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Comment 

Robust Filtering 

1. GUTTMAN and D. PENA* 

We congratulate West, Harrison, and Migon (WHM) on a 
stimulating and interesting article. This article undoubtedly will 
be the focus for much discussion on the many issues raised by 
WHM in the area of Bayesian forecasting in general and Kal- 
man filtering in particular. Because of limitations of time and 
space, we will comment only on the aspect of filtering in the 
presence of outliers. We agree with WHM that this is a very 
serious and crucial point, since it is well known that extreme 
observations can make the standard Kalman-filter procedure 
highly unstable. 

Therefore, it is important to provide, within the filtering 
algorithm, an automatic method for "downweighting" extreme 
observations, if and when they occur. Hence, we feel it is 
important to emphasize that such (robust) filters be derived 
using formal statistical models that allow for the appearance 
of spuriously generated observations so that resulting filtering 
procedures may be compared. 

To achieve this, we believe that the simplest way to proceed 
is to assume a mixture of two distributions for the noise in the 
observation equation. One of these will represent the generation 
of observations as intended, whereas the other would represent 
a departure from the former. This approach has been useful in 
Bayesian estimation, and the idea was first used by Jeffreys 
(1961) and Box and Tiao (1968). 

Using this approach, the posterior of the state 0, turns out 
to be a mixture of two distributions. To arrive at the next step 
in a Kalman-filter algorithm, we believe that his latter mixture 
should be approximated by a single distribution, uniquely de- 
termined by the first and second moments of the posterior. 
Here we differ with WHM, who would favor the procedure of 
Harrison and Stevens (1976a), for our procedure avoids the 
arbitrariness in the collapsing of N2 posterior distributions to 
N distributions when N > 2 that is necessary in the Harrison- 
Stevens procedure. Furthermore, our procedure leads to a unique 
filtering procedure that is relatively simple and easy to imple- 
ment. 

To illustrate our procedure, consider the dynamic linear model; 
the generalization for non-normality is straightforward. Sup- 
pose the observation equation is of the form 

y= Ft,O + vt, (1) 

where 

v - aN(0, VI) + a2N(O, V2), (2) 

al I .90, a2 = 1 - al, and 

V2 = k2VI, k2 > 1. (3) 

Then the filter is as depicted in Figure 1. The derivation and 
application to various different problems is given in Guttman 
and Pena (1984). 

* I. Guttman is Professor, Department of Statistics, University of Toronto, 
Ontario M5S lAl, Canada, and D. Pena is Professor of Statistics, Universidad 
Politdcnica de Madrid, Castellana 88, Madrid 6, Spain. 

In summary, the advantages of this approach are as follows: 
1. The derived filter is unique. 
2. There is a simple algorithm for updating results. 
3. The approach encompasses, in a straightforward manner, 

the multivariate approach. 

Initial Conditions m0, V0 

t= 1 

Estimation of Next Stage 

R,= G,C,-,GC' + W 

Prediction of the New Observation 

v, =F,m,:,-, 

Y,,= V, + F,R,F,', i = 1, 2 

Y= a,Y,, + a2Y,2 

Observation y, 

Compute posterior probabilities of 
belonging to each population. 

F a2!Y,, I 
a,= [1 exp{- Iz'D,z 

a,2 = 1 -a,,, z, = y,- 

Updating the Parameters 

= m,,, + R,F [a,,Y,,' + a,2Y,21]z | 

C, = R, - R,F'B,F,R,, D, = Y,,' - 

B, = a,,Yj,' + a,2Y,2' 
-2H, 

H, = a,,a,2D,z,z'D, 

t T No 

Yes 

End 

Figure 1. The Recursive Scheme for a Robust Kalman Filter. 
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Consulting the "Updating the parameters" box of Figure 1, 
we note that the updating formula for m, = m, of our knowl- 
edge of 0, involves a weighted combination of two filtering 
procedures, the weights being a,, and a,2 = 1 - a,1. If the 
posterior evidence is high that y,, the current observation, is 
from the intended source N(F,O,, VI), that is, if a,, 1, then 
the residual z, = (y, - F,m,- ,) is filtered by R,F,- ' Y,-, which 
is the appropriate Kalman gain matrix if indeed y, is from the 
intended source, whereas the opposite is true if a,2 1, and 
so forth. 

All of this is to say that the use of a mixture of two normals 
in the observation equation leads to sensible results that are 

easy to implement in the resulting recursive scheme. This re- 
quires the simple approximation of a two-termed posterior by 
a single normal, matched by means and variances. This gives 
the unique approximation talked about earlier. 

ADDITIONAL REFERENCES 
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Comment 

CORNELIS A. LOS* 

As a non-Bayesian econometrician, I wholeheartedly en- 
dorse West, Harrison, and Migon's (WHM) methodology of 
specifying structural parametric (state-space) models. The fol- 
lowing six comments on their interesting and thought-provok- 
ing article are made with this perspective in mind. 

1. Let me first introduce some simple concepts to facilitate 
the discussion. In the standard generalized linear model (GLM) 
the relationship between the dependent variable and the pre- 
determined variables, or regressors, is assumed to be constant 
over time. In its simplest form this assumption can be repre- 
sented by the regression equation 

Yt = x, 1 + et, et - N(0, a2), (1) 

where Yt is the dependent variable, xt the (1 x k) vector of 
predetermined variables, , the (k x 1) vector of constant, 
unknown, structural regression parameters, and et the mea- 
surement error (which, for simplicity, is assumed to be nor- 
mally distributed). 

In a nonstandard, evolutionary, or dynamic, general linear 
model (DGLM), the structural parameters vary over time, are 
stochastic, and, possibly, are subject to various policy influ- 
ences. These assumptions can be represented by the following 
equations: 

Yt = xt Pt + et, et - N(O, a2), (2) 

where Pt - N(I3t, E) and 0 = E$p}, the evolutionary mean 
(mode) (k x 1) vector of the evolutionary structural parameters 

Pt and It = E{(PIt - ot)(It - It)'}, the time-varying co- 
variance matrix of Pt. The logic of modeling requires a spec- 
ification of the processes of these structural parameters to be 
able to track their evolution. 

A very general model specification is a controlled, multi- 
dimensional Markov process that allows for an almost infinite 
number of possible evolution trajectories for the elements of 

* Comelis A. Los is Economist, Domestic Research Department, Federal 
Reserve Bank of New York, New York, NY 10045. 

fi. For example, let the elements of P, be selected from a (n 
x 1) vector of dynamic states z, by the equation 

Pt = Hzt, (3) 

where H is a known (k x n) selection matrix of zeros and 
ones, which contains design information and exhibits the prop- 
erty that HH' = I, a (k x k) identity matrix. Equations (2) 
and (3) can be written as one equation as in WHM's article: 

Yt = t,z, + e,, (4) 

where xt = xtH. Let the state vector zt evolve according to a 
transition equation in state-phase form: 

Zt = Fzt, + H'Gut + H'vt, vt - N(O, Q), (5) 

where u, is the (m x 1) vector of known structural policy 
variables (possibly a subset of the predetermined variables) and 
v, the (k x 1) vector of process disturbances. 

The constant hyperstructural parameters F (n x n), G (k 
X m), Q (k x k), and o2 specify the evolutionary processes 
of the elements of the state vector z, and, therefore, also of 
the parameter vector Pt. This model is a high-order DGLM 
with constant hyperstructural parameters, which is better adapted 
to the modeling situation in econometrics than the ones WHM 
discuss in their article. 

2. The proper statistical problem of inference is to estimate 
and test, simultaneously, Pt, It and F, G, Q, and U2. But WHM 
assume the values of F, (G), Q, and a2 to be known a priori 
and proceed accordingly. As so many other statistical practi- 
tioners, they uncritically adopt the Kalman filter from control 
engineering to track Pt and It or, more precisely, to track zt 
and Pt, the covariance matrix of zt. WHM confuse tracking 
with inferring values of the structural parameters, and they 
leave the rabbit of statistical inference in their respective Bayes- 
ian hats. Kalman (1960) assumed for his filters the values of 
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