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A DECISION ANALYSIS MODEL FOR A SERIOUS
MEDICAL PROBLEM*

DANIEL PENA SANCHEZ DE RIVERA}

This paper presents a decision model for a serious medical problem: the diagnosis and
treatment of undifferentiated liver disease with jaundice. The model formalizes the use of
information before a treatment is chosen, taking account of prior information collected by the
doctor from laboratory and clinical exploration. Then the model chooses the best treatment
according to the patient’s preference structure.

Since the best treatment in each case depends on the patient’s preference for consequences,
this aspect is central to the application of such models. Thus a main objective is to find a
suitable criterion to e the conseq in order that each patient’s attitude can be
taken into account. Qur model was computerized and tested with fifty patients: the program
duplicated in forty-four cases the decisions of expert doctors.

The model overcomes some of the difficulties observed in the manipulation of probabilities
by clinicians. The results suggest that a Decision Analysis model may be a useful way to
clarify the decision process of expert clinicians and to help in the education of new doctors.
Finally, this kind of program can play a role in automating medical decision-making in such a
way that the knowledge of the best experts can be made widely available.

(DECISION ANALYSIS—APPLICATIONS; UTILITY/PREFERENCE—APPLICA-
TIONS)

1. Introduction

The application of Decision Analysis to clinical diagnosis and treatment is a fairly
recent development. In 1967, Henscheke [6] published an application to cancer
therapy. Other contributions can be found in [1], [4], [10], [11] and [13]. The reader is
referred to these authors for a general overview of the problem and here we will only
stress some of its main features. )

First, diagnosis and treatment must be analyzed together. Medical diagnosis is
probabilistic and does not, in general, determine the best treatment to follow. Second,
the best treatment not only depends on the doctor’s uncertainty but also on the
preference structure of the patient. Third, the value of a medical test is linked to its
usefulness in permitting the doctor to take better decisions and not merely to its
capacity to reduce uncertainty; though these aims have many features in common,
they are not identical. The value of a medical test must be evaluated in each particular
case.

An important obstacle to the application of Decision Analysis in medical problems
is the lack of an adequate criterion for measuring consequences. In business decision
problems we are used to summarizing the consequences in terms of money. In such
cases it is not difficult to find a preference structure consistent with the decision-
maker’s views. In medical decision problems it would appear that money cost is not a
natural numeraire of consequences. We have tried in this paper to introduce the length
of life as the numeraire for this kind of problem.
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In §2 we describe our medical problem and present the reasons that suggest the
application of Decision Analysis. In §3 we sketch the main features of the model,
discussing the assessment of probabilities in 3.1, the measurement of consequences in
3.2 and the evaluation of consequences in 3.3. §4 is dedicated to presenting some
results of our experimentation with the model. Finally, in §5, several conclusions about
the usefulness of this approach will be drawn.

2. The Medical Problem

The differential diagnosis of a jaundiced patient, whose disease does not become
clear after routine (nonrisky) exploration and laboratory tests, is a very difficult task
and one of the classic problems in Medicine. The difficulty arises because there are six
possible diseases which mimic each other very closely. The diseases are:

1. Cholestatic hepatitis (HC),

2. Primary biliary cirrhosis (CBP),

3. Choledocho lithiasis (CL),

4, Carcinoma of bile ducts (CBD),

5. Carcinoma of the papilla of Vater (CPV),

6. Carcinoma of head of pancreas (CHP).

Differential diagnosis is important, first of all, because the treatment required for
hepatitis and cirrhosis is medical, whereas the treatment for the other diseases is
surgical. Secondly, the prognostic in the case of carcinoma depends on its rapid
identification, so that any delay before surgical intervention increases the patient’s risk.
Thirdly, the differential diagnosis of these diseases cannot, generally speaking, be
based merely on those sources of information with minimum mortality risk such as
laboratory tests and radiology; it is necessary to apply tests that have a significant risk
of mortality: liver biopsy and percutaneous transhepatic cholangiography. Finally, the
results of treatment in patients with carcinoma, of the bile ducts or of the head of the
pancreas, are poor and there is no general agreement among doctors as to the
usefulness of surgery, especially in the case of older patients.

This problem has many features that suggest the application of Decision Analysis.
The cost of uncertainty is high and the patient’s preference structure should be central
in obtaining the best strategy.

3. The Model

3.1. Basic Structure

The model is built on the following assumptions: (1) The patient has one and only
one of the six possible diseases; (ii) The doctor can use two risky tests before applying
treatment: liver biopsy (LB) and percutaneous transhepatic cholangiography (PTC),
(iii) The treatments available are divided in two groups: medical and surgical.

The model structure is presented in Figure 1. The first decision the doctor has to
make is whether or not to collect more information using one of the two risky tests. If
a test is applied, one of the test results presented in Tables 1 and 2 will be obtained.
Table 1 shows the mutually exclusive and exhaustive results for the liver biopsy test
and Table 2 contains those of the PTC test. When the test results become known, the
doctor will change his probability assessment over the diseases, taking account of the
likelihood of the result obtained according to Bayes’ rule.
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TABLE 1

Results of Liver Biopsy
Result Possible Diseases given the result
(h): Hepatitis HC
(c): Cirrhosis CBP

(e): Extrahepatic CL, CBD, CPV, CHP
(d): Inconclusive HC, CBP, CL, CBD, CPV, CHP

TABLE 2
Results of Perc Transhepatic Cholangiography
Result Possible Diseases given the result
(cbd): Carcinoma bile CBD
ducts
(ca): Carcinoma. head CPV, CHP
of pancreas or
Papilla of Vater
(c): Choledocho lithiasis CL
(ex): Extrahepatic CL, CBD, CPV, CHP.
(ns): Not specific HC, CBP, CL, CBD, CPV, CHP
{nv): Test provides no HC, CBP, CL, CBD, CPV, CHP
information
mr_ D

u(rB.:;,.MT. D)

PTC
g+ ST.0)
U(pg:MTD)
Ulp.13.57.0)
> MT.D)
D; UlrST. D))

D; UIMT,D;)

Treatment (Y U(ST,Di)
MT: Medical Treatment PTC: Percutaneous Transhepatic Cholangiography
ST: Surgical Treatment LB : Liver Biopsy

Di : Diseases

rP(k): Result of PTC.
rB(j): Result of LB

FiGure 1.
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The doctor, before choosing the treatment, can use both tests sequentially, one of
them alone or no test at all. The final consequence for the patient will depend on the
test used, the treatment applied and the real disease the patient has.

To analyse the problem we need: (i) the *“a priori” probability for each disease, (ii)
the likelihoods of the test results, given the disease and (iii) the preference structure
over the consequences. With these inputs the model can be used to choose the strategy
that maximizes expected utility. In the following sections we describe these inputs.

3.2. Probabilities

The model uses three kinds of probability assessment: the a priori probabilities, the
likelihood of the test results and the conditional probabilities of the consequences
given the treatment and disease.

The a priori probabilities summarize the information that the doctor has before
starting the decision-making process outlined in Figure 1, that is, before applying
either diagnostic tests with positive mortality risk or treatment. The doctor could rely
on programs for sequential diagnosis, if these are available. Such programs compute
posterior probabilities for each disease, given the medical history, physical symptoms
and laboratory results for the given patient and using, as likelihoods, the relative
frequency of these items of information in a large sample of patients who have
suffered from the relevant diseases. The doctor could also make use of standard
methods of assessing subjective probability distributions, as in [5],[7] and [10], to
supplement or even substitute for the use of such programs.

The conditional probabilities for each test result, given the disease, which we will
call the likelihoods of each test, written Py(r | i), where j indicates the test, i the disease
and r the test result, were collected from historical experience at the Hospital
Francisco Franco in Madrid and from cases published in medical journals. The
particular data used as input in our model are given in Tables 3 and 4.

TABLE 3
Likelihood Matrix for Liver Biopsy

Test Result
Disease (h) (©) (e) (d)
HC 0.20 0 0 0.80
CBP 0 0.80 0 0.20
CL 0 0 0.75 0.25
CBD 1] ] 0.75 0.25
CPV 0 0 0.75 0.25
CHP 0 0 0.75 0.25
TABLE 4
Likelihood Matrix For Perc Transhepatic Cholangiography
Test Result
Disease (nv) (ns) {cbd) (cl) (ca) (cx)
HC 0.260 0.740 (1] 0 0 0
CBP 0.260 0.740 0 0 0 0
CL 0.260 0.007 0 0.666 0 0.067
CBD 0.260 0.037 0.636 0 0 0.067
CPV 0.260 0.007 0 0 0.666 0.067
CHP 0.260 0.007 0 0 0.666 0.067
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The probabilities of each disease, given the information available at each stage of
the process, are represented in a state vector X with the same number of components
as the number of diseases.

At the beginning of the decision tree in Figure 1, the state vector contains the a
priori probabilities based on clinical exploration, laboratory tests and radiology. We
define a likelihood vector of the result » for the test j, Pj(r| -), as the vector whose
components are the likelihoods of result r for each disease. that is, as a column from
Table 3 or Table 4.

Then: (i) P;,(r| -) has as many components as there are diseases; (ii) Pj(r i) > 0 Vi;
(iil) vi 3 P; (r1) >0, j =1,2. We define the transfer matrix of the test j given the result
r, MT; (r), as the diagonal matrix which has the components of P, (r| ) in the main
dxagonal

};(rll) 0... (?
MI(r)=| 0 P(rl2) 0
0 ... 0 ... P(rln)

The state vector after the test j is carried out and the result r obtained can be given
by:

X= Xo- MT(1)] (1)

o7
Xo- By(r]*)
where X, is the state vector before the test and X the state vector after the result r, the
product X, - P;(r}-) is an inner product whereas [X, - MT;(r)] is a matrix product.
Equation (1) merely represents Bayes® rule in a convement form for the computer.

3.3. The Consequences

The evaluation of consequences will depend on whether we take the point of view of
the patient, of the doctor or of society. In our model, the patient’s point of view is
chosen. We assume that the monetary cost, paid in the Spanish case by the Seguridad
Social (Spanish Social Security Service), is not taken into account by the patient. Thus,
only the risk and other nonmonetary consequences linked to each disease-treatment
couple will be considered.

We have considered two methods for measuring the consequences. First, we have
experimented with the approach suggested by Betaque [1], which summarizes all of the
possible results in three groups: (i) patient’s condition improved, (ii) no change in
patient’s condition and (iii) patient experiences a serious complication. According to
Betaque’s method, if the result of a treatment is other than an improvement in the
patient’s condition, the doctor continues to confront a decision problem. The process
must be recycled in this case to determine a new test-treatment policy.

When we try to build a preference function following Betaque’s approach, several
problems come to light. First, according to medical opinion, the meaning of the
consequence depends very much on the patient’s age, a factor not included in that
approach. Second, a change in the decision horizon, a factor not made explicit in
Betaque’s approach, may change the result completely; doctors consulted insist that an
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improvement in the patient’s condition within fifteen days is not the same as improve-
ment within a month or three months. Third, there is a risk of suboptimization,
because the model does not consider the decisions that necessarily ensue when there is
no change in the patient’s condition or when a serious complication arises. Fourth, we
should take into account the fact that knowledge with certainty of the patient’s disease
is potentially rewarding. In some cases, if there is no change in the patient’s condition
after treatment, the doctor can identify the patient’s disease exactly while with other
treatments the same consequences do not yield full information about the patient’s
situation. It appears that this fact ought to be included in the model but it is not clear
how such an extension of Betaque’s approach can be developed. Finally, the author’s
experience indicates that the description of the consequences in terms of Betaque’s
three categories may be difficult or confusing in some cases, hampering the transmis-
sion between physicians of experience that could lead to improvements in the model.

These difficulties lead us to take a new approach. There are four conditions that a
meaningful system for the measurement of consequences must fulfill. First of all, the
horizon for the consequences must be defined either by recovery or by death. Second,
the patient’s age must be explicitly taken into account. Third, it should be possible to
establish a common numeraire for the consequences that allows us to define objective
rules and to identify different categories of patients, taking into account their risk
attitudes. Fourth, the procedure must be operational.

These considerations suggest that we specify the consequences in terms of:

~length of life,

—condition of life during the illness (absence or presence of pain, length of time in
bed, etc.)

To obtain the length of life linked to a terminal point of the decision tree in Figure
1, we proceed as follows. We assume that any person of age x has a probability
distribution of remaining length of life, pd! in what follows, that depends only on his
sex and on the general state of health in the country in which he lives. To simplify, we
take the year as time unit and work with discrete measures. Then, the pd! is easily
calculated from a life table. Let g, by the mortality rate for a person aged x according
to the life table of his population, that is the probability of death within one year for
an average person of age x. Let P(x|x,) be the conditional probability of death at age
x for a person now of age x,. Then:

P(xlxo) = qx(l - qx—l)(l - qx-—Z) e (1 - qxn) (X > xO)’
P(xq| x0) = gy, (x = xp).

Let us call this pdl the “general” pdl for people of age x, in this population.

Suppose now that a person age x, begins suffering from the illness D. If this disease
has mortality risk, then this person will experience an unfavorable change in his pd/
that will depend on the disease as well as the treatment. Let p, , - be the incremental
probability due to the disease D for person aged x, when the treatment T is applied.
We have made the following assumptions about the doctor’s behavior in order to
evaluate these probabilities: (i) If the illness does not require surgical treatment but
this is applied erroneously, the doctor discovers the mistake and then goes to medical
treatment. The effect of the surgical procedure in this case is to increase the mortality
rate of the illness due to time lost in correct diagnosis. (ii) If the patient does not
recover within a given time when the medical treatment is incorrectly applied, the
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doctor will undertake surgery. The resulting delay in applying the correct treatment
increases the risk of mortality.

With these assumptions, we can evaluate the probability of dying P, , r for each
disease-treatment couple. We have used historical data from published cases when the
correct treatment is applied. When the wrong treatment is chosen first, we have used
subjective evaluation from expert clinicians, given the lack of published cases. In some
diseases, choledocho lithiasis or hepatitis for example, P, , r is zero after some x
because of the fact that, if the patient does not die, he will recover completely. In other
diseases, cirrhosis or carcinoma for example, there is a risk of mortality that lasts for a
longer time. Let p;. be the incremental mortality rate for treatments. We assume that
pr =0 for medical procedures. When surgery is applied, there is always a risk of
sudden death. We have taken this risk as independent of the illness. To measure this
probability we have obtained subjective evaluations from five doctors and take the
average value of 0.05 in our model. This value was calculated assuming that the
anaesthetic used does not produce hepatic damage.

The probability distributions of death that are needed in the model have to
summarize all of the causes of death. We make the basic hypothesis that every patient
aged x faces the “general” mortality rate g, associated with this age. When this person
contracts illness D and receives treatment 7, he faces an additional incremental
mortality rate p, p 7. The events “general death”, “disease death” and “treatment
death” are taken as mutually exclusive. This hypothesis is reasonable if none of the
possible diseases has a strong influence on the rate of “general” mortality. Thus we in
fact assume that the probability of death within one year for a person of age x for any
cause other than disease and treatment is the “general” mortality risk for this age, ¢,.

Let us call 7, the total mortality rate for a person age x with disease D and treatment
T. Then:

tx =4x +Px‘D.T+PT (x = xO)’
L=qc+tpepT (x> C(;),

where X, is the age of the patient at the time of the analysis. We have taken the age of
45 as our standard age, since it is in approximately this age group that the differential
diagnosis of jaundiced patients is most difficult.

We write P, r(x|xo) for the conditional pd! for the patient with disease D and
treatment T

Ppr(xlxy=t(1—-t_)...(1—1,) (x> x)
Ppr(Xlxo)=t,  (x=1xp)

where X, is the standard age.

Table 5 shows the mean of the twelve basic distributions for each of the six diseases
and two treatments. Obviously, the expected value of these distributions is the life
expectancy for each disease-treatment couple for our standard patient.

Under a linear preference structure for the consequences, the differences between
the correct and the incorrect treatment is a global measure of the opportunity cost for
each disease. It is clear from Table 5 that, under the linear preference structure, the
doctor will try mainly to distinguish the HC, that requires medical treatment, from CL
and CPV, that require surgery.

We measure the effect of each test by its associated probability of death: 0.002 for
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TABLE §
Life Expectancy for the Disease/ Treatment Couple ( Years)

Disease Medical Treatment Surgical Treatment Difference
HC 29.90 28.40 1.50
CBP 6.00 5.80 0.20
CL 25.60 27.20 1.60
CBD 0.50 0.30 0.20
CpPV 5.00 7.36 236
CHP 0.50 0.55 0.05

biopsy and 0.006 for cholangiography. In this way the cost of the test for a particular
patient, measured by expected reductions of length of life, depends on the patient’s
age. Therefore the cost of the test is not constant for all patients. We believe this
method of introducing the cost of information in our model to be quite realistic.

The pd! for the triplet: test M, treatment T, disease D, for a patient aged x is:

Pr. p.7 (X0 X0) = Pas + (1 = Pas)Po, r (X0l X%g) for x=x,,
Pu.p,7(x|%0) = (1 = pag)Pp, (%] %0) for x> xo,

where p,, is the mortality of the test.

We attempted to quantify the “conditions of life” factors in our model by means of
a two-stage procedure, relying on the responses of doctors familiar with the typical
discomfort factors associated with these diseases and treatments, who attempted to
simulate patient responses. First, we tried to establish the trade-off between the
number of days in bed with different degrees of discomfort (high, medium and low),
following Raiffa [10]. Second, we attempted to establish the trade-off between length-
of-life probabilities and number of days in bed under standard discomfort conditions.
We found that the preference orderings for this second choice problem were very close
to lexicographic. Therefore, we decided to ignore “conditions of life” factors in the
main analysis and treat them by means of sensitivity analysis once an optimal strategy
was found.

3.4. Preferences

The preference structure for our problem is defined over the remaining length of life
of the patient. Two kinds of preference structure were considered: (i) linear preferences
and (ii) decreasing risk aversion. The patient with linear preferences would, of course,
select that treatment which maximizes his life expectancy. Risk aversion in this context
would imply that the patient will prefer a treatment T, with expected life E, to another
treatment 7, with expected life E,, even if E, < E,, if the probability distribution of
death in the short run with 7| is sufficiently lower than with T,. Decreasing risk
aversion implies that this relative preference goes down when the expected life with
both treatments is increased to the same degree. Linear preferences are especially
interesting to consider, because they define a “neutral” doctor’s attitude and, from the
point of view of resource allocation for medical planning, might rule the behavior of
society as a whole. Risk aversion seems to be a quite common individual preference
structure. This attitude might explain why many people are not willing to undergo
surgery even when their life expectancy would increase. In the author’s experience,
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decreasing risk aversion for length of life is a very common attitude among people with
risk aversion.

To build a preference curve with decreasing risk aversion, we have adapted the
lottéry technique [10] to our problem in order to obtain the input points for a program
of the Schlaifer type [12], which constructs a decreasing-risk-aversion curve for a
person, once three points are fixed. In order to show how our model works, we have
used as an example a curve built with three points obtained from a doctor showing risk
aversion. Our approach was as follows. First, we assumed that the preference index for
the “general” pdl is always unity. With this fact in mind, we asked this person the
following question: “You suffer from a disease that will certainly cause your death in
exactly N years, if you do not receive medical treatment. This treatment is not painful,
and does not last long, but you will face a 1 — p probability of sudden death due to the
treatment. If you survive the treatment, then you will be restored to full health with
certainty. Will you accept this treatment?”

The question, which is sketched in Figure 2, was chosen so that only the values of p
and N, come into the evaluations. We modified the numbers p and N until obtaining
the indifferent point. Then, the utility or preference for N years of life was set:
u(N) = p. With this procedure the input points for Schlaifer’s program [12]} were: (0,0
years), (0.25, 2 years), (0.5, 6 years), (0.75, 15 years), (1, 40 years). The corresponding
curve was used throughout the analysis whenever we assumed decreasing risk aversion.

Reject Treatment ,

N years

survival
FIGURE P(x | x): probability distribution of life of a healthy person aged xg, u(0) =0, u[P(x ] xo)] = 1.

FIGURE 2.

Table 6 displays the results of applying this curve to the same probability distribu-
tions that are reflected in the life expectancies of Table 5. The final utility is
re-expressed in terms of remaining years of life. We call this quantity the life certainty
equivalent, LCE.

As a test of Betaque’s procedure, we have used his method to obtain the preferences
from the same person whose answers led to Table 6. The new scoring of the
disease-treatment couple does not show the same ranking, indicating an inconsistency
between the two methods. However, when we extead the horizon of analysis for
Betaque’s approach and assume that the doctor learns from the response of the patient
to treatment and shifts to the correct treatment after some period of time, the ranking
of the disease-treatment couples is the same as that of Table 6. In our opinion, this
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TABLE 6
Life Certainty Equivalent (Years)

Disease Medical Treat. Surgical Treat. Difference
HC 22.70 18.50 3.20
CBP 4.70 4.60 0.10
CL 16.20 19.10 2.9
CBD 0.40 0.24 0.16
CPV 1.60 2.40 0.80
CHP 0.50 0.39 0.11

suggests that there is a risk of suboptimation when the doctor does not consider the
whole chain of decisions that he will have to make when the first treatment chosen
does not produce recovery of the patient.

4. Experiments with the Model

The study of the strategies recommended by the model when the patient has a
non-zero a priori probability for more than three of the six possible diseases, reveals a
large number of admissible strategies. Furthermore it is difficult to state simple
decision rules to represent the doctor’s optimal strategy for each possible a priori state
vector. The only feature that can be established with generality is that it is always
better to begin with biopsy than with cholangiography, if some test is to be made. This
is due to the lower mortality risk of biopsy and, although the cholangiography is,
generally speaking, more informative, producing a greater reduction of entropy on
average, its greater mortality risk is not compensated by the reduction in uncertainty.

Although the principal use for this model is as a computerized decision-making tool,
we have tried to obtain simple decision rules for the more common situations. We have
studied the case of the differential diagnosis of hepatitis (HC) and choledocho lithiasis
(CL) in detail, because this case is very frequent and also involves a high uncertainty
cost, as we have seen in Tables 3 and 4.

Table 7 displays the best strategy for this problem according to the values of P(CL),
the a priori probability of choledocho lithiasis. One interesting result is that, out of
fourteen decision strategies that the doctors consulted considered as available, only
five are ever optimal. The analysis assumes a linear preference structure for the
consequences.

As a test of the strategies indicated by the model, we have compared its results with
what is generally considered good medical practice. We consider fifty hypothetical
patients. Some of these cases were based on real patients, but in the other cases
unusual features were introduced to cover the maximum range of possibilities. These
cases were presented to three clinicians with a wide experience in this field. The
agreement between the model and the doctors was very good in 44 our of 50 cases. In
these 44 cases, the strategy chosen by the doctor and that of the model were identical
or did not differ by more than three months of life expectancy, a difference on average
of only 1% in life expectancy.

To measure the reliability of the answers, a consistency test was introduced, based
on the following principle: the doctor’s strategy at any point of the analysis should
depend solely on the state vector at this point. Then, we introduced patients in whom
the state vector, after some test result, was identical to the a priori state vector for
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TABLE7
Optimal Strategy According to CL a Priori Probabilities

P(CL)=p Strategy
0z p2005 Medical Treatment (MT)
0.05< p<0.625 Biopsy: (h)>MT
(e)>ST
(@)->MT
0625 p<0.74 Biopsy: (h)y-»>MT
(e)»ST {nv)>MT
(d)— Cholangiography: { (n)>MT
any other case ST
0742 pz09 Biopsy: (h)»MT
(e)->ST (nv)—>ST
(d)— Cholangiography: { (n)>MT
any other case ST
092 p<1 Surgical Treatment (ST)

MT: Medical Treatment; ST: Surgical Treatment; (h), (e), (d) results of biopsy (see Table 1); (nv),
(n) results of cholangiography (Table 2).

another patient. In three cases out of the six where agreement between the model and
the doctors was not reached, the physicians were not consistent in the above sense.
Discussing this point with the doctors, we came to the conclusion that the modification
of a priori opinion, given the test result, is less strong than expected from Bayes’ rule.
This “inertia effect” or “conservatism effect” has been found elsewhere [9].

The disagreement in the other three cases may be due to “diagnosis illusion”. By this
we mean that doctors choose a strategy that leads rapidly to an exact knowledge of the
disease even though this is not optimal on the grounds of the patient’s expected length
of life. This might be due to the maximization of doctors expected utility instead of
patients. Future research on this problem might reveal whether this effect is wide-
spread in medical practice or not.

The strategies given by the model with decreasing risk aversion were identical in 39
out of 50 cases with those generated under linear preferences. In the eleven cases in
which the decision strategy was not the same, we found the same pattern: the patient
with decreasing risk aversion is not willing to take a test with low mortality or to go
through a surgical treatment even though his life expectancy would increase with it.
This kind of behavior agrees with the behavior expected.

5. Conclusions

The main conclusion of this paper is that the length of life as described in this article
is a useful criterion for summarizing the relevant effects of a medical policy.

Furthermore, the total probability distribution of length of life offers an objective
criterion to evaluate the different treatments. The approach presented in section 3.2
shows that this pdl depends on the patient’s age and sex and thus the best treatment
does also. For example, in our case, the surgical treatment is optimal for carcinoma of
the head of the pancreas if the patient has linear preferences and is a male under 54 or
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female under 59, but it is not necessarily optimal in other cases. Furthermore, the pdl
depends on the general health situation of the population, i.e. on the life expectancy
for healthy people. Thus the optimal medical strategy for a given community need not
be optimal for another population with a very different “general” probability distribu-
tion of life. Finally, the length-of-life criterion allows us to establish objective decision
rules based on linear preference structures and to link this kind of analysis with the
general problem of health resources allocation.

This paper also confirms the useful role of Decision Analysis in the study of serious
medical problems. First, Decision Analysis, as in other areas, offers a systematic
methodology for the structuring and analysis of complex problems in which differ-
ences in expert opinions can be understood and to some extent resolved through the
explicit introduction of subjective probabilities and preferences. Second, this approach
may well be effective in training new doctors. Schwartz [13] has said. “The reward and
evaluation system in medical schools is based largely on one’s store of information
rather than on one’s decisions-making capability”. This method permits the storage of
information in a computer and puts the emphasis on the physician’s decision process.
Third, this methodology provides a guide to hospitals on the kinds of information to
collect systematically and its relative importance as far as decisions are concerned.
Fourth, this approach can be easily linked to automatic-diagnosis programs that have
been developed over the last two decades.

Further research on the trade-off between length and conditions of life might well
expand the field of application forthis methodology.'

""The author is indebted to Arthur B. Treadway for helpful comments on an earlier draft of this paper.
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