogram cloud showing the selected region 
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Fig. 12. Data map showing corresponding point pairs 

range of dij and highlight the corresponding pairs in the linked window shown in Fig. 12. Attention is 
immediately drawn to two points, each of which is different from many of its neighbours, and suggests 
that the surrounding regions are worthy of further investigation, perhaps with simpler views. A 'histogram 
view', not shown, establishes that the two points are definitely global inliers. They may, however, be local 
outliers. 

Dr C. Chatfield (University of Bath): It seems natural to extend the use of regression diagnostics to 
time series analysis, and this clearly presented paper achieves this successfully. Even so I am rather 
dubious about whether I would want to use these methods. The proponents of diagnostic procedures 
often underemphasize the importance of using background information to predict or explain unusual 
observations and in my experience this often obviates the need for formal diagnostics. Alternatively, in 
time series analysis, a visual examination of the time plot will often prove adequate and this is arguably 
the case in most, if not all, of the authors' examples. Likewise, in Fig. 8, I suspect that most experienced 
analysts will immediately notice the increasing variance. If this sounds overly negative, let me emphasize 
that I do appreciate the authors' examples and, if appropriate software becomes readily available, then it 
is certainly possible that these rather complicated methods could become part of the superanalyst's toolkit. 

R. Dennis Cook (University of Minnesota, St Paul): 
Calibration 

Deciding exactly what is influential based only on the value of an influence measure can be a problem. 
I earlier proposed (Cook, 1977a, b) that in linear regression Di be compared with the quantiles of an F 
distribution and referred to the result as the 'descriptive level of significance'. This entails nothing more 
than a monotonic transformation to a more familiar scale and, as Bruce and Martin emphasize, is not 
a test of significance and does not have the familiar p value interpretation. Although the idea is helpful, 
the associated use of terms such as 'descriptive significance level' and 'p value' may be didactically 
unsound since the procedure is misinterpreted as a formal test too frequently. It is wise to avoid the use 
of phrases associated with testing in the context of influence studies. 

The exact distribution of influence measures, including DC and DV, is largely irrelevant. An 
influential observation is just as interesting when we expect it to be influential than when we are surprised 
that it is influential, although the same cannot be said for outliers which I regard as related but distinctly 
different. Thus I cannot understand why Bruce and Martin think it is useful to '. . . scale DC and 
DV to obtain an asymptotically non-degenerate random variable, and then determine approximate 
significance levels . . .'. 

Alternatively, an influence measure may be used only for ranking observations. Influence is then 
assessed by deleting the observations with the larger ranks and recomputing the analysis. Although 
difficult to automate, this procedure seems to avoid the need for careful calibration of the measure itself. 
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Kmax 
Upper bounds have often been used to induce identifiability in outlier and influence studies. Such 

methods are not very satisfactory: the required bound is rarely based on firm information and it can be 
very difficult to determine when the 'best' answer has been obtained. 

Local influence methods (Cook, 1986), which do not require the specification of a bound, are effective 
at identifying multiple influential cases in studies with independent observations. Such methods may also 
avoid masking in time series problems. For example, one implementation could be based on using 
normal curvatures to study the influence of perturbations of the innovation variances. Because of the 
emphasis that Bruce and Martin place on the innovations variance, this implementation may be 
particularly useful. Work along these lines is available in Tsai (1986). 

EIC and EIV 
Norming an empirical influence function is one way of developing an influence measure. An alter- 

native is to use likelihood displacement (Cook and Weisberg, 1982; Cook, 1986). In some cases they will 
be essentially the same, but how would influence measures based on likelihood displacement compare 
with EIC and EIV? 

F. D. J. Dunstan (University of Wales College of Cardiff): One disadvantage of the method is the 
amount of computation involved and a method which avoided having to leave out values would be 
preferable if it could be shown to work equally well. The disadvantage of such a method, however, is 
that the potential outliers will be used in model fitting and their values can easily grossly distort the model 
selection and fitting. I once used as an example in a lecture a series of working days lost due to industrial 
action. A semi-automatic analysis, using the autocorrelation function (ACF) and partial ACF to choose 
the type of model without close examination of the data, strongly suggested that a moving average model 
of order 1 would be appropriate. A closer look, however, showed that two consecutive observations were 
considerably larger than the rest and this induced an artificially high value for the ACF at lag 1 and 
smaller values at higher lags, hence the selection of an MA(1) model. If these observations were deleted, 
then the model selected was an AR(1) model. For this reason, even though this example is somewhat 
extreme, a method which deletes observations in the way suggested has much to commend it. 

There is one case in which the amount of computation required can be reduced, namely when the 
models considered are purely autoregressive. In this case the EM algorithm handles the problem of 
missing data efficiently both computationally and also in terms of the estimates produced; although the 
theoretical properties of its convergence are not entirely satisfactory, in practice it works well and an 
earlier study (Barham and Dunstan, 1982) suggested that its performance was superior to that of a 
method based on the Kalman filter. In this case, since the parameter estimates for the whole series give 
a good starting point for the algorithm, it works very quickly to give revised estimates when data are 
omitted, each iteration consisting of solving a set of least-squares-type equations. I have tried the method 
on series of 200 observations and have found that it has worked well. 

Marc Hallin and Guy Melard (Universite Libre de Bruxelles): In spite of the obvious importance in 
all statistical domains of the detection of influential observations, interest has been centred, almost 
exclusively, on linear model situations. The reason why time series analysis has so far been avoided is 
twofold: 

(a) the concept of an influential observation in a time series context is more complex than in linear 
model situations-see for example the smearing effect in Section 3.2-and 

(b) the numerical implementation in a time series context of regression diagnostic procedures 
requires powerful computing techniques. 

The present contribution therefore constitutes a significant and timely breakthrough. 
Section 7 explores the close relationship between additive outliers and missing data likelihood 

methods. This suggests replacing the proposed missing data procedures with simpler and more widely 
available intervention analysis methods (also allowing for outlier patches at the start of the series). 
Estimation then can be achieved using fast filtering algorithms, which are an order of magnitude faster 
than ordinary Kalman filtering algorithms (Pearlman, 1980; Melard, 1984). Experience has shown that 
the penalty caused by interventions is small (at least when avoiding binary variable generation and 
transfer function specification: Melard (1981)). 

The DV(A) diagnostic method apparently yields good performance. However, there is something 
disturbing about suspecting a patch A of k outliers if S = - 1 > SBM = o.954n'I2, irrespective 
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of k. One way to take k into account consists of substituting information criteria for the likelihood 
criterion. A patch A is then suspected if AIC = loga2 + 2r/n > AICA-i.e., approximately, if 
S > SA1C = 2k/n-or if SBIC = loga2 + rlogn/n > SBICA-i.e. if S > SSBIC = klogn/n. For 
k = 1, n = 100, SBM = 0.095 > SSBIC = 0.046 > SAIc = 0.020. To illustrate this, consider a white 
noise series with a single outlier eT. Here CA a2 e /n, and the DV(A), AIC and SBIC methods 
identify eT as an outlier if leTI > &n114, leTI > Tv42 or leTI > &/log n respectively. In example 5.1, these 
cut-off values are 3.8&, 1.4& and 2.3& respectively. Information criteria thus are likely to be more efficient 
in detecting outliers than the proposed DV(A) method-despite the apparently liberal 50% significance 
level. 

Douglas M. Hawkins (University of Minnesota, St Paul): One drawback of the leave-k-out methods 
in regression has been the need to specify the value of k. Too small an estimate leads to problems of 
masking; too large leads to problems of swamping. Presumably the same will hold (though less severely) 
for the time series application also. 

Have the authors considered adapting another method from the regression setting-one that we 
might contrast with their approach by calling it the 'put-P-in' approach? In a linear regression on P 
predictors, the approach is to take repeated subsets of size P from the original data set. Each provides 
an exact fit to some set of values of the parameters and may be used to obtain a predicted residual for 
every observation not in the subsample. This framework encompasses the least median of squares 
algorithm of Rousseeuw and Leroy (1987), the LI norm and regression quantiles (see for example 
Portnoy (1987) and Koenker and D'Orey (1987)) and the 'median elemental predicted residual' approach 
of Hawkins et al. (1984). All these methods can identify arbitrary numbers of outliers (provided that 
these are fewer than the breakdown point) and resist masking and swamping. 

Adapting this method to the time series analysis of say an autoregressive integrated moving average 
model with P = p + q parameters, we would take repeated subsets of size P from the original data. 
Each such subset provides an exact fit to the P unknown parameters, and estimated values and hence 
residuals for the remaining points. Two possible approaches would then be 

(a) concentrating on the parameters 0 and 0, to turn the estimates from the different calibrating 
subsamples into a single consensus estimate, or 

(b) concentrating on the points, to turn the different estimated residuals for each point into a single 
consensus residual for that point and to use these to provide case diagnostics. 

We have only recently started experimenting with this approach, but the results so far hold promise. 
For example, a simulation like that of examples 1 and 2 of the paper but including both an innovative 
and an additive outlier provided quite a clear identification of both. At least, we hope that this method 
would be a useful adjunct to leave-k-out diagnostics-perhaps in a framework where put-P-in is used 
to identify good candidate subsets of the data which may then be confirmed with leave-k-out. 

Have the authors any experience of this approach, or views on its potential in time series? 

Robert Kohn (University of New South Wales, Kensington) and Craig F. Ansley (University of 
Auckland): Intuitively statistic DV should be superior to DC because 

(a) it is very close to a likelihood ratio test for additive outliers or innovations outliers when dummy 
variables are used and 

(b) autoregressive integrated moving average models with different coefficient values often give 
nearly the same forecasts and forecast standard errors, so that in many cases DC gives much the 
same information as DFIT in the decomposition of Section 6. 

For example, if data are generated by the ARMA(1, 1) model x, + 0.2x,_1 = e, + 0.1e,_, then for 
most realizations an AR(1), MA(1) or ARMA(1, 1) model will give very similar forecasts and estimates 
of a2. 

There are three issues that need further clarification. First, we need to know more about the 
operating characteristics of the deletion rule based on p values less than 0.5. Although it is pointed 
out in Section 8 that a hypothesis testing framework is unsuitable for diagnostics, the proposed 
heuristic has the same form, and because it is just a heuristic it is important to know the probability of 
rejecting a good observation and the probability of not detecting an outlier for a given size and 
type. Second, if the authors' procedure is to be adopted widely then it must be computationally 
efficient, especially for seasonal models. The Hillmer et al. (1983) and the Tsay (1986) approaches require 
only 0(n) operations compared with 0(n2) for the authors' approach, although they are not as robust. 
Recently (Kohn and Ansley, 1988) we have managed to extend the Hillmer et al. (1983) regression 
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approach to general state space models with missing or unequally spaced data using only 0(n) operations. 
Third, what is the distribution of the parameter estimates after deflection of points using the authors' 
method? 

Professor Hans R. Kunsch (Eidgenossiche Technische Hochschule Zurich): The method requires a 
substantial subjective appraisal by the data analyst. In particular it seems impossible to estimate the 
variance of the final estimator after all outliers have been deleted. Since the robust filters and smoothers 
mentioned in Section 8.2 produce comparable results, I would prefer to use these. Another approach 
which might lead to some simplification is to interpolate xt, t E A, from the remaining observations and 
then to approximate the difference between the estimator based on all data and the estimator based on 
the interpolated values by the influence function, see formula (1.27) of Kiinsch (1984). The interpolation 
is not trivial either, but I conjecture that a suboptimal interpolator will be sufficient. 

Next I would like to make two comments on the diagnostic quantity DC. First, masking occurs if 
there are two or more additive outliers of the same magnitude, but well separated. The estimated model 
will then be close to independence regardless of whether we use all data or delete one outlier or a block 
around one outlier. With DV no masking occurs in this case. I was unable to construct a situation where 
a similar masking effect would occur for DV, but can it be proved that DV always works well? 
Furthermore with DC there is the problem of standardization. It would be advantageous to use C(&) -' 
with a robust estimator &. Otherwise C(a)- can be completely inaccurate if outliers are present. 

In the independently identically distributed setting deletion of single observations also gives, through 
the jackknife, an estimate of the variance of the estimator. As is shown in Kiinsch (1989), deletion of 
blocks of consecutive observations is the right thing to do in the time series setting. To obtain con- 
sistency, we must let the block size increase with the sample size, however. Moreover the definition of 
an estimator other than the maximum likelihood estimator after deleting a block is less clear. If the 
estimator is defined through an estimating equation I leave out the corresponding terms in the estimating 
equation. This works well for variance estimation. It would be interesting to study its diagnostic 
capabilities. 

Johannes Ledolter (University of Iowa, Iowa City): I agree with the authors that a flexible approach 
to the treatment of outliers is beneficial and that there is no single approach that can handle all outlier 
situations. The objective of the analysis should determine the type of influence diagnostics that we are 
considering. If the interest lies in the time series coefficients, then a measure such as DC should be used. 
If the innovation variance is of interest, then the measure DV is appropriate. If the interest is in 
prediction, then we should study the influence of observations on point predictions and prediction 
intervals. It can be shown (Ledolter, 1989) that point forecasts are largely unaffected by additive outliers, 
provided that the outliers are not too close to the forecast origin. The conclusion concerning the width 
of prediction intervals is much different, however. Outliers inflate the innovation variance estimate and, 
as a consequence, affect the width of prediction intervals. 

The authors have shown how to check whether a certain observation, or a group of observations, has 
an influential effect on the innovation variance estimate. The more difficult question, however, is what 
to do with this information if our interest is in forecasting. For example, it is not obvious why we should 
calculate the prediction intervals for future exports to Latin-American republics from an innovation 
variance estimate that is obtained after omitting suspected outliers. It can be argued that the resulting 
prediction intervals are too narrow, as they do not reflect the variability that is normally associated with 
the series. Also, my research on the effect of outliers on point predictions leads me to speculate that 
the point forecasts for 1984 will not change much if the suspected outliers are replaced by missing 
observations. 

The diagnostics DC and DV are related to likelihood displacements if observations are treated as 
completely missing. A general method for assessing the local influence of minor perturbations of a 
statistical model is discussed in Cook (1986). Its application to the time series context is given in Ledolter 
(1988). The results of this analysis show which particular functions of the data lead to the largest local 
change in the likelihood displacement. For example, in the additive outlier model it is the differences 
between the observations and the interpolated values that determine the sensitivity of the innovation 
variance estimate. For innovation outliers it is the one-step-ahead prediction errors that are of interest. 

Jack C. Lee (Bellcore, Morristown): It is not surprising that in a time series setting a diagnostic based 
on the innovations variance is far superior to a coefficient-based diagnostic. This is especially clear from 
the perspective of stationarity, as non-stationarity of a time series can be caused by either a shift in the 
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level or a change in the innovations variance. The innovations variance estimate a2, which is a function 
of the coefficient estimate a, will reflect both types of non-stationarity, if they have occurred. However, 
the coefficient estimate will not reflect a shift in the innovations variance. This consideration is crucial 
in the context of forecasting future observations. 

As indicated by the authors, the leave-k-out diagnostic for the innovations variance, DV(A), is also 
useful in detecting level shift or variance change. This is an important application of the technique 
because it will result in better forecasting. However, although oA is estimated by deleting set A, the 
diagnostic and its statistic do not fully reflect the size of the deleted set. It is not clear how DV(A) will 
perform if the size of A is relatively large. An alternative procedure is to use an F statistic reflecting both 
the size of A and its complement. 

This can be accomplished by first transforming the data so that they are uncorrelated. The ratio of 
the variance estimates based on A and its complement can then be used as the statistic which is distributed 
as an F statistic with appropriate degrees of freedom. This idea is being exploited in a current study of 
forecasting telephone circuit counts with Nabil Ahmed and S. C. Horng of Bellcore. 

R. J. Martin (University of Sheffield): I have recently (Martin, 1989a) been considering the generaliz- 
ation of the regression concepts of residuals, leverage and influence to the regression model with a known 
dependence structure. That is E( y) = XfB and var( y) = VU2 with known V # I, and ,B is estimated by 
generalized least squares. Although the generalizations are relatively straightforward, care is necessary. 
In particular with a deletion set A it is necessary to differentiate between the deviations y - X, and 
y - X/A, and the prediction residuals-the differences between y and the estimated (substituting ,B or 
I3A for ,3) predicted values of y in A. The difference B - P, is most simply expressed using the prediction 
residuals. Influence can be measured using a generalization of Cook's distance such as 

(R - AA).'X'wV1X(: - flA)/PG, 
whereas ̂2/f2 - 1 can be used to check for outliers. 

If it is assumed that V is unknown, then this model contains the usual regression model and the time 
series models as special cases. With a given time series model for V these statistics can be calculated 
substituting V or VA for V, or the authors' statistic DV(A) based on estimates of the innovations 
variance could be used. Do the authors have any suggestions? Presumably appropriate diagnostics would 
depend on what ways are felt to be most likely for the model to be inappropriate. Recursive residuals 
may be most appropriate for detecting a change in the mean over time. For spatial data, the lack of a 
natural ordering means that it may not be sensible to think in terms of innovations. Perhaps the 
generalized Cook statistic would be useful in segmenting images. Residuals and some other diagnostics 
for this model have been considered in some applications, e.g. econometrics. An example in another area 
is given by Martin (1989b). 

Professor Daniel Peina (Universidad Politecnica de Madrid): Building a measure of influence for time 
series models requires 

(a) a method of extending the deletion approach used in static models to dependent observations 
and 

(b) a measure of the parameter change for autoregressive integrated moving average (ARIMA) 
models. 

In 1984 I showed (Penia, 1984) how to generalize the deletion approach used in regression to study 
influence in ARIMA models assuming that each observation was missing, and I related this technique 
to outlier estimation and to intervention analysis. Since then, I have worked on procedures to compute 
missing observations, to compare influence measures and to extend these procedures to transfer function 
analysis Pefia (1985, 1986, 1987a,b. During this time I have often found that many competent statisticians 
did not believe that the missing value approach was a fruitful way to deal with influence data in time 
series. I am happy to see that, nowadays, this idea seems to be obvious. However, I found the authors' 
statement about Brillinger (1966) surprising. The phrase: 'this may be achieved on occasion by applying 
a missing values technique' is a clever suggestion to generalize the jackknife to a specific problem, but 
not an articulate method to deal with influence observations in time series. 

On the second problem, the measure of distance between ARIMA models used by the authors has 
three problems: 

(a) it does not allow us to compare ARIMA models with different degrees of differencing; 
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(b) it does not take into account the possibility of almost cancellation between the autoregressive 
(AR) and moving average (MA) operators; 

(c) it does not allow for the duality between the AR and MA forms. 
For instance, with their definition of empirical influence, model Z, = (1 - 0.4B)a, is 'closer' to the 
model Z, = (1 - 0.8B)a, than to (1 + 0.4B + 0.16B2 + 0.06B3 + 0.02B4)Z, = a,, whereas clearly 
the third model is virtually identical with the first. Similarly, the model (1 - 0.6B)Z, = (1 - O.59B)a, 
is closer to (1 - 0.6B)Z, = a, than to Z, = a,. A way to avoid this problem, Pefia (1984, 1987), is to 
define the empirical influence as 

EIC(A) = -nn(A -) 

where the Xr coefficients are obtained from O(B)ir(B) = O(B)Vd. 
In regression, influence analysis provides information that cannot be obtained by the usual outlier 

tests, because, as is well known, some very influential points (which produce large parameter changes) 
may not be outliers (which do not produce large variance changes). The authors have decided to choose 
as diagnostic for influence the variance change which is, as they recognize, equivalent to looking for 
outliers, and so the advantage of their procedure over the well-known methods for identifying outliers, 
level shift or variance changes (Tsay, 1988) is not clear. 

Dr R. Schall (Institute for Biostatistics of the South African Medical Research Council, Tygerberg) 
and Dr T. T. Dunne (University of Cape Town): The authors are to be congratulated for their develop- 
ment of the swamping-free diagnostic DV(A), and exhibiting its relationship to DRES(A) and DFIT(A). 
The authors have pointed out the specific problems of 'smearing' or swamping not encountered in the 
usual independent observation setting. Their proposed solution, use of DV(A) instead of DC(A), is 
striking. They have also situated their diagnostic within an extensive and flexible array of strategies for 
exploring multiple outliers, and other phenomena, iteratively. We ask whether DV(A) can be shown to 
be swamping free in general autoregressive integrated moving average models, as the theoretical results 
in the paper and an earlier technical report discuss only autoregressive models. 

Could the authors comment on the following? Influence of one or more observations or innovations 
can be assessed in terms of likelihood perturbations, and the corresponding likelihood displacement, in 
the manner of Cook (1986). In that context Schall and Dunne (1988) distinguish between diagnostics for 
the local (potential) influence of perturbations and their actual (observed) influence. Diagnostics for the 
local or potential influence of perturbations are developed by applying the general methodology of Cook 
(1986) to the time series context. In contrast, we proposed to measure the actual or observed influence 
of perturbations by the observed likelihood displacement due to the set of perturbations in question. A 
second-order approximation of the observed likelihood displacement due to additive observation outliers 
leads to the leave-k-out diagnostics proposed by the authors. Thus the diagnostics proposed by the 
authors can be motivated using an approach based on the likelihood displacement. 

However, leave-k-(observations)-out diagnostics are not appropriate diagnostics under an innovative 
outlier perturbation scheme, where a 'leave-k-(innovations)-out' approach (treat k innovations as miss- 
ing) should rather be applied. Further, variance shift perturbation schemes lead to diagnostics which 
involve a downweighting of observations or innovations (depending on the perturbation scheme), rather 
than their removal. 

In summary, specific diagnostics are available for specific perturbation schemes, while the authors 
apply their leave-k-(observations)-out diagnostic to both the observation and innovation outlier situation, 
and suggest that we use the diagnostic even for the detection of variance shifts. 

Dr J. Q. Smith (University of Warwick, Coventry): Other types of disruptive events particularly in 
economic and business series such as shifts in mean and changes in growth as well as parameter changes 
occur with similar frequency to outliers. The procedures described here are essentially for the detection 
of outliers and despite claims to the contrary by the authors do not stand on their own. They are possibly 
helpful as one of many diagnostic tools. 

What disturbs me most about this paper is the authors' apparent advocation that we should fit poor 
models to data, look for 'outliers' which we intend to ignore and then refit. In example 5 to choose a 
model whose first differences have zero expectation seems eccentric both from the context of the series 
and the actual model. The assumption of constant predictive variance (not to mention additive seasonality 
and first differencing) in example 6 which is so obviously false just from the graph of the data is even 
more dubious. Surely fortune will dictate whether outliers defined relative to bad models can be usefully 
omitted. 
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Only when the modelling process is taken seriously might k-out diagnostics have some value. They 
can be incorporated into Bayesian forecasting models in the following very simple way without fancy 
asymptotics. Suppose we have built a Bayesian forecasting system (Dawid, 1984) where the next 
observation Y, given the past Yi . . ., y,-_ (after the required parameters have been integrated out) has 
a continuous distribution function F,. Then { U, }j,, where U, = F-' [F,( Y,)] is a sequence of independent 
normal variates with zero mean and unit variance, where F is the standard normal distribution function 
(see Smith (1985)). This will remain true after we have modified F, to allow for outliers. So effects of 
various sets of observations, on generalized residuals { U, }, can be straightforwardly calculated and their 
distributions known, both under null and alternative hypotheses. These results do not depend on the 
original model having a linear structure or that the process is Gaussian, so are quite general. They also 
have the desirable property of centring diagnostics on forecast performance rather than parameter 
estimation. 

As the authors point out the existence of serial correlation often makes k-out diagnostics preferable 
to one-out diagnostics. However, there is another reason why they might be preferred. In the context of 
volumes of sales (e.g. example 5) a blockage in recording sales may give rise to those numbers being 
added to sales figures in the immediate future. Alternatively the blockage may continue for several 
periods; thus outliers might naturally occur in patches. When this is the case it is dubious whether these 
6outlying' values should be ignored altogether in the modelling process. They need not be in the method 
outlined here. 

T. Subba Rao (University of Manchester Institute of Science and Technology): Does the assumption 
that the innovations {e,} of model (2.1) need to be Gaussian for the diagnostic criteria (2.8) and (2.11) 
to be valid? We could estimate the parameters of the linear model a and the variance a2 without this 
assumption and by imposing suitable conditions we could prove asymptotic normality of a. Now, coming 
to the criterion DV(A), is it not more appropriate to take logarithms of the estimates a2 and 8A and to 
compare these, e.g. log &2 - log &2, suitably scaled. This is for the simple reason that log &2 tends to 
normality faster than U2. An alternative way of looking at the criteria is as follows. We have 

log cc f log f(a) do, 

where f(a) is the second-order spectral density function of the process. Therefore, we could consider 
{log f(o) - log IA (w)} do for log a2 - log CA, where J(o) and IA (w) are nonparametric estimates of 

the spectral density function (herefA(co) is the estimate of the spectral density function when the set A 
is omitted). More appropriate criteria may be either A {log (w) -log A(w)}2 dwo or 

log o A( ) } 2do. 
ii log A (w)) 

Sincef(cw) andA (cl) are nonparametric estimates, the problem of the order determination which is quite 
essential for the diagnostic tests does not arise. What do the authors think about using such criteria for 
diagnostics? 

Here the authors are testing for the influential points in the form of outliers, under the assumption 
that the underlying model is linear (and Gaussian). After more than 10 years of research in the field of 
non-linear time series, I believe that we must first test whether a series is linear or non-linear before any 
further analysis is carried out, for the simple reason that what looks like an outlier may be a part of the 
underlying non-linear structure. I pointed this out in a contribution to the discussion of a paper presented 
by Kleiner et al. (1979) to this society. Unfortunately, the authors have not pointed out this possibility. 

Professor Ruey S. Tsay (Carnegie-Mellon University, Pittsburgh): The present paper provides yet 
another useful approach for checking various types of disturbance in time series analysis. In particular, 
the ideas of using innovation variance and graphical display are of great interest to me. However, I have 
some concerns and comments about the proposed approach. 

(a) The leave-k-out diagnostics appear to be relatively inefficient in handling variance changes in a 
time series. Consider the unfilled radio and television orders series of example 6. A simple time 
plot of the first-differenced series, i.e. (1 - B)x,, shows clearly the non-homogeneous nature of 
the process; see Fig. 13. Similarly, the simple technique of Tsay (1988) for detecting variance 
changes also clearly shows a variance change. I used the logarithm of the data and still detected 
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Fig. 13. First-differenced unfilled radio and television orders series 

a variance change in 1976. It seems that leaving-k-out in computing variance estimates, not in 
estimating the model, is a simpler method for detecting variance change. 

(b) Deleting all aberrant observations might not be the optimal way in time series analysis, especially 
for patches of outliers. In some situations, we are interested in assessing the impact of the 
disturbance. Thus, using the intervention analysis of Box and Tiao (1975) in conjunction with 
time series diagnostics seems more useful. This is the approach taken by Tsay (1988). 

(c) The reason that DC is not satisfactory when the process is nearly non-stationary or non-invert- 
ible is the failure of the normal approximation used in Section 2. Consider the autoregressive 
models, for instance. The least squares estimates of the autoregressive parameters are not 
asymptotically normal when some of the characteristic roots are on the unit circle. See Chan and 
Wei (1988), and Tsay and Tiao (1989), among others. Consequently, in studying scaling 
problems the asymptotic results of non-stationary time series might be useful. 

(d) The proposed model for the unfilled radio and television orders series from 1976 to 1980 appears 
to be non-invertible; see Table 2. Is this not in conflict with the assumptions of the paper? 

(e) The effects of outliers in time series analysis were investigated by Chang (1982) for the general 
autoregressive integrated moving average models. In particular, the effects of outliers on the 
sample autocorrelation function and least squares estimates of autoregressive regressions were 
given. 

The authors replied later, in writing, as follows. 

Professor Tong hoped that presenting the paper would be pleasurable for us. For us, the pleasure of 
such an experience is measured by confidence that our efforts have produced at least some advance in 
the understanding of time series diagnostics, a bearable amount of justified criticism and the provocation 
of a wide range of new thoughts and proposals for further research. By this criterion, we were far from 
disappointed! 

A sizable number of substantial issues have been raised. We address some of these issues below. 

Appropriateness of 'missingness'for time series 
Professor Lawrance, Professor Tong and Professor Tsay question the appropriateness of subset 

deletion diagnostics in which the deleted data are treated as missing. To this we reply that the missing 
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data approach is at a fundamental level the most natural, transparent and easy to understand concept 
for the broadest range of applied statisticians. In addition the leave-k-out approach based on the 
diagnostics DV and DFIT have merit well beyond its conceptual simplicity. 

(a) DV clearly displays the influence caused by simple outliers. This is an important property for 
any time series diagnostic to have, and one which DC lacks. This property is analogous to the 
ability of Cook's distance to reveal clearly the 'all-but-one point on a line' problem in bivariate 
regression (i.e. all observations lie roughly on a regression line except for one outlying value). 

(b) The leave-k-out strategy is general in that it can detect a variety of potentially troublesome 
situations. It is very powerful for detecting both isolated outliers and patches of outliers, and is 
reasonably sensitive towards level shifts and variance changes (we comment further on level 
shifts later). 

(c) As Dr Bell points out, the missing data approach is maximally non-committal towards various 
kinds of influential data segments, and no additional modelling assumptions are made. This is 
especially important in the exploratory stages of an analysis. 

(d) Finally, missing data methods can help the analyst to understand the data better. Data values 
have significance which can be related to the underlying problem. 

Likelihood ratio tests 
Several discussants (Burman, Bell, Hallin and Melard, Kohn and Ansley, Pefia, Schall and Dunne and 

Tsay) mention alternative methods based on the use of likelihood ratio tests (LRTs) of specific para- 
metric interventions, as in the work of Chang and Tiao (1983), Hillmer et al. (1983), Pefia (1987) and 
Tsay (1988). LRTs have been proven to be a valuable and useful diagnostic tool. However, there is room 
for both LRTs and leave-k-out methods. 

As discussed in the previous section, missing data methods have some fundamental advantages not 
shared by diagnostics based on LRTs. In addition, we emphasize that DV is not equivalent to testing for 
the presence of additive outliers for finite sample sizes, as is clear from the decomposition of equation 
(6.5). 

We apparently overstressed the asymptotic results in Sections 6 and 7. In finite samples, DFIT can 
be and often is non-negligible. Furthermore, as Critchley points out, the 'fixed k/n' case leads to quite 
different asymptotics than the 'fixed k' case. In particular, the missing data approach and the additive 
outliers approach are no longer asymptotically equivalent (see the equations in Section 7). Indeed, the 
fixed k/n case is likely to be more relevant for finite sample size inference. 

To illustrate finite sample realities, we give an example in which DFIT dominates DRES. Quarterly 
Argentine wood production data from 1970 to 1985 are plotted in Fig. 14(a). The series exhibits some 
unusual features, including a hump in 1974 and a possible level shift in 1980. Based on Akaike's 
information criterion (AIC) and the usual Box-Jenkins methodology, an ARIMA(1, 0, 0) x (0, 1, 2)4 
model was fitted. Leave-three-out diagnostics are given in Fig. 14(b). Instead of plotting DV, we have 
plotted DVo, given by the vertical lines, and DFIT/1(2n), given by the curve passing through the vertical 
lines. The straight horizontal line corresponds to the rough guideline used in the previous examples. 
Clearly, DFIT is the dominant term in the most influential patches. A large value of DFIT means that 
the model parameters are heavily influenced by the deleted data. Correspondingly, one often finds that 
the model has been misspecified. In the present context this gives rise to large values of DFIT (and DVO) 
around 1977 rather than during 1974. The remedy is careful model selection along the lines that we 
suggest in the model fitting questions section (see p. 421). See Bruce (1988) for a more complete 
discussion of this example. 

A final word on LRT methods: an important aspect of any diagnostic procedure for time series is to 
expose locally influential patches of observations. This is a potential shortcoming of current methodology 
based on using LRTs, and we would like to see further development in this area. Furthermore, most of 
the proposed LRT methods for handling outliers one at a time lack power relative to leave-one-out 
diagnostics because they use parameter estimates based on all the data. 

Exclusive focus on autoregressive integrated moving average models 
Concern is expressed by Professor Cox, Professor Harvey, Dr Robinson and Dr Smith over our 

emphasis on autoregressive integrated moving average (ARIMA) models. This concern is well taken. The 
main reason for such focus is simply that ARIMA modelling is widely used and very popular. However, 
we agree that ARIMA modelling is considerably overused and often abused. 

In view of this, Harvey's emphasis on using structural models for time series seems quite appropriate. 
However, we question whether using a simple smoothing of the irregular component is, in general, 
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Fig. 14. Quarterly Argentine wood production data from 1970 to 1985: (a) plot of the data; (b) plot 
of DVo (vertical lines), DFIT/V(2n) (curve) and a rough significance guide (horizontal line) 

sufficient to identify outliers. At the very least, it would seem wise to use a robust smoothing procedure, 
such as those referenced in Section 8.2. 

We note that an AR approximation will often do quite well as a substitute for ARMA modelling. 
Whenever AR approximations are sufficient, we can construct leave-k-out diagnostics for other quan- 
tities of interest (e.g. correlation, autocorrelation, spectrum) in a straightforward manner. The statistic 
of interest is computed with the missing data interpolated using the AR approximation, and then 
compared (using an appropriate metric) with the statistic computed using the complete data set. 

In this regard, Professor Subba Rao's suggestion for basing a diagnostic on estimated spectral 
densities, with and without subsets deleted, seems quite promising. To this end one could construct 
prewhitened spectral density estimates via the AR missing data approach, much in the spirit of Kleiner 
et al. (1979). 

As for Professor Cox's query about possible 'direct' methods for other quantities of interest, we do 
not yet see a method so nearly appealing as that based on interpolation using the AR approximation. 

Focused objectives and influence 
Professor Cox, Dr Critchley, Professor Ledolter and Dr Robinson quite correctly point out the need 

for basing the diagnostics on the final objective of the analysis. In particular, Ledolter (1989) has 
provided some very nice work in the area of forecasting. As Professor Ledolter indicates in his con- 
tribution, except for points near the end of the series, the leave-k-out procedure based on DV is adequate 
for detecting influence in the forecasting problem. 

Dr Robinson and Professor Ledolter caution that deletion of outliers may result in underestimation 
of the innovations variance for forecasting. However, a clearly inadequate approach for incorporating 
the increased uncertainty caused by outliers is to use wider Gaussian prediction intervals (reflecting an 
inflated innovations variance). It is important to have a good measure of the scale for the core 
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(outlier-free) process; how we decide to model the aberrant values is often a separate and more difficult 
issue. For instance, in example 5, constructing prediction intervals for the core (strike-free) process is 
relatively straightforward. However, attempting to predict the increased variability due to possible future 
strikes is a highly subjective task depending heavily on external factors. 

Local influence and likelihood displacement 
Dr Critchley, Dr Cook, Professor Ledolter and Dr Schall and Dr Dunne mention local influence 

methods based on likelihood displacements. These methods may serve as a useful complement to leave-k- 
out diagnostics. Of particular interest is the suggestion by Critchley and Cook that local influence may 
avoid the masking problem in the time series setting. At the moment this does not seem likely to us. 

In answer to Cook's query about influence measured by likelihood displacement in relation to EIC 
and EIV, we note the following. One could use the diagnostic 

LD(A) = 2{L(a, &2) - L(aA, AC)}- 

As Cook suggests, this is likely to produce roughly the same results as DC and DV, and asymptotically 
it can be shown that 

LD(A) = DC(A) + DV(A) + o(I/n). 

In view of the effects of smearing, it might be better to consider likelihood displacement caused only by 
innovations variance 

LDV(A) = 2{L(&A, &2) - L( CA, iA)} 

which is asymptotically equivalent to DV(A). One might then decompose LDV in a similar fashion to 
the decomposition given for DV in Section 6. 

Calibration, p values and formal inference 
Calibration of the diagnostics has been discussed by many of the contributors (Critchley, Cook, 

Hallin and Melard, Kohn and Ansley, Kiinsch and Lee), and some (Critchley, Kohn and Ansley, and 
Kiinsch) are concerned about distributional properties of the final estimate after deletions. These 
problems present considerable intractability, and we wish well to those who might attack them. Should 
one seriously approach the distributional problem, then clearly attention must be given to the 'fixed k/n' 
case. 

Professor Hallin and Professor Melard and Dr Lee contend, quite correctly, that we should adjust for 
the size of the patch. Hallin and Melard's suggestion to use the AIC or B information criterion (BIC) 
guideline is attractive. We caution that the AIC and BIC are based on the log-likelihood function, which 
is not quite identical with the logarithm of the estimated innovations variance, and perhaps an adjust- 
ment is needed for using information criteria in the missing data setting. 

In spite of having some interest in these issues, we agree with Dr Cook in that we should not be too 
worried about having in hand the distribution of influence measures. We would avoid the term 'p value' 
in the future as quite misleading. The proposal by Cook to use an influence measure only for 'ranking' 
the observations seems to be the most sensible and useful approach to the problem. 

Computational complexity and modern graphics workstations 
As several of the discussants point out, the computing burden demanded by a full implementation 

of leave-k-out diagnostics is very intensive, and for practical application (especially for seasonal models) 
faster algorithms are needed. However, with some improvement in computational efficiency, the 
computational complexity will not be a limiting factor when implemented on currently available 
workstations. 

The primary way to gain computational efficiency is to base the diagnostics on one-step estimates 
from the maximum likelihood solution with all the data. Preliminary studies indicate that one-step 
estimates are often sufficient (Bruce and Martin, 1987), though we recommend taking further iterations 
whenever a large initial step is taken. In most of the examples given in this paper, one-step estimates 
would suffice. Further, an 0(n) algorithm is available to produce one-step estimates needed to speed up 
the leave-k-out diagnostics. Details of the procedure are forthcoming. 

Graphics workstations offer the ideal environment to make use of interactive graphical techniques 
(such as those mentioned in Section 4.3 and by Bradley and Haslett) in conjunction with such techniques 
as leave-k-out diagnostics. In particular, the LISP-based program for interactive time series and spectral 
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analysis system (Kerr and Percival, 1988) is a powerful environment for time series analysis, blending 
sophisticated interactive tools with advanced spectral analysis methods. As such it would support the use 
of leave-k-out diagnostics quite nicely. 

Desire for simple methods 
The desire for 'simple' methods is strong in all areas of statistics where more complex methodologies 

are being proposed. This is also true in the present context, as is evidenced by the pleas for simple 
methods by Dr Robinson, Professor Tong, Mr Bradley and Dr Haslett, Dr Chatfield and Professor Tsay. 
Any good data analyst would agree that simple methods play a fundamental role, and there is no 
substitute for careful exploratory graphical analysis. 

However, even in the univariate case, the dependencies in time series data can make it difficult to 
determine influential values from simple plots. Only in very simple situations is the exact nature of the 
influence of observations in an outlier patch fully transparent; see Kleiner et al. (1979) for a striking 
example of 'hidden' influential values. Furthermore, even for obvious model changes or outliers, it is 
reassuring to have one's intuition supported by a more formal tool (this is especially so for less 
experienced analysts). 

Simplicity must be balanced with the proper blend of generality and power. Complexity at some level 
may be acceptable, provided that it is offset by transparency or power at another level. Excessive 
emphasis on simplicity may lead to a much weaker diagnostic. For example, this seems to be the case 
with Tong's proposal to apply the leverage/Mahalanobis-distance-based diagnostic (i.e. the diagonals of 
the hat matrix). We would not advocate the use of leverage in general since there is a clear smearing effect: 
a single outlier will show up at several time points with different amplitudes which depend on the 
estimated covariance structure. Further, this covariance structure can itself be highly influenced by 
outliers to an extent that renders the diagnostic useless (as in ordinary regression). To illustrate the 
smearing problem, in the AR(l) model, note that 

h, = y,-_/Zy2 

Therefore for example 1, the leverage diagnostic would identify point 29 as the overwhelmingly most 
influential point, which is clearly misleading. 

Modelfitting questions 
Burman, Harvey and Smith have criticized the actual models that we fitted in our examples. For the 

most part, we have no defence here and greater care should have been taken. Indeed, we should have 
included a slope term for example 5, as pointed out by Smith, and Burman is correct in that the seasonal 
operator that we chose in example 6 is probably not the best. We were more preoccupied with the 
development of the methodology. 

At the same time the fact that we may not have fit the best models does not in any way invalidate 
the proposed diagnostics. Examples in which more attention was paid to model fitting aspects validate 
the results presented here (see Bruce (1988)). It is a strength of the approach that influential points in 
isolation or patches are found with not quite correct models. There is quite a difference between a truly 
bad model and a model which has a reasonable degree of predictive power, though not the best predictive 
power obtainable. The former would generally be useless for diagnostics, but not the latter. 

Harvey's point that a different model holds after the identification of outliers is quite pertinent. 
Following our suggestions for model identification in Section 4.4.1, we do end up fitting a seasonal term 
as suggested by Harvey. At the same time we cannot caution too strongly that we may not end up at 
an acceptably good model by this approach. In general, it will be necessary to entertain a range of models 
at the outset, and to use leave-k-out diagnostics on each of them to arrive at a good model. This is the 
case for the Argentine wood example of Fig. 14. 

Other issues 
Having addressed these frequently occurring concerns, we turn to several other interesting points 

raised by one or more discussants. 
Missing data approaches and level shifts. We have stated previously that DV has reasonable power to 

detect a level shift. An intuitive rationale for this is that leaving out a sufficiently long patch of 
observations surrounding a level shift allows the data to interpolate through the level shift. It would be 
useful to have more analytical results in the spirit of Section 3.2 on this issue. 
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Checking for non-linearities. We agree with Professor Subba Rao that it is important to check for 
non-linearities in a time series. However, it is not so clear that we should show a preference for first testing 
for non-linearity before checking for outliers. For instance, exploratory methods for fitting non-linear 
additive regression models can be extremely sensitive and unreliable in the presence of outliers (Breiman 
and Friedman, 1985). What is evident is that we should, at some stage in the analysis, check for both 
outliers and non-linearity. 

Put P in. The 'put-P-in' idea raised by Professor Hawkins is particularly interesting to us. With V. 
Yohai, we have spent time looking into the use of such an approach for obtaining initial parameter 
estimates for autoregressions which have high breakdown point with high probability (an approach 
which has been pursued in regression by several investigators). Preliminary investigations for auto- 
regressions indicated that, for all but low order autoregressions, the sample size required to obtain a high 
breakdown point was rather large. Thus we focused on another approach for obtaining high breakdown 
point autoregression estimates, which we hope to publish elsewhere. At the same time, put-P-in methods 
remain very attractive, and we welcome Hawkins's novel suggestion for use in a diagnostics setting. 

Multivariate case. We could treat a multivariate time series just one series at a time using the current 
leave-k-out approach. However, this will sometimes be inadequate. A better approach is to mimic the 
univariate procedure by developing a multivariate analog for DV. The multivariate setting is more 
complicated since we must look at C and CA, the estimated innovations vector variance-covariance 
matrices for the full data set and with subset A treated as missing. A reasonable start might be to define 
diagnostics based on 

(a) changes in 'scale', e.g. as measured by Idet(C)/det(CA)I, and 
(b) changes in the 'shape', e.g. as measured by appropriate functions of the eigenvalues. 
Kiinsch's jackknife and sliding spans. Kiinsch's (1989) work on the jackknife for time series and the 

idea to delete blocks (of increasing length) are quite important. This idea is related to the 'bottom-up' 
method discussed in Section 4.3; we concur with his closing suggestion that it would be interesting to 
investigate the diagnostic capabilities of this method further. 

Pena's measure (and other comments). Professor Penia proposes an empirical influence measure based 
on the X weights. We caution that this approach is clearly subject to smearing effects: the resulting 
diagnostic is equivalent to DC for AR models. With regard to Pefia's questioning of our reference to 
Brillinger (1966), we refer to Brillinger (1986) in which he proposes a diagnostic similar in spirit to DC, 
referencing his own 1966 paper as setting the stage for the missing data approach in time series. We would 
also like to clarify that Pefia's criticisms of the 'measure of distance between ARIMA models used by 
the authors' apply only to DC, and have no bearing on the diagnostic DV which we recommend. 

Invertibility assumption. Professor Tsay is correct that we violated the assumption that the process is 
invertible in example 6; however, this assumption is apparently not required and may be dropped (Kohn 
and Ansley, 1986). 

Questions not answered 
Many other important questions and comments were raised in which we either lacked a good response 

or time and space limitations prohibited a reply. These issues include an analytical formula for masking 
(Lawrance), existence of other less structured situations where smearing is a problem (Jolliffe), regression 
models with dependence structure (Besag and Seheult, Loynes and Martin), innovation deletion (Muir- 
head), spatial statistics (Bradley and Haslett, and Martin) and Bayesian forecasting models (Smith). 
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