
Capítulo 13

DISCRIMINANT ANALYSIS

Ronald Aylmer Fisher (1890-1962)
British scientist, inventor of the techniques of discriminant analysis and maximum likeli-

hood as well as design of scientific experiments. He worked at the Rothamsted Experimental
Station in Hertfordshire, England and was Professor of Eugenics at the University of London.
In addition to his numerous contributions to all branches of Statistics, which resulted in his
being known as the father of the discipline in the 20th century, he was also an outstanding
geneticist, agricultural researcher and biologist.

13.1 INTRODUCTION

The problem of discrimination or classification, which we will deal with in this chapter, can
be approached in a variety of ways and is present in many areas of human activity: from
medical diagnosis to credit scoring or recognizing art forgeries. The statistical approach
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to the problem is as follows. We have a set of elements which may come from two or
more populations. In each element a p− dimensional random variable x is observed whose
distribution is known in the considered populations. We want to classify a new element, with
known values of the variables, in one of the populations. For example, the first application
of discriminant analysis consists of classifying the remains of a skull found in an excavation
as human, utilizing the distribution of physical measurements for human skulls and those of
other anthropoids.
The problem of discrimination appears in many situations in which elements must be

classified using incomplete information. For example, the automatic credit scoring systems of
financial institutions today are based on using many measurable variables (income, seniority
in place of work, wealth) in order to predict future behavior. In other cases the information
for classification might be available, but it could result in the destruction of the element, as
in the case of quality control for the tension resistance of certain components which should
be classified as good or defective. Finally, there are cases where the information is quite
costly to acquire. In engineering this problem is studied as pattern recognition, for the
design of machines capable of automatic classification. This can include voice recognition,
classification of bills or coins, on-screen character recognition or the classification of letters
by postal code. Other examples of applications of discriminant analysis are: assigning a
written text of unknown origin to one of several authors using word frequency, assigning a
musical score or painting to an artist, recognizing a tax declaration as potentially fraudulent
or not, a business as a bankruptcy risk or not, the teachings of a center as theoretical or
applied, a patient as having cancer or not, a new manufacturing process as efficient or not.
The techniques we will study here are also known as supervised classification, in order to

indicate that we know of a sample of well-classified elements which serve as a standard or
model for the classification of subsequent observations.
There are various possible approaches to this problem. The first, which is presented here,

is the classical discriminant analysis developed by Fisher, based on multivariate normality of
the considered variables and which is optimal under that assumption. If all the variables are
continuous it often happens that, although the original data are not normal, it is possible to
transform the variables so that they are, and the methods in this chapter can be applied to
the transformed variables. Nevertheless, when we have discrete and continuous variables to
classify, the hypothesis of multivariate normality is rather unrealistic and in the next chapter
we will present other approaches to the problem which work better in these cases.

13.2 CLASSIFICATIONBETWEENTWOPOPULA-
TIONS

13.2.1 The Problem

Let P1 and P2 be two populations where we have defined a random vector variable, x, p-
variate. We assume that x is absolutely continuous and that the density functions of both
populations, f1 and f2, are known. We are going to study the problem of classifying a new
element, x0, with known values of the p variables, in one of these two populations. If we
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know the prior probabilities π1,π2, with π1 + π2 = 1, that the element comes from one of
the two populations, its probability distribution will be a mixed distribution

f(x) =π1f1(x)+π2f2(x)

and once x0 has been observed we can compute the posterior probabilities that the element
has been generated by each of the two populations, P (i/x0), with i = 1, 2. These probabilities
are calculated using Bayes’ Theorem

P (1|x0) =
P (x0|1)π1

π1P (x0|1)+π2P (x0|2)

and since P (x0|1) = f1(x0)∆x0, we have:

P (1/x0) =
f1(x0)π1

f1(x0)π1 + f2(x0)π2
, (13.1)

and for the second population

P (2|x0) =
f2(x0)π2

f1(x0)π1 + f2(x0)π2
. (13.2)

We classify x0 in the most probable posterior population. Since the denominators are equal,
we classify x0 in P2 if:

π2f2(x0) > π1f1(x0)

If the prior probabilities are equal, the condition for classifying in P2 is simplified to:

f2(x0) > f1(x0)

which means that we classify x0 in the most probable population, or where its likelihood is
highest.

Consideration of the consequences

In many classification problems the errors we might commit have consequences which can be
quantified. For example, if an automatic teller mistakenly classifies a 10 Euro note as a 20
Euro note and gives the wrong change, then the cost of that error is 10 Euros. In other cases
estimating the cost can be much more complicated: if we do not approve a loan which will
be paid back, we can lose a client as well as future income which that client will generate,
whereas if the loan is not repaid the cost is the amount outstanding on that loan. As a third
example, if we classify a production process as in a state of control, the cost of being wrong
is a defective production, whereas if we mistakenly stop a correctly functioning process the
cost will be that of the stoppage and revision.
In general we assume that there are only two possible decisions in the problem: assign

to P1 or to P2. One decision rule is a partition of the sampling space Ex (which is usually
Rp) in two regions A1 and A2 = Ex −A1, so that:
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Figura 13.1: Illustration of a classification problem between two groups as a decision problem.

if x0 ∈ A1 =⇒ d1 (classify in P1).
if x0 ∈ A2 =⇒ d2 (classify in P2).

If the consequences of an error can be quantified, we can include them in the solution
and formulate a Bayesian decision problem. We assume that:

1. The consequences associated with classification errors are, c(2|1) and c(1|2), where
c(i|j) is the cost of classifying a unit in Pi which belongs in Pj. These costs are
assumed to be known;

2. The decision maker wants to maximize the utility function and this is equivalent to
minimizing the expected cost.

With these two hypotheses the best decision is to minimize the expected costs, or func-
tions of lost opportunity, usingWald’s terminology. The results of each decision are presented
schematically in Figure 13.1. If we classify the element into group 2 the possible consequences
are:

(a) choose correctly, with probability P (2|x0), in which case there is no penalization cost;

(b) make a mistake, with probability P (1|x0), in which case we incur the associated cost
c(2|1).

The average cost, or expected value, of the decision ”d2: classify x0 in P2” is:

E(d2) = c(2|1)P (1|x0) + 0P (2|x0) = c(2|1)P (1|x0). (13.3)
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Analogously, the expected cost of the decision ”d1: classify in group 1” is:

E(d1) = 0P (1|x0) + c(1|2)P (2|x0) = c(1|2)P (2|x0). (13.4)

We will assign the element to group 2 if its expected cost is less. In other words, using
(13.1) and (13.2), if:

f2(x0)π2
c (2|1) >

f1(x0)π1
c (1|2) . (13.5)

This condition indicates that, other terms being equal, we classify the item in population P2
if

(a) its prior probability is higher;

(b) the likelihood that x0 comes from P2 is higher;

(c) the cost of incorrectly classifying it in P2 is lower.

Appendix 13.1 shows that this criterion is equivalent to minimizing the total probability
of error in the classification.

13.2.2 Normal Populations: Linear discriminant function

We are going to apply the above analysis to the case in which f1 and f2 are normal dis-
tributions with different mean vectors but with identical covariance matrices. In order to
establish a general rule, suppose that we wish to classify a generic element x, which, if it
belongs to the population i = 1, 2 its density function is:

fi(x) =
1

(2π)p/2|V |1/2 exp
½
−1
2
(x− μi)0V−1(x− μi)

¾
.

The optimal decision is, according to the above section, to classify the element in popu-
lation P2 if:

f2(x)π2
c(2|1) >

f1(x)π1
c(1|2) . (13.6)

Since both terms are always positive, taking the logarithms and replacing fi(x) with its
expression, the above equation becomes:

−1
2
(x− μ2)0V−1(x− μ2) + log

π2
c(2|1) > −

1

2
(x− μ1)0V−1(x− μ1) + log

π1
c (1|2) ,

Letting D2
i be the Mahalanobis distance between the observed point, x, and the mean of the

population i; defined by:
D2
i = (x− μi)0V−1(x− μi)

we can write:
D2
1 − log

π1
c (1|2) > D

2
2 − log

π2
c(2|1) (13.7)
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and assuming that the costs and prior probabilities are equal, c(1/2) = c(2/1); π1 = π2, the
above rule is simplified as:

Classify in 2 if D2
1 > D

2
2

or rather, classify the observation in the population whose mean is closest, using the Ma-
halanobis distance as a measurement. We observe that if the variables x had V = Iσ2, the
rule is equivalent to using the Euclidean distance. Figure 13.2 shows the equidistant curves
with the Mahalanobis distance for two normal populations with centers in the origin and the
point (5,10).

Figura 13.2: Equidistant curves with the Mahalanobis distance for classifying

13.2.3 Geometric Interpretation

The general rule presented above can be written so that the method of classification used
can be interpreted geometrically. Equation (13.7) indicates that we need to calculate the
Mahalanobis distance, correct it using the term corresponding to the prior probabilities and
costs, and classify in the population where this modified distance is minimum. Since the
distances always have the common term, x0V−1x, which does not depend on the population,
we can eliminate it from the comparison and calculate the indicator

−μ0iV−1x+
1

2
μ0iV

−1μi − log
πi
c(i|j) ,

which will be a linear function in x and classify the individual in the population where this
function is minimum. This rule divides the set of possible values of x into two regions whose
divisions are given by:

−μ01V−1x+
1

2
μ01V

−1μ1 = −μ02V−1x+
1

2
μ02V

−1μ2 − log
c(1|2)π2
c(2|1)π1

,
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which, as a function of x, is equivalent to:

(μ2 − μ1)0V−1x =(μ2 − μ1)0V−1
µ
μ2 + μ1
2

¶
− log c(1|2)π2

c(2|1)π1
. (13.8)

Letting:
w = V−1(μ2 − μ1) (13.9)

the division can be written as:

w0x = w0μ2 + μ1
2

− log c(1|2)π2
c(2|1)π1

(13.10)

which is the equation of a hyperplane. In the particular case in which c(1|2)π2 = c(211)π1,
we classify in P2 if

w0x > w0
µ
μ1 + μ2
2

¶
. (13.11)

or what is equivalent, if
w0x−w0μ1 > w

0μ2 −w0x (13.12)

This equation indicates that the procedure for classifying an element x0 can be summarized
as follows:

(1) calculate the vector w with (13.9);

(2) construct the indicator variable:

z = w0x = w1x1 + ....+ wpxp

which transforms the multivariate variable x into the scalar variable z , which is a
linear combination of the values of the multivariate variable with coefficients given by
the vector w;

(3) calculate the value of the indicator variable for the individual to be classified, x0 =
(x10, ..., xp0), with z0 = w0x0 and the value of the indicator variable for the means of
the populations, mi = w

0μi. Classify in the population where the distance |z0 −mi| is
minimum.

In terms of the scalar variable, z, since the average value of z in Pi is :

E(z|Pi) = mi = w
0μi, i = 1, 2

The decision rule (13.12) is equivalent to classifying in P2 if:

|z −m1| > |z −m2| (13.13)

The variance of this indicator variable, z, is:

V ar(z) = w0V ar(x)w = w0Vw = (μ2 − μ1)0V−1(μ2 − μ1) = D2. (13.14)
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Figura 13.3: Illustration of the optimum direction of projection for discriminating between
two populations.

and the square of the scalar distance between the projected means is the Mahalanobis dis-
tance between the vectors of the original means:

(m2 −m1)
2 = (w0(μ2 − μ1))2 = (μ2 − μ1)0V−1(μ2 − μ1) = D2. (13.15)

The indicator variable z can be interpreted as a projection if we standardize the vector
w. Dividing the two members of (13.11) by the norm of w and letting u be the unit vector
w/ kwk , the classification rule becomes classify in P2 if

u0x− u0μ1 > u0μ2 − u0x, (13.16)

where, since u is a unit vector, u0x is simply the projection of x in the direction of u, and
u0μ1 and u

0μ2 are the projections of the population means in this direction.
In Figure 13.3 it can be seen that the hyperplane perpendicular to u at the midpoint

u0(μ1 + μ2)/2 divides the sample space into two regions A1 and A2 which constitute the
optimal partition desired. If c(1|2)π2 6= c(2|1)π1 the interpretation is the same, but the
hyperplane division moves parallel to itself, increasing or decreasing the region A2.
The direction of the projection, w = V−1(μ2 −μ1) has a clear geometric interpretation.

We consider first the case in which the variables are uncorrelated and standardized so that
V = I. Then, the optimal projection is that defined by μ2 −μ1. Generally, the direction of
the projection can be calculated in two steps: first, the variables are standardized multivari-
ately, in order to transform them into uncorrelated variables with unit variance; second, the
transformed data are projected over the direction which joins the means of the standardized
variables.
The calculation of w0x can be written as:

w0x =
£
(μ2 − μ1)0V−1/2

¤
(V−1/2x)
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where V−1/2 exists if V is positive definite. This expression indicates that this operation is
equivalent to: (1) standardizing the variables x to obtain new variables y = V−1/2x whose
covariance matrix is the identity and mean vector is V−1/2μ; (2) project the new variables
y over the direction μ2(y)− μ1(y) = (μ2 − μ1)0V−1/2.
Figure 13.4 illustrates some directions of projections. In (a) and (b) the direction of the

lines which join the means coincides with some of the principal axes of the ellipsis and thus
the direction w = V−1(μ2 −μ1) coincides with (μ2−μ1), since this is an eigenvector of V,
and hence, also of V−1. In (c) the optimal direction is a compromise between (μ2−μ1) and
the directions defined by the eigenvectors of V−1.

Figura 13.4: In cases (a) and (b) the optimum direction coincides with the line of the means
and the axes of the ellipsis. In case (c) it is a compromise between the two.

13.2.4 Calculation of error probabilities

The usefulness of the classification rule depends on the expected errors. Since the distribution
of the variable z = w0x is normal, with mean mi = w

0μi and variance D
2 = (m2−m1)

2, we
can calculate the probabilities of erroneously classifying an observation in each of the two
populations. Specifically, the probability of an erroneous decision when x ∈ P1 is:

P (2|1) = P
½
z ≥ m1 +m2

2
| z is N(m1;D)

¾
and letting y = (z −m1)/D be a random variable N(0, 1), and Φ its distribution function:

P (2|1) = P
½
y ≥

m1+m2

2
−m1

D

¾
= 1− Φ

µ
D

2

¶
Analogously, the probability of an erroneous decision when x ∈ P2 is:

P (1|2) = P
½
z ≤ m1 +m2

2
| z is N(m2;D)

¾
=
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= P

½
y ≤

m1+m2

2
−m2

D

¾
= Φ

µ
−D
2

¶
and both error probabilities are identical due to the symmetry of the normal distribution.
We can conclude that the rule obtained makes the error probabilities equal and minimum
(see Appendix 13.1) and makes it so the classification errors depend only on the Mahalanobis
distance between the means.

13.2.5 A posteriori probabilities

The degree of confidence when classifying an observation depends on the probability of being
right. The a posteriori probability that the observation belongs to the first population is
calculated with:

P (1|x) =
π1f1(x)

π1f1(x) + π2f2(x)
=

=
π1 exp

©
−1
2
(x− μ1)0V−1(x− μ1)

ª
(π1 exp

©
−1
2
(x− μ1)0V−1(x− μ1)

ª
+ π2 exp

©
−1
2
(x− μ2)0V−1(x− μ2)

ª
and letting D2

1 and D
2
2 be the Mahalanobis distances between the point and each of the two

means, this expression can be written as:

P (1|x) = 1

1 + π2
π1
exp

©
−1
2
(D2

2 −D2
1)
ª

and it depends only on the prior probabilities and on the distances between the point and the
means of both populations. We observe that if π2/π1 = 1, the farther the point is from the
first population, or rather the greater D2

1 is with respect to D
2
2,the larger the denominator

and the smaller the probability of its belonging to that population, P (1|x), and vice versa.
Example: We wish to classify a portrait as being the work of two possible artists. To do

this, two variables are measured: the depth of the tracing and the proportion of the canvas
taken up by the portrait. The means of these variables for the first painter, A, are (2 and
.8) and for the second, B, (2.3 and .7), the standard deviations of the variables are .5 and .1
and the correlation between these measurements is .5. The measurements of the work to be
classified for these variables are (2.1 and .75). Calculate the probabilities of error.
The Mahalanobis distances will be, calculating the covariance as the product of the

correlation for the standard deviations:

D2
A = (2.1− 2, .75− .8)

∙
.25 .025
.025 .01

¸−1µ
2.1− 2
75− .8

¶
= 0, 52

and for the second

D2
B = (2.1− 2.3, .75− .7)

∙
.25 .025
.025 .01

¸−1µ
2.1− 2.3
.75− .7

¶
= 0, 8133
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Thus, we assign the work to the first artist. The expected classification error with this
rule depends on the Mahalanobis distance between the means which is

D2 = (2.− 2.3, .8− .7)
∙
.25 .025
.025 .01

¸−1µ
2.− 2.3
.8− .7

¶
= 2, 6133

and D = 1.6166. The probability of being wrong is

P (A/B) = 1− Φ(
1.6166

2
) = 1− Φ(.808) = 1− 0, 8106 = 0, 1894.

In this way classification using these variables is not very accurate, since we have an
18.94% probability of error. Let us calculate the a posteriori probability that the painting
belongs to painter A, assuming, a priori, that both painters are equally probable.

P (A/x) =
1

1 + exp(−0.5(0, 8133− 0, 52) =
1

1.86
= 0, 5376

This probability indicates that by classifying the painting as belonging to painter A there
is a great deal of uncertainty in the decision since the probability of it belonging to either
artist are quite similar (0.5376 and 0.4624).

13.3 SEVERAL NORMAL POPULATIONS

13.3.1 General Approach

The generalization of these ideas for G populations is simple: the objective is now to divide
the space Ex intoG regions A1, . . . , Ag, . . . , AG so that if x belongs to Ai the point is classified
in population Pi. We assume that the cost of classification are constant and do not depend
on the population in which it has been classified. Then, region Ag will be defined by those
points with the maximum probability of being generated by Pg, or rather, where the product
of the prior probability and the likelihood are maximum:

Ag = {x ∈ Ex|πgfg(x) > πifi(x);∀i 6= g} (13.17)

If the prior probabilities are equal, πi = G−1,∀i, and the distributions fi (x) are normal
with the same covariance matrix, the condition (13.17) is equivalent to calculating the Maha-
lanobis distance from the observed point to the center of each population and classifying it in
the population which makes this distance minimum. Minimizing the Mahalanobis distances¡
x− μg

¢0
V−1

¡
x− μg

¢
is equivalent, after eliminating the term x0V−1x which appears in

all of the equations, to minimizing the linear indicator

Lg (x) = −2μ0gV−1x+ μ0gV−1μg. (13.18)

and letting
wg = V

−1μg
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the rule is
min
g
(w

0
gμg − 2w

0
gx)

In order to interpret this rule, we observe that the division between the two populations,
(ij), is defined by:

Aij(x) = Li(x)− Lj(x) = 0 (13.19)

substituting with (13.18) and re-ordering the terms we obtain:

Aij(x) = 2(μi − μj)0V−1x+ (μi − μj)0V−1(μi + μj) = 0

and letting
wij = V

−1(μi − μj) = wi −wj
the division can be written as:

w0
ijx = w

0
ij

1

2
(μi + μj).

This equation allows the same projection interpretation as in the case of two populations.
A direction wij is constructed and the means and the point x which we try to classify are
projected over this direction. The region of indifference is when the projected point is
equidistant from the projected means, and we assign the point to the population whose
projected mean is closest.
We are going to prove that if we have G populations we only need to find

r = min(G− 1, p)

directions of projection. In the first place we observe that, although we can construct
¡
G
2

¢
=

G (G− 1) /2 vectorswij fromGmeans, once we haveG−1 vectors the rest will be determined
by these. We can determine the G − 1 vectors wi,i+1, for i = 1, ..., G − 1, and obtain any
other from these G− 1 directions. For example:

wi,i+2 = V
−1(μi − μi+2) = V−1(μi − μi+1)−V−1(μi+1 − μi+2) = wi,i+1 −wi+1,i+2.

In conclusion, if p > G− 1, the maximum number of vectors w we can have is G− 1, since
all the rest are deduced from them. When p ≤ G− 1, since these vectors belong to Rp, the
maximum number of linearly independent vectors is p.
It is important to point out that, logically, the decision rule obtained fulfills the transitive

property. For example, if G = 3, and we find that for a point (x)

D2
1(x) > D2

2(x)

D2
2(x) > D2

3(x)

then we are forced to conclude that D2
1(x) > D

2
3(x) and this is the result that we obtain if

we calculate these distances, thus the analysis is coherent. Moreover, if p = 2, each of the
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three equations Aij(x) = 0 will be a straight line and the three will be intersected in the
same point. Note that any straight line which passes through the cut off point of the straight
lines A12(x) = 0 and A23(x) = 0 has the expression

a1A12(x) + a2A23(x) = 0

since x∗0 is the cut off point as A12 (x
∗) = 0, by belonging to the first straight line, and

A23 (x
∗) = 0, by belonging to the second will belong to the linear combination. Since,

according to (13.19), A13 (x) = L1 (x)−L3 (x) = L1 (x)−L2 (x) +L2 (x)−L3 (x), we have:

A13(x) = A12(x) +A23(x)

and the straight line A13(x) always has to pass through the intersecting point of the other
two.

13.3.2 Operative procedure

In order to illustrate the operative procedure, we assume we have five populations with
p > 4, so that there will be four independent classification rules and the rest will be deduced
from them. There are two ways of carrying out the analysis. The first is to calculate the
Mahalanobis distances for the G populations (or what is equivalent, the projections (13.18))
and classify the element in the closest one. The second is to make an analysis comparing
the populations two by two. We assume that we have obtained the following results from
the comparisons in twos: i > j indicates that the population i is preferable to j, or rather
that the point is closer to the mean of population i than to that of j:

1 > 2

2 > 3

4 > 3

5 > 4

Populations 2, 3 and 4 are rejected (since 1 > 2 > 3 and 5 > 4). The unresolved
doubt is that of populations 1 and 5. Constructing (from the previous rules) the rule for
discriminating between the latter two populations, we assume that

5 > 1

and we classify in population 5.
When p < G− 1 the maximum number of linearly independent projections that we can

construct is p, and this will be the maximum number of variables to be defined. For example,
we assume that p = 2 and G = 5. We can define the direction of any projection, for example

w12 = V
−1(μ1 − μ2)

and project all of the means (μ1,μ2, ...,μ5) and the point x over this direction. Then, we
classify the point in the population whose projected mean is closest. However, it is possible
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that the projected means of several populations coincide in this direction. If this occurs with
μ4 and μ5 for example, we can solve the problem by projecting over the direction defined
by another pair of populations.
Example: A machine that takes coins carries out three measurements of each coin to

determine its value: weight (x1), thickness (x2) and the thickness of the grooves on its
side (x3). The instruments used to measure these variables are not too precise and it has
been proved in extensive experimenting using three types of coins, M1,M2,M3 , that the
measurements are distributed normally with means for each type of coin given by:

μ1 = 20 8 8
μ2 = 19.5 7.8 10
μ3 = 20.5 8.3 5

and covariance matrix

V =

⎡⎣ 4 .8 −5
.8 .25 −.9
−5 −.9 9

⎤⎦
Indicate how a coin with measurements (22, 8.5 ,7) would be classified, and analyze the
classification rule. Calculate the probabilities of error.
Apparently the coin to be classified is closest to M3 in the first two coordinates, but closer

to M1 for x3, the thickness of the grooves. The indicator variable for classifying between M1

and M3 is
z = (μ1 − μ3)V−1x = 1.77x1 − 3.31x2 + .98x3

the mean of this variable for the first coin, M1,is 1.77× 20− 3.31× 8 + .98× 8 =16.71 and
for the third, M3, 1.77× 20.5− 3.31× 8.3 + .98× 5 =13.65. The cut-off point is the mean,
15.17. Since the mean for the coin to be classified is

z = 1.77× 22− 3.31× 8.5 + .98× 7 = 17.61

we classify it as M1. This analysis is equivalent to calculating the Mahalanobis distances to
each population which are D2

1 = 1.84, D
2
2 = 2.01 and D

2
3 = 6.69. Therefore, we classify first

in M1, then in M2 and finally as M3. The rule for classifying between the first and second is

z = (μ1 − μ2)V−1x = −.93x1 + 1.74x2 − .56x3

from these two rules we quickly deduce the rule for classifying between the second and
third, since

(μ2 − μ3)V−1x = (μ1 − μ3)V−1x− (μ1 − μ2)V−1x

Now let’s analyze the classification rules we have obtained. We are going to express
the initial rules for classifying between M1 and M3 for the standardized variables, thus
avoiding the problem of units. Letting exi be the variables divided by their standard deviationsex1 = x1/2;ex2 = x2/.5, and ex3 = x3/3, the rule in standardized variables is

z = 3.54ex1 − 1.65ex2 + 2.94ex3
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which indicates that the variables with more weight in classification decisions are the first
and the third, which are the ones with larger coefficients. We observe that with standardized
variables the covariance matrix is that of the correlation

R =

⎡⎣ 1 .8 −.83
.8 1 −.6
−.83 −.6 1

⎤⎦
The origin of these correlations between the measurement errors is that if the coin gets

dirty and its weight increases slightly, this also increases its thickness and makes it more
difficult to determine the thickness of the grooves. This is why there are positive correla-
tions between weight and thickness, increased weight increases the thickness, but negative
correlations with thickness of the grooves. Although the coin we wish to classify has greater
weight and thickness, which would indicate that it belongs in class 3, the thickness of the
grooves should then be measured as low, since there are negative correlations between both
measurements, yet nevertheless it has a relatively high measurement in the coin. The three
measurements are consistent with a dirty coin of type 1, and for this reason it is easily
classified into this group.
We are going to calculate the posterior probability that the observation belongs in class

M1. Assuming that the prior probabilities are equal the probability will be

P (1/x0) =
exp(−D2

1/2)

exp(−D2
1/2) + exp(−D2

2/2) + exp(−D2
3/2)

and substituting in the Mahalanobis distances

P (1/x0) =
exp(−1.84/2)

exp(−1.84/2) + exp(−2.01/2) + exp(−6.69/2) = .50

and analogously P (2/x0) = .46, and P (3/x0) = .04.
We can calculate the probabilities of error of classifying a coin in any other group. For

example, the probability of classifying an M3 coin with this rule as type M1 is

P (z > 15.17/N(13.64,
√
3.07)) = P (y >

15.17− 13.64
1.75

) = P (y > .87) = .192

and we see that the probability is quite high. If we want to reduce it we have to increase
the Mahalanobis distance between the means of the groups, which means "increasing"the
matrix V−1 or "reducing"the matrix V. For example, if we reduce the error by half in
the measurement of the grooves by introducing more accurate measuring devices, but the
correlations with the other measurements are kept the same, we turn to the covariance matrix

V2 =

⎡⎣ 4 .8 −2.5
.8 .25 −.45
−1 −.2 2.25

⎤⎦
the classification rule between the first and third is now

z = (μ1 − μ3)V−1x = 3.44x1 − 4.57x2 + 4.24x3
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and the Mahalanobis distance between the populations 1 and 3 (coins M1 and M3) has gone
from 3.01 to 12.38, which implies that the probability of error between the two populations
has decreased to 1 − Φ(

√
12.38/2) = 1 − Φ(1.76) = .04 and we see that the probability of

error has decreased considerably. We can calculate accuracy in this way in the measurements
that we would need to come up with determined error probabilities.

13.4 UNKNOWNPOPULATIONS: GENERALCASE

13.4.1 Estimated classification rule

We are going to study how to apply the above theory when, instead of working with two
populations, we have samples. We will go directly to the case of G possible populations.
As a particular case, the classical discrimination is for G = 2. The general matrix of data
X, n× p (n individuals and p variables), can now be thought of as divided into G matrices
corresponding to the subpopulations. We will let xijg be the elements of these submatrices
where i represents the individual, j the variable, and g the group or submatrix. We let ng
be the number of elements in group g and the total number of observations is:

n =
GX
g=1

ng

We are going to let x0ig be the row vector (1 × p) which contains the p values of the
variables for the individual i in group g, that is, x0ig = (xi1g, ...., xipg). The vector of means
within each class or subpopulation will be:

xg =
1

ng

ngX
i=1

xig (13.20)

and is a column vector of dimension p which contains the p means for the observations of
the class g. The covariance matrix for the elements of class g is:

bSg = 1

ng − 1

ngX
i=1

(xig − xg)(xig − xg)0 (13.21)

where we have divided by ng−1 to obtain central estimates of the variances and covariances.
If we assume that the G subpopulations have the same covariance matrix, their best central
estimation with all the data will be a linear combination of the central estimates of each
population weighted proportionally to their precision. Therefore:

bSw = GX
g=1

ng − 1
n−G

bSg
and we letW be the matrix of the sum of squares within the classes which are given by:

W = (n−G)bSw (13.22)
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In order to obtain the discriminant functions we will use xg as an estimation of μg,
and bSw as an estimation of V. Specifically, assuming that the prior probabilities and the
classification costs are equal, we classify an element in the group which leads to a minimum
Mahalanobis distance value between point x and the mean of the group. In other words,
letting bwg = bS−1w xg we classify a new element x0 in that population g where

min
g
(x0 − xg)0bS−1w (x0 − xg) = min

g
bw0
g(xg − x0)

which is equivalent to constructing the scalar indicator variables

zg,g+1 = bw0
g,g+1x0 g = 1, ..., G

where bwg,g+1 = bS−1w (xg − xg+1) = bwg − bwg+1
and classify in g as opposed to g + 1 if

|zg,g+1 − bmg|< |zg,g+1 − bmg+1|
where bmg = bw0

g,g+1xg.
It is advisable before constructing the classification rule to carry out a test to see whether

the two groups really are different, or rather, that not all of the means μg are equal. This
test can be carried out following what was shown in 10.7. In Appendix 13.2 there is a proof
that in the case of two groups the function of the linear discrimination bw = bS−1ω (x2 − x1)
can be obtained by regression, defining a dummy variable which takes values zero or one
according to whether the element belongs to one population or the other.

13.4.2 Calculation of Error Probabilities

The calculation of error probabilities can be done by replacing the unknown parameters
with the estimated ones and applying the formulas in section 13.2, but this method is not
advisable since it greatly underestimates the error probabilities by not taking into account
the uncertainty of the estimation of the parameters. A better procedure, which in addition,
does not depend on the hypothesis of normality, is to apply the discriminant function to the
n observations and classify them. In the case of two groups, we obtain the table:

Classified
P1 P2

Reality P1 n11 n12
P2 n21 n22

where nij is the amount of data which, coming from the population i is classified in j. The
apparent error in the rule is:

Error =
n12 + n21
n11 + n22

=
Total incorrectly classified
Total correctly classified

.
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This method tends to underestimate the probabilities of error since the same data are
used to estimate the parameters and to evaluate the resulting procedure. A better procedure
is to classify each element with a rule that was not constructed using it. To do this, we can
construct n discriminant functions with the n samples of size n− 1 which are the result of
eliminating each element of the population one by one and later classifying each piece of
information with the rule constructed without it. This method is known as cross validation
and leads to a better estimate of the classification error. If the number of observations is
high, the computational cost of the cross validation is high as well; a quicker solution is to
subdivide the sample into k equal groups and carry out the cross validation by, instead of
eliminating an observation, eliminating one of the groups.

Example: We are going to use the MEDIFIS data to classify people by their gender
knowing the body measurements of the variables (medifis.dat file). Since the data for the
whole population of men and women are unknown, we are going to work with sample data.
In the sample there are 15 women (variable sex=0) and 12 men (sex=1).
In example 10.2 we proved that the means of the populations of body measurements for

men and women are different. The discriminant functions bwg = bS−1w xg are shown in the
following table.

ht wt ftl arml bkw crd kn− al
men −1.30 −4.4 20.0 10.0 −2.1 24.4 −4.4
women −1.0 −4.4 17.7 9.5 −2.5 25.1 −4.7
difference −.3 0 2.3 .5 .4 −.7 .3
The difference between these two functions provides us with a linear discriminant func-

tion. We observe that the variable with greatest weight in the discrimination is foot length.
To interpret this result, the following table shows the standardized differences between the
means of each variable in both populations. For example, the standardized difference be-
tween heights is (177.58− 161.73)/6.4 = 2.477

ht wt ftl arml bkw crd kn− al
diff. means 15.8 18.65 4.83 7.72 5.67 1.36 4.56
std. dev. 6.4 8.8 1.5 3.1 2.9 1.7 2.2
stand. diff. 2.47 2.11 3.18 2.48 1.97 .78 2.07

,

The variable that most separates both populations is foot length. Since foot length is
also highly correlated with height and arm length, knowing foot length means that these
other variables are not as informative, which explains their low weight in the discriminant
function.
If we apply the discriminant function to classify sample data our success rate is 100%.

All the observations are well classified. Applying the cross validation we get

Classified
M H

Reality M 13 2
H 2 10

which means a proportion of correct decisions of 23/27=0.852. The incorrectly classified
observations are 2, 7, 9, and 18. We see that the cross validation method gives us a more
realistic idea of the efficiency of the classification procedure.
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13.5 CANONICAL DISCRIMINANT VARIABLES

13.5.1 The case of two groups

The linear discriminant function for two groups was obtained for the first time by Fisher
using an intuitive reasoning which we will briefly outline. The criterion proposed by Fisher
is to find a scalar variable:

z = α0x (13.23)

so that it maximizes the distance between the projected means as related to the resulting
variability in the projection. Intuitively, the scalar z allows the greatest possible separation
between the two groups.
The mean of variable z in group 1, which is the projection of the vector of means over

the direction of α, is bm1 = α0x1, and the mean of group 2 is bm2 = α0x2. The variance of
variable z will be the same in both groups, α0Vα, and we will estimate it with s2z = α0Swα.
We wish to select α in such a way that the separation between the means m1 and m2 is
maximum. An adimensional measurement of this separation is:

φ =

µ bm2 − bm1

sz

¶2
,

and this expression is equivalent to:

φ =
(α0(x2 − x1))2

α0Swα
. (13.24)

In this equation α represents a direction, since φ is invariant to multiplications of α by
a constant: if β = pα, φ(β) = φ(α). In order to find the direction α which maximizes φ,
taking the derivative in (13.24) and setting the result to zero:

dφ

dα
= 0 =

2α0(x2 − x1)(x2 − x1)0α0Swα− 2Swα (α0(x2 − x1))2

(α0Swα)2

which we write:
(x2 − x1)α0Swα = Swα (α0(x2 − x1))

or also

(x2 − x1) = Swα
(α0(x2 − x1))

α0Swα

which results in
α = λSw

−1(x2 − x1)
where λ = (α0Swα)/α

0(x2−x1). Since, given α, λ is a constant and the function for op-
timizing is invariant to constants, we can take α, normalizing so that λ = 1, which gives
us:

α = Sw
−1(x2 − x1) (13.25)

which is the direction w of projection that we found in the previous section. Furthermore:

α0Swα = (x2 − x1)0Sw−1(x2 − x1) = D2(x2,x1) = (bm2 − bm1)
2
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and the variance of the resulting variable of the projection is the Mahalanobis distance
between the means. Also:

α0(x2 − x1) = (x2 − x1)0Sw−1(x2 − x1) = D2(x2,x1)

and comparing with (13.24) we see that φ is the Mahalanobis distance between the means.
This procedure leads to a search for the direction of projection which maximizes the Ma-
halanobis distance between centers of both populations. We observe that if Sw= I the
Mahalanobis distance is reduced to that of the Euclidean and the direction of projection is
parallel to the vector which joins both means. Finally, we see that this rule was obtained
without imposing any hypothesis on the distribution of the variable x in the populations.

13.5.2 Several Groups

Fisher’s approach can be generalized to find canonical variables with maximum discriminant
power to classify new elements among G populations. The objective is, instead of working
with the p original variables x, to define a vector z = (z1, ..., zr)0 of r canonical variables,
where r = min(G−1, p), which is obtained as a linear combination of the originals, zi = u0ix,
and which allows the classification problem to be solved in the following way:
(1) We project the means of the variables in the groups, xg , over the space determined

by the r canonical variables. Let z1, ..., zg be the variables r× 1 whose coordinates are these
projections.
(2) We project the point x0 to be classified and let z0 be its projection over the space

defined by the canonical variables.
(3) We classify the point in that population whose mean is closest. The distances are

measured using the Euclidean distance in the space of the canonical variables z. This means
that we classify in population i if:

(z0 − zi)0(z0 − zi) = min
g
(z0 − zg)0(z0 − zg)

With several groups the relative separation between the means is measured by the ratio
between the variability between groups, or the explained variability by groups, and the
variability within the groups, or the unexplained or residual variability. This is the usual
criterion for comparing several means in analysis of variance and leads to Fisher’s F-test.
In order to obtain the canonical discriminant variables we begin by looking for a vector
u01, of norm one, so that the groups of points projected on to it have a maximum relative
separation. The projection of the mean of the observations from group g in this direction
will be the scalar variable:

zg = u
0
1xg

and the projection of the mean for all of the data will be:

zT = u
0
1xT

where xT is the vector p×1 which contains the means of the p variables for the n observations
of the sample uniting all of the groups. The total variability among the means of the projected
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groups, is given by
PG

g=1 ng(zg− zT )2. Comparing this quantity with the variability between
the groups, given by

PP
(zig−zg)2, the relative separation between the means will be given

by the statistic:

φ =

P
ng(zg − zT )2PP
(zig − zg)2

.

and if all the data come from the same population and no distinct groups exist, this variable
is distributed as an F with G − 1 and n − G + 1 degrees of freedom. We are going to
express this criterion according to the original data. The sum of squares within the groups,
or unexplained variability (VNE), for the projected points is:

V NE =

ngX
j=1

GX
g=1

(zjg − zg)2 =
ngX
j=1

GX
g=1

u0(xjg − xg)(xjg − xg)0u = u0Wu

whereW is given by

W =

ngX
j=1

GX
g=1

(xjg − xg)(xjg − xg)0

which coincides with (13.22). This matrix has dimensions p × p and, in general, will have
rank p, assuming n − G ≥ p. We estimate the variability of the data with respect to their
group means, which is the same, as hypothesized, in all of them.
The sum of squares between groups, or the explained variability (VE), for the projected

points is:

V E =
GX
g=1

ng(zg − zT )2 = (13.26)

=
X

ngu
0(xg − xT )(xg − xT )0u =

= u0Bu

where B is the matrix of the sum of squares between groups, which can be written as:

B =
GX
g=1

ngaga
0
g

and ag = xg −xT . The p× p matrix B is square and symmetric, and is obtained as the sum
of G matrices of rank one formed by the vectors ag, which are not independent since they
are linked by the equation

PG
g=1 ngag = 0. This implies that the rank of B will be G− 1.

To summarize, the matrix W measures the differences within the groups and B the
differences between groups. The quantity to be maximized can also be written as:

φ =
u01Bu1
u01Wu1

, (13.27)

taking the derivative and setting to zero in the usual way:

dφ

du1
= 0 =

2Bu1(u
0
1Wu1)− 2(u01Bu1)Wu1
(u01Wu1)

2
= 0
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thus:

Bu1 =Wu1

µ
u01Bu1
u01Wu1

¶
that is, using

Bu1 = φWu1

and assumingW is non-singular:

W−1Bu1 = φu1

which implies that u1 has to be an eigenvector of W−1B and thus, φ is the associated
eigenvalue. Since we want to maximize φ, which is the value of the F-test in a scalar test
on projected means, u will be the eigenvector associated with the largest eigenvalue of the
matrixW−1B.
We can consider obtaining a second axis which maximizes the partition φ, but with the

condition that the new canonical variable z2 = u02x is uncorrelated with the first, z1 = u
0
1x.

It can be shown that the same thing happens if we take the second eigenvector (linked to the
second eigenvalue) of the matrixW−1B. In general, α1, . . . ,αr are the non-null eigenvalues
ofW−1B and u1, . . . ,ur are the eigenvectors linked to the non-null eigenvalues. The scalar
variables zj = u0jx provide maximum separation just as the F-test for testing whether there
are differences between the G projected groups. Furthermore, these scalar variables zj are
uncorrelated both within the groups as well as in the sample as a whole. In order to prove
this, let zj be the vector n× 1 resulting from projecting the sampling points in the direction
u0j, or rather, zj = Xuj. The mean of this variable is zj = 1

0zj/n = 1
0Xuj/n = x

0
Tuj and

the covariance between the two scalar variables, zj and zh will be given by

cov(zj, zh) =
1

n

nX
i=1

(zji − zj)(zhi − zh) =
1

n

nX
i=1

u0j(xi − xT )(xi − xT )0uh

and lettingT be the matrix of the total sum of squares, the covariances between the canonical
variables are u0jTuh. If we decompose these variables into groups in such a way that each
variable zj producesG variables zjg where g indicates the group, it can be proven analogously
that the covariances between zjg and zhg, added up for all the groups are given by u0jWuh.
We are going to show that, for two different eigenvectors, h 6= j:

u0hWuj = u
0
hTuj = 0,

where T =W+B.
In order to prove this property, let us assume that αh > αj. The eigenvectors ofW−1B

verify that
(W−1B)uh = αhuh

or rather
Buh = αhWuh. (13.28)
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Therefore, for another, different eigenvector uj, where αh 6= αj, we have:

Buj = αjWuj (13.29)

multiplying (13.28) by u0j and (13.29) by u
0
h:

u0jBuh = αhu
0
jWuh

u0hBuj = αju
0
hWuj

Since the first members are equal, the second ones must be so as well, and as αh 6= αj,
the only possibility is u0jWuh = 0 = u

0
jBuh = u

0
jTuh.

We can see that the eigenvectors of the matrix W−1B are not, in general, orthogonal
because despite the fact that the matricesW−1 and B are symmetric, their product is not
necessarily so. Furthermore, the rank of this matrix W−1B, will be r = min(p,G − 1),
(remember that the rank of the product of two matrices is lesser than or equal to that of the
originals) and this is the maximum number of discriminant factors we can obtain.
The matrix W−1B has been called by Rao the matrix of generalized Mahalanobis dis-

tance, since its trace is the sum of the Mahalanobis distances between the mean of each
group and the total mean. We have

tr(W−1B) = tr
X
(xg − xT )0(W/ng)

−1(xg − xT )

13.5.3 Canonical discriminant variables

This procedure provides r = min(p,G− 1) canonical discriminant variables which are given
by

z = U0
rx (13.30)

where Ur is a p× r matrix whose columns contain the eigenvectors ofW−1B and x a p× 1
vector. The r × 1 vector, z, contains the values of the canonical variables for the item x,
which are the coordinates of the point in the space defined by the canonical variables.
The canonical variables obtained in this way solve the classification problem. In order to

classify a new individual x0 it is only necessary to calculate its coordinates z0 with (13.30)
and assign it to the group whose transformed mean is closest with the Euclidean distance.
A significant problem is that of finding out how many dimensions we need for the dis-

crimination, since it is possible that most of the separating capacity of the populations is
achieved with the first two canonical variables. To study this problem we assume that in-
stead of taking the eigenvectors of W−1B with unit norm ui, we standardize them using
vi = ui/ |u0iWui|

1/2 in such a way that these vectors vi are still eigenvectors ofW−1B but
will now verify v0iWvi = 1. Then, the variability explained by the canonical variable vi is,
because of (13.26),

V E(vi) = v
0
iBvi

but vi being an eigenvector ofW−1B verifies

Bvi = αiWvi
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and multiplying by v0i and taking into account that by construction v
0
iWvi = 1 :

V E(vi) = v
0
iBvi = αi,

which indicates that the variability explained by the canonical variable vi is equal to its asso-
ciated eigenvalue. Therefore, the eigenvalues ofW−1B standardized so that v0iWvi = 1 tell
us the explained variability which each canonical variable contributes to the discrimination
problem. When p and G are large it often happens that greater discriminatory capacity is
achieved with a few canonical variables.
The results of classification which are obtained with canonical variables are identical

to those obtained with the Mahalanobis distance (see Hernández and Velilla, 2000, for a
complete study of this problem). It is easy to prove ifG = 2, in the case of two populations, or
when the means are colinear. In both cases the matrix B has rank one and the eigenvector of
W−1B linked to the non-null eigenvalue automatically provides Fisher’s linear discriminant
function. In order to prove it we have only to note that if G = 2 the matrix B is:

B =
n1n2
n1 + n2

(x1 − x2)(x1 − x2)0

and the eigenvector associated with the non-null eigenvalue ofW−1B isW−1(x1−x2), which
we obtained previously. If the means of the G populations are in a straight line, then,

(x1 − xT ) = p1(x2 − xT ) = ... = kj(xg − xT ) = c(x1 − x2)

and the matrix B can be written

B =
GX
g=1

(xg − xT )(xg − xT )0 = k∗(x1 − x2)(x1 − x2)0

and its eigenvector associated with the non-null eigenvalue of W−1B is proportional to
W−1(x1 − x2).
Example: We are going to study geographic discrimination among the countries of the

world in the MUNDODES data bank. The 91 countries included have been classified a
priori as being from Eastern Europe (9 countries, code 1), Central and South America (12
countries, code 2), Western Europe plus Canada and the US (18 countries, code 3), Asia
(25 countries, code 4) and Africa (27 countries, code 5). The GNP has been expressed in
Napierian logarithms, in accordance with the descriptive results we obtained in Chapter 3.
The output of the SPSS program is shown for the multiple discrimination that provides

the results of the discriminant analysis using canonical variables.
The averages of the five groups in each variable are:
C BR MR IMR LEM LEW GDP
1 15.15 10.52 18.14 67.35 74.94 7.48
2 29.17 9.41 51.32 62.70 68.53 7.25
3 13.01 9.58 8.04 71.25 77.97 9.73
4 30.31 8.07 56.49 63.08 65.86 7.46
5 44.52 14.62 99.79 50.63 54.14 6.19
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Total 29.46 10.73 55.28 61.38 66.03 7.51
and the total column indicates the means for the set of data.
The standard deviations in the groups are:
G BR MR IMR LEM LEW GDP
1 3.97 2.16 6.97 2.22 1.50 .48
2 7.38 5.51 31.69 4.92 5.31 .66
3 1.85 1.37 1.734 2.51 2.18 .44
4 10.01 3.77 46.02 7.92 9.73 1.69
5 5.68 4.79 30.58 7.09 7.03 1.04
Total 13.69 4.68 46.30 9.72 11.13 1.64
and the matrix W with 86 degrees of freedom is

BR MR IMR LEM LEW GDP
BR 46.90
MR 11.89 15.63
IMR 139.41 87.49 1007.64
LEM -27.42 -18.76 -169.71 37.55
LEW -31.88 -21.08 -194.29 40.52 46.20
GDP -3.54 -2.18 -22.42 4.60 5.43 1.25
which we can express with the correlation matrix:

BR MR IMR LEM LEW GDP
BR 1.00000
MR .43930 1.00000
IMR .64128 .69719 1.00000
LEM -.65345 -.77451 -.87247 1.00000
LEW -.68487 -.78452 -.90052 .97278 1.00000
GDP -.46341 -.49350 -.63275 .67245 .71588 1.00000
The linear classification functions for each group are:
G 1 2 3 4 5
BR 3.4340 3.7363 3.3751 3.6194 3.9314
MR 9.7586 9.1856 9.6773 8.6879 8.9848
IMR 1.7345 1.7511 1.7387 1.7107 1.6772
LEM -.1319 .28153 .7638 1.7363 .59934
LEW 16.962 16.3425 15.780 14.347 15.342
GDP -9.422 -8.2661 -5.999 -6.703 -7.053
(Constant) -690.658 -683.135 -690.227 -642.071 -647.1495
and the eigenvalues of W−1B and the proportion of explained variability are:
Fcn Val. pr. Var. %
1* 3.9309 69.33 69.33
2* 1.1706 20.65 89.97
3* .4885 8.62 98.59
4* .0802 1.41 100.00
We observe that the first discriminant function or canonical variable, defined by the

first eigenvector of the matrixW−1B explains 69% of the variability and that the first two
together explain 89.97%.
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Figura 13.5: Graph of the projection of points over the first two canonical variables.

The coefficients of the canonical variables indicate that the most important variables are
globally, life expectancy for women and birth rate.
In the graph we can see the projections of the countries over the first two canonical

variables. The results of the classification with the 4 canonical variables are summarized in
the following table, where r represents the true classification and p the predictions of the
model.

p1 p2 p3 p4 p5
r1 8 1
r2 1 9 1 1
r3 18
r4 2 2 19 2
r5 1 4 22
We observe that the European countries are well classified and that it is among the Asian

countries where more variability appears.
In this case, the apparent errors obtained by classifying with the Mahalanobis distance

(without cross-validation) and using the canonical variables are the same. The attached
output from MINITAB includes the basic information. First, the results of classifying using
discriminant functions are presented:

True Group
Group 1 2 3 4 5
1 8 1 0 0 0
2 1 9 0 2 1
3 0 1 18 2 0
4 0 0 0 19 4
5 0 1 0 2 22
N Total 9 12 18 25 27
N Correct 8 9 18 19 22
Propor. 0.89 0.75 1.0 0.76 0.82
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N = 91 N Correct = 76 Proportion Correct = 0.835
and next the result of applying cross-validation:
Placed in True group
Group 1 2 3 4 5
1 8 1 1 0 0
2 1 8 0 4 1
3 0 1 17 2 0
4 0 1 0 16 5
5 0 1 0 3 21
N. Total 9 12 18 25 27
N Correct 8 8 17 16 21
Propor. 0.89 0.67 0.94 0.64 0.78
N = 91 N Correct = 70 Propor. Correct = 0.769
discriminant linear functions

1 2 3 4 5
Con. -689.05 -681.53 -688.62 -640.46 -645.54
C2 3.43 3.74 3.38 3.62 3.93
C3 9.76 9.19 9.68 8.69 8.98
C4 1.73 1.75 1.74 1.71 1.68
C5 -0.13 0.28 0.76 1.74 0.60
C6 16.96 16.34 15.78 14.35 15.34
C9 -9.42 -8.27 -6.00 -6.70 -7.05
The following table summarizes the results with cross-validation.

p1 p2 p3 p4 p5
r1 8 1
r2 1 8 1 1 1
r3 1 17
r4 4 2 16 3
r5 1 5 21

Finally, the matrix of distances between the means of the groups with the Mahalanobis
distance is

EO(1) AL(2) E(3) AS(4) AF (5)
EO(1) 7.2 7.8 20.3 25.2
AL(2) 10.9 6.5 7.6
E(3) 15.4 30.0
AS(4) 1.9
AF (5)

It is observed that the greatest distance appears between group E (which includesWestern
European countries plus Canada and the US) and Africa. The second is between Western
Europe (EO) and Africa. The smallest distance is between Asia and Africa.
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13.6 QUADRATIC DISCRIMINATION. DISCRIMI-
NATION OF NON-NORMAL POPULATIONS

If by admitting the normality of the observations the hypothesis of equality of variances were
not admissible, the procedure for solving the problem is to classify the observation in the
group with maximum posterior probabilities. This is equivalent to classifying the observation
x0 in the group where the function is minimized:

min
j∈(1,...,G)

∙
1

2
log |Vj|+

1

2
(x0 − μj)0V−1j (x0 − μj)− ln(Cjπj)

¸
When Vj and μj are unknown we estimate by Sj and xj in the usual way. Now the term
x0
0V−1j x0 cannot be annulled, since it depends on the group, and the determinant functions

are not linear and will have a second degree term. Assuming that the classification costs are
equal in all of the groups, we will classify the new observations using the rule:

min
j∈(1,...,G)

∙
1

2
log |bVj|+

1

2
(x0 − bμj)0 bV−1j (x0 − bμj)− lnπj¸

In the particular case of two populations and assuming the same prior probabilities, we will
classify a new observation in population 2 if

log |bV1|+ (x0 − bμ1)0 bV−11 (x0 − bμ1) > log |bV2|+ (x0 − bμ2)0 bV−12 (x0 − bμ2)
which is equivalent to

x00(bV−11 − bV−12 )x0 − 2x00(bV−11 bμ1 − bV−12 bμ2) > c (13.31)

where c = log(|bV2|/|bV1|) + bμ20 bV−12 bμ2 − bμ10 bV−11 bμ1. LettingbV−1d = (bV−11 − bV−12 )
and bμd = bVd(bV−11 bμ1 − bV−12 bμ2)
and defining the new variables

z0 = bV−1/2d x0

and letting z0 = (z01, ..., z0p)0 and defining the vector m = (m1, ...,mp)
0 = bV1/2

d (bV−11 bμ1 −bV−12 bμ2), equation (13.31) can be written
pX
i=1

z20i − 2
pX
i=1

z0imi > c

This is a second degree equation in the new variables z0i. The resulting regions using
these second degree functions are typically disjointed and sometimes difficult to interpret in
several dimensions. For example, Figure (13.6) shows a unidimensional example of the type
of regions which are obtained with quadratic discrimination.
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Figura 13.6: Example of quadratic discrimination. The classification zone of P1 is the central
zone and that of P2 the tails.

The number of parameters to estimate in the quadratic case is much greater than in the
linear. In the linear case we have to estimate Gp+p(p+1)/2 and in the quadratic case, G(p+
p(p+1)/2) . For example with 10 variables and 4 groups we go from estimating 95 parameters
in the linear case to 260 in the quadratic. This large number of parameters makes it so,
except for cases with very large samples, the quadratic discrimination is relatively unstable
and, although the covariance matrices are very different, we frequently obtain better results
using the linear function than the quadratic. An additional problem with the quadratic
discriminant function is that it is very sensitive to deviations from normality in the data.
The available evidence indicates that linear classification is more robust in these cases. We
recommend always calculating the classification errors with both rules using cross-validation
and in case of very small differences, go with the linear.
A problem of quadratic discrimination also appears in the analysis of determined non-

normal populations (See Lachenbruch (1975)). In the general case of arbitrary populations
we have two alternatives: (a) apply the general theory presented in 13.2 and obtain the
discriminant function which can be complicated, (b) apply the theory of normal populations,
take the Mahalanobis distance as a measure of distance and classify x in population Pj so
that for D2:

D2 = (x− xj)0 bV−1j (x− xj)
is minimum.
For discrete populations these approximations are not good. Alternative methods have

been proposed based on multinomial distribution or the χ2 distance whose efficiency is yet
to be determined.
If we apply the quadratic discrimination to the body measurements data we obtain the

table of classification errors by cross-validation (without applying cross-validation it is 100%
accurate as in the linear case)
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Classified
M H

True M 11 4
H 5 7

which assumes an accuracy percentage of 67%, less than in the linear case. There is no
evidence that quadratic discrimination provides any advantages in this case.

13.7 BAYESIAN DISCRIMINATION

We saw in section 13.2 that the Bayesian approach allows us a general solution to the classi-
fication problem when the parameters are known. When the parameters must be estimated
from the data, the Bayesian approach also provides a direct solution which takes into ac-
count the uncertainty in the estimation of the parameters, unlike the classical approach
which ignores this uncertainty. The solution is valid whether or not the covariance matrices
are equal. The procedure for classifying an observation, x0, given the training sample, X,
is to assign it to the most probable population. To do this, we obtain the maximum of
the posterior probabilities that the observation to be classified, x0, comes from each of the
populations given the sample X. These probabilities are calculated by

P (i/x0,X) =
fi(x0|X)πiPG
g=1 fg(x|X)πj

where the densities fg(x0|X), called posterior predictives, or simply predictives, are pro-
portional to the probabilities that the observation x0 is generated by population g. These
densities are generated from the likelihood averaging over the possible values of the parame-
ters in each population with its posterior distribution:

fg(x0|X) =
Z
f(x0|θg)p(θg|X)dθg (13.32)

where θg are the parameters of population g.
We are going to study how to obtain these probabilities. First, the posterior distribution

of the parameters is calculated in the usual way using

p(θg|X) =kf(X|θg)p(θg).

As we saw in section 9.2.2 the likelihood for the population g with ng sample elements and
sample mean xg and variance Sg is

f(X|θg) =k
¯̄
V−1g

¯̄ng/2 exp(−ng
2
tr(V−1g

©
Sg + (xg − μg)(xg − μg)0

ª
)

and with the reference prior

p(μg,V
−1
g ) = k

¯̄
V−1g

¯̄−(p+1)/2
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we obtain the posterior

p(μg,V
−1
g /X)=k

¯̄
V−1g

¯̄(ng−p−1)/2 exp(−ng
2
tr(V−1g

©
Sg + (xg − μg)(xg − μg)0

ª
The predictive distribution is obtained with (13.32), where now θi = (μg,V

−1
g ). Integrating

with respect to these parameters it can be obtained (see Press, 1989, for details of the
integration), that the predictive distribution is multivariate t

p(x0/X,g) =

∙
nπ(ng + 1)

ng

¸−p/2 Γ
¡ng
2

¢
Γ
¡ng−p

2

¢ |Sg|−1/2 ∙1 + 1

ng + 1
(x0 − xg)0S−1g (x0 − xg)

¸−ng/2
With this distribution we can calculate the posterior probabilities for each population. Al-
ternatively, to decide between population i and j we can calculate the ratio of posterior
probabilities, given by:

P (i|x)
P (j|x) = cij

πi
πj
.
|Sj|1/2
|Si|1/2

³
1 + 1

nj+1
(x0 − xj)0S−1j (x0 − xj)

´nj/2
³
1 + 1

ni+1
(x0 − xi)0S−1i (x0 − xi)

´ni/2
where πi are the prior probabilities, Sj the estimated covariance matrices, and

cij =

∙
ni(nj + 1)

nj(ni + 1)

¸p/2 Γ ¡ni
2

¢
Γ
¡nj−p

2

¢
Γ
¡nj
2

¢
Γ
¡
ni−p
2

¢
If the sample sizes are approximately equal, ni ' nj, then cij ' 1. The optimal classifier

is quadratic. If we suppose that the covariance matrices of the groups are equal we again
obtain the discriminant linear function (see Aitchinson and Dunsmore, 1975).

13.8 Additional Reading

The classical discriminant analysis presented here can be found in all multivariate analysis
textbooks. Presentations of a similar level to that in this book can be found in Cuadras
(1991), Flury (1997), Johnson and Wichern (1998), Mardia et al (1979), Rechner (1998) and
Seber (1984). A very detailed basic textbook and one with many extensions and references
is McLachlan (1992). Lachenbruch, (1975) contains many historic references. More applied
approaches, centered in the analysis of examples and computer output, are presented in
Huberty (1994), Hair el al (1999) and Tabachnick and Fidell (1996). Hernandez and Velilla
(2001) study dimensionality reduction. A Bayesian approach to the problem of classification
can be found in Press (1989).

Exercises
13.1 Suppose that we wish to discriminate between two normal populations with mean

vectors (0,0) and (1,1) , variances (2,4) and linear correlation coefficient r=.8. Build the
discriminant linear function and interpret it.
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13.2 Discuss how the probabilities of error in the above problem vary as a function of the
correlation coefficient. Does the correlation help the discrimination?
13.3 The prior probabilities in problem 13.1 are 0.7 for the first population and 0.3 for

the second. Calculate the discriminant linear function in this case.
13.4 We wish to discriminate between three normal populations with mean vectors (0,0),

(1,1) and (0,1) with variances (2,4) and linear correlation coefficient r =.5. Calculate and
plot the discriminant functions and find their cut-off point.
13.5 If the costs of being mistaken in the above problem are not the same, such that the

cost of classifying something in the third population when it comes from the first is twice
the cost of the others, calculate the discriminant functions.
13.6 Justify that the eigenvalues of W−1B are positive, proving that this matrix has the

same eigenvalues as the matrix W−1/2BW−1/2.

13.7 Justify that the same discriminant canonical variables are obtained using the ma-
trices W and B, as with the associated variance matrices corrected by degrees of freedom.
13.8 Prove that it is the same to obtain the largest eigenvector W−1B and the smallest

of T−1W.
13.9 Prove that the first principal component when there are two groups is given by

v = c(W− λI)−1(x1 − x2) (suggestion: If T =W +B, the first component is the largest
eigenvector (associated with the largest eigenvalue) of T and verifies T v =Wv+Bv =λv.
Since B = k(x1 − x2)(x1 − x2)0, we haveWv + c(x1 − x2) = λv).

13.10 Prove that if (x1 − x2) is an eigenvector ofW−1 the discriminant direction is the
natural axis of distance between the means and coincides with the first principal component.
13.11 Prove that the Mahalanobis distance is invariant to linear transformations showing

that if y = Ax + b, with A squared and non-singular, it is verified that D2(yi, yj) =
D2 (xi, xj). (Suggestion: use Vy = AVxA

0 and V−1y = (A
0)−1V−1x A

0)

APPENDIX 13.1: THE CRITERION OF MINIMIZING THE
PROBABILITY OF ERROR
The criterion of minimizing the probability of error can be written as minimizing PT ,

where:
PT (error) = P (1|x ∈ 2) + P (2|x ∈ 1)

with P (i|x ∈ j) being the probability of classifying and observation coming from j in popula-
tion i. This probability is given by the area enclosed by the distribution j in the classification
zone of i, that is:

P (i|x ∈ j) =
Z
Ai

fj(x)dx

therefore:

PT =

Z
A1

f2(x)dx+

Z
A2

f1(x)dx

and since A1 and A2 are complementary:Z
A1

f2(x)dx = 1−
Z
A2

f2(x)dx
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which leads to:

PT = 1−
Z
A2

(f2(x)− f1(x))dx

and to minimize the probability of error we must maximize the integral. This is done by
defining A2 as a set of points where the integrand is positive, that is:

A2 = {x|f2(x) > f1(x)}

and we again obtain the criterion established earlier.
APPENDIX 13.2: DISCRIMINATION AND REGRESSION
An interesting result is that the construction of a discriminant function in the case of

two populations can be approached as a problem of regression.
Let us consider the n observations as data in a linear model and we define a response

variable and it takes the value +k1, when x ∈ P1 and −k2, when x ∈ P2. We can assign
any values to k1 and k2 although, as we will see, the computations are simplified if we make
these constants equal to the number of elements of the sample in each class. The model will
be:

yi = β1(x1i − x1) + β2(x2i − x2) + ...+ βp(xpi − xp) + ui i = 1, 2 (13.33)

where we have expressed the x in deviations. The least squares estimator is:

bβ = (eX0 eX)−1 eX0Y (13.34)

where eX is the matrix of the data in deviations.
Let x1 be the vector of means in the first group, x2 in the second, and xT that which

corresponds to all the observations. We suppose that in the sample there are n1 data points
from the first group and n2 from the second. Then,

xT =
n1x1 + n2x2
n1 + n2

. (13.35)

Substituting (13.35) in the first term of (13.34):

eX0 eX =
n1+n2X
i=1

(xi − xT )(xi − xT )0 =

=
n1X
i=1

(xi − xT )(xi − xT )0 +
n1+n2X
i=1+n1

(xi − xT )(xi − xT )0.

Since

n1X
i=1

(xi − xT )(xi − xT )0 =
n1X
i=1

(xi − x1 + x1 − xT )(xi − x1 + x1 − xT )0 =

=
n1X
i=1

(xi − x1)(xi − x1)0 + n1(x1 − xT )(x1 − xT )0
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because the crossed terms are cancelled out by the fact that
Pn

i=1(xi− x1) = 0. Proceeding
analogously for the other group, we can write:

eX0 eX =
n1X
i=1

(xi − x1)(xi − x1)0 +
n1+n2X
i=n1+1

(xi − x2)(xi − x2)0 (13.36)

+n1(x1 − xT )(x1 − xT )0 + n2(x2 − xT )(x2 − xT )0

The first two terms lead to the matrixW of sum of squares within groups which, as we
have seen estimates V, using:

bV = S =
1

n1 + n2 − 2
W. (13.37)

The second two terms are the sums of squares between groups. Replacing xT with (13.35):

x1 −
n1x1 + n2x2
n1 + n2

=
1

n1 + n2
n2(x1 − x2), (13.38)

which results in:

(x1 − xT )(x1 − xT )0 =
µ

n2
n1 + n2

¶2
(x1 − x2)(x1 − x2)0 (13.39)

(x2 − xT )(x2 − xT )0 =
µ

n1
n1 + n2

¶2
(x2 − x1)(x2 − x1)0 (13.40)

Substituting (13.39) and (13.40) in (13.36) gives us:

eX0 eX = (n1 + n2 − 2)S+ n1n2
n1 + n2

(x1 − x2)(x1 − x2)0

which implies ³eX0 eX´−1 = (n1 + n2 − 2)−1S−1 + aS−1(x1 − x2)(x1 − x2)0S−1 (13.41)

where a is a constant. On the other hand:

eX0Y =
n1+n2X
i=1

yi(xi − xT ) = k1
n1X
i=1

(xi − xT )− k2

n2X
i=1

(xi − xT )

replacing xT with its expression (13.35), yields, by (13.38):

eX0Y =
k1n1n2
n1 + n2

(x1 − x2) +
k2n1n2
n1 + n2

(x1 − x2) = (x1 − x2)kT (13.42)

with kT = n1n2(k1 + k2)/(n1 + n2). Substituting (13.41) and (13.42) in formula (13.34) we
obtain: bβ = k.S−1(x1 − x2)
which is the expression of the classical discriminant function.


