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Abstract

This paper analyzes the e�ect of overdi�erencing a stationary AR(p+1) process whose largest root

is near unity. It is found that if the process is nearly nonstationary, the estimators of the overdi�erenced

model ARIMA(p; 1;0) are root-T consistent. It is also found that this misspeci�ed ARIMA(p; 1; 0) has

lower predictive mean squared error, to terms of small order, than the properly speci�ed AR(p + 1)

model due to its parsimony. The advantage of the overdi�erenced predictor depends on the remaining

roots, the prediction horizon, and the mean of the process.

KEYWORDS: Autoregressive processes, near nonstationarity, overdi�erencing, parsimony, pre-

dictive mean squared error, unit roots.



1 Introduction

In this paper, we investigate the consequences in estimation and prediction of overdi�erencing a station-

ary AR(p+1) with a root close to unity. Di�erencing is normally used to transform a homogeneous linear

nonstationary time series into a stationary process that is often modeled as an ARMA(p; q) process. It

is said, then, that the original series follows an ARIMA(p; d; q) process, where d is the number of di�er-

ences required to obtain stationarity. We assume that the process is not a long memory process (see, for

instance, Granger & Joyeux, 1980) and, thus, d is an integer equal to the number of unit roots in the

autoregressive characteristic equation. When a stationary process has an autoregressive characteristic

equation with a root close to unity it is said to be nearly nonstationary. Given a small or moderate

sample of this process, it is very likely to conclude, due to the low power of unit roots tests in this case,

that a di�erence should be applied. The di�erenced series will be noninvertible and the process is called

overdi�erenced.

Since the work of Fuller (1976) and Dickey & Fuller (1979), there has been a vast literature concerning

the detection of unit roots in autoregressive polynomials. This literature notes the di�culty of a correct

detection in near nonstationary processes. In spite of this, relatively little has been written on the conse-

quences of a wrong detection. Previous work on the e�ect of overdi�erencing can be found in Plosser &

Schwert (1977, 1978), Harvey (1981), Campbell & Perron (1991), and Stock (1996). Plosser & Schwert

(1977) examine, using Monte Carlo techniques, the e�ect of overdi�erencing in two cases: processes with

a deterministic linear trend and stochastic regression models. They conclude that, in these situations,

the loss in e�ciency on both parameter estimation and prediction is not substantial, provided an MA

parameter is included. Harvey (1981), assuming known parameters, also concludes that overdi�erencing

does not need to have serious implications for prediction, provided a �nite sample prediction procedure

is used and an MA parameter is included. Campbell & Perron (1991) and Stock (1996) compare, using
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simulations by Monte Carlo, the prediction accuracy of an AR(1) and a random walk. The empirical

results of these authors show that the random walk can produce forecasts with lower prediction mean

squared error (PMSE) than the AR(1) if the root is close to unity.

In this paper, we justify theoretically the advantages of the overdi�erenced predictor, found empirically

by Campbell & Perron (1991) and Stock (1996), in a general autoregression and analyze the e�ect of

other factors like the remaining roots, sample size (T ), and horizon (H). We will assume that a root of

the AR(p+1) is close to unity and, thus, we will adopt as a more plausible overdi�erenced predictor the

ARIMA(p; 1; 0) model, where no MA component is involved.

We will prove that the PMSE of the overdi�erenced model ARIMA(p; 1; 0) is lower, to terms of small

order, than the PMSE of the correct model AR(p + 1) if the root that is closer to unity, ��1, follows

� = exp(�c=T �); � > 1. The advantage of the overdi�erenced predictor is due to its parsimony. There-

fore, it is larger if the AR(p+ 1) process has a non-zero mean, since it will vanish in the overdi�erenced

model. The remaining roots also a�ect the advantage of the overdi�erenced predictor. Positive roots

increase the advantage of the overdi�erenced model, whereas negative roots have the opposite e�ect. The

advantage of the overdi�erenced model is small in the short term, but can increase with the horizon.

An important consequence of these results is that, for forecasting purposes, it is better to overdi�eren-

tiate than to underdi�erentiate. Therefore, the possible low power of unit root tests in autoregression

is not as important in forecasting as in model identi�cation, since we can still obtain an e�cient predictor.

This paper is organized as follows. In Section 2 we introduce the model and notation. In Section 3 we

de�ne nearly nonstationary processes. The consequences of overdi�erencing in estimation are analyzed
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in section 4, and the e�ect on the PMSE for each predictor in section 5. In Section 6 we compare the

PMSE of the competing models and extract further results from the AR(1) case. A simulation study is

presented in section 7 to illustrate the results.

2 The model and notation

Let fytg be the following stationary AR(p+ 1) process:

'(B)yt = �(B)(1� �B)yt = �+ at; (2:1)

where B is the backshift operator; '(B) = (1 �
Pp+1

i=1 'iB
i) is a polynomial operator on B such that

'(B) = 0 has all its roots outside the unit circle, with ��1 being the closer to unity root. Let at be a

sequence of independent identically distributed random variables with zero mean and variance �2. Let

� = E(yt); then � = �'(1). We make the following assumption:

A1. For some s0 > 2, Efjatj
s0g <1.

It is well known that this model can be represented in �rst-order vector autoregressive form as follows:

Yt = A�Yt�1 + Ut;p+2; (2:2)

with Yt = (yt; :::; yt�p; 1)
0, Ut;p+2 = (at; 0; :::; 0)

0, where the subindex (p + 2) indicates the dimension of
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the vector and

A� =

0
BBBBBBBBBBBBBBBBBBB@

'1 '2 � � � 'p 'p+1 �

1 0 � � � 0 0 0

0 1 � � � 0 0 0

...
...

. . .
...

...
...

0 0 � � � 1 0 0

0 0 � � � 0 0 1

1
CCCCCCCCCCCCCCCCCCCA

:

Then yt = e
0

p+2Yt, with ep+2 = (1; 0; :::; 0)0. Let �y = E(YtY
0

t
) and y = E(Ytyt+1). If we represent the

process in deviations from the mean, we obtain ~Yt = Ao
~Yt�1 + Ut;p+1, where ~Yt = (~yt; ~yt�1; :::; ~yt�p)

0,

~yt = yt � �, and Ao is the �rst (p+ 1)� (p+ 1) submatrix of A�. We will also denote �~y = E( ~Yt ~Y
0

t
). If

a di�erence is applied to yt, the series obtained, wt = (1�B)yt, can be represented as

�(B)(1� �B)wt = (1�B)at; (2:3)

which is noninvertible. The process wt has the following vector representation (L�utkepohl, 1991, p. 223)

Zt = A1Zt�1 + U
�

t;p+2; (2:4)

with Zt = (W 0

t
; at)

0, Wt = (wt; :::; wt�p)
0, U�

t;p+2 = (at; 0; . . . ; 0; at)
0, and

A1 =

0
BB@ Ao �ep+1

0 � � �0 0

1
CCA

with wt = e
0

p+1Zt. Let �w = E(WtW
0

t
) and w = E(Wtwt+1). In what follows, we will use the hat

symbol (ô) to denote estimates from a sample of the overdi�erenced process fwtg and the check symbol

(�o) for estimates from a sample of the original process fytg. The least squares estimator of the AR(p+1)

parameter vector ' = ('1; :::; 'p+1; �)
0, �tted to a sample of size T of the original process, is �' = ���1

y
�y,
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where ��y = (T �p�1)�1
P

T�1
j=p+1 YjY

0

j
and �y = (T �p�1)�1

P
T�1
j=p+1 Yjyj+1. Similarly, the least squares

estimator of the parameter vector � = (�1; :::; �p)
0 of a misspeci�ed AR(p), �tted to a sample of size

T � 1 of the overdi�erenced process (2.3), is �̂ = �̂�1
w
̂w, where �̂w = (T � p � 1)�1

P
T�1
j=p+1WjW

0

j
and

̂w = (T � p � 1)�1
P

T�1
j=p+1Wjwj+1. We also make the following assumptions, where k � k denotes the

Euclidean norm:

A2. E(k���1
y
k2k) (k = 1; 2; :::; k0) is bounded for all �nite and su�ciently large T and some k0.

A3. E(k�̂�1
w
k2k) (k = 1; 2; :::; k0) is bounded for all �nite and su�ciently large T and some k0.

Assumptions A2 and A3 are similar to assumption A3 of Kunitomo & Yamamoto (1985). They are

also equivalent to assumption A3 of Bhansali (1981). It should be noted that they are satis�ed if the

distribution is normal (see Fuller & Hasza, 1981). These assumptions are needed in several parts of this

work, especially in application to the results of Kunitomo & Yamamoto (1985) and Bhansali (1981).

They imply that, for a large enough sample size, the estimation of the covariance matrices are su�ciently

near the true values (Bhansali, 1981, p. 590).

3 Nearly nonstationary autoregressions

A process is said to be nearly nonstationary (near integrated) if its autoregressive characteristic equation

has a root, ��1, very close to unity. If � is close enough to unity, the term (1��B) in (2.3) will be similar

to (1�B). Therefore, although the overdi�erenced process wt is strictly a noninvertible ARMA(p+1; 1),

an average correlogram of wt will suggest estimating by an AR(p) instead.

The similarity between wt and a true AR(p) process does not only depend on � but it is inuenced
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by the remaining roots. In order to see this point, let �j be the coe�cients of the polynomial �(B) =

(1� �1B � �2B
2 � � � �), where '(B) = �(B)(1� B). These coe�cients follow

�j =

8>><
>>:
�j + (�� 1)(1�

Pj�1
k=1 �k) if j � p;

(�� 1)(1�
Pp

k=1
�k) if j > p;

(3:1)

with �k = 0 if k < 1. If we denote as r�1
i
; i = 1; :::; p; to the roots of the characteristic equation �(B) = 0,

then  
1�

pX
k=1

�k

!
=

pY
i=1

(1� ri): (3:2)

Therefore, negative values of ri increase the value of �j , j > p, and decrease the similarity of wt and an

AR(p).

Thus, the de�nition of a nearly nonstationary process needs, (1) a parameterization that converges to

the unit root with the sample size and (2) a constant term that can reect the inuence of the remaining

roots in �nite samples. Phillips (1987) and Chan & Wei (1987) de�ne nearly nonstationary process for

the AR(1) case by reparameterizing � = exp(�c=T ) = 1� c=T + o(T�1), where c is a �xed constant. In

this de�nition, the convergence rate to unity is �xed to be O(T�1). These authors use this de�nition to

provide asymptotic theory for the estimation of �. The formulation is justi�ed by Phillips (1987) because

this is the order of consistency of the least squares estimator, and by Chan & Wei (1987) because this is

the order of the observed Fisher information of � under normality. In order to analyze the consequences

of overdi�erencing with di�erent convergence rates we will de�ne � as

� = exp

�
�
c
a

T�

�
; (3:3)

with c and � being �xed constants. We deal only with stationary processes, and hence c; � > 0. Time

series generated by (2.1) and (3.3) formally constitute a triangular array of the type fytT : t = 1; :::; T ;T =

1; 2; :::g. Since this formulation is not essential in this paper, we will still use the notation fytg to refer
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to this process. It has to be noted that, since � = E(yt)(1� �)�(1), the process has no constant term if

� = 1.

Given a sample from a process generated by (2.1) and (3.3), the analyst has to decide whether to estimate

� or to impose the value � = 1. By the properties of least squares estimators it can be proved that the

least squares estimator of � satis�es �̂ = �+ Op

n
T
�(�+1)=2

o
, whereas imposing unity has the property

1 = �+O(T��). Then, for � > 1, the convergence rate when imposing unity is faster than estimating by

least squares. This result helps to understand why processes with � > 1 are, for some purposes, better

modeled in di�erences.

4 Properties of estimators in the overdi�erenced process

4.1 Root-T consistency

Let fwtjpg be the true AR(p) process �(B)wtjp = at. This process follows the Markovian representation

Wtjp = ApWt�1jp + Ut;p. The p � p matrix Ap has the same structure than Ao with the coe�cients

(�1; . . . ; �p) in the �rst row and Wtjp = (wtjp; :::; wt�p+1jp)
0. Then, from (2.3),

wt = �
�1(B)

�
1�

(1� �)B
a

1� �B

�
at = wtjp �

1X
j=0

 j(1� �)zt�1�j ; (4:1)

where  j are the coe�cients of ��1(B), and (1 � �B)zt = at. Let us denote �wjp = E(WtjpW
0

tjp
) and

wjp = E(Wtjpwt+1jp). We de�ne the sampling autocovariances as �̂wjp = (T � p� 1)�1
P

T�1
j=p+1WjjpW

0

jjp
,

̂wjp = (T � p� 1)�1
P

T�1
j=p+1Wjjpwj+1jp, and also make the following assumption:

A4.E(k�̂�1
wjp
k2k) (k = 1; 2; :::; k0) is bounded for all �nite and su�ciently large T and some k0.

The distance between the sampling second-order moments of wt and wtjp is determined in the following
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theorem.

Theorem 1 Let fwtg be the process (2.3) and let w1; :::; wT be a sample from this process. Let � be

de�ned as in 3.3 with � � 1, then

(a) �̂w = �̂wjp + Op(T
�

1
a

2 );

(b) ̂w = ̂wjp +Op(T
�

1
a

2 ).

See proof in Appendix B. Since wtjp is a stationary process, then ̂wjp = wjp + Op(T
�

1
a

2 ). Applying this

result and theorem 1, the following corollary holds.

Corollary 1 Assume the conditions of theorem 1 hold, then

(a) �̂w = �wjp + Op(T
�

1
a

2 );

(b) ̂w = wjp +Op(T
�

1
a

2 ).

We can now prove root-T consistency of �̂. See proof in Appendix B.

Theorem 2 Assume the conditions of theorem 1, then

�̂ = � +Op(T
�

1
a

2 ):

4.2 Bias and mean squared error

Let �̂
jp be the least squares estimator of � from a sample from a true AR(p) process. The bias and

mean squared error (MSE) of this estimator, of a properly speci�ed autoregression, have widely been

investigated (see, for instance, Bhansali, 1981; Kunitomo & Yamamoto, 1985; Shaman & Stine, 1988; and

references therein). Since the similarity between the estimator �̂, of the ARIMA(p+ 1; 1; 1) misspeci�ed
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as an AR(p), and �̂
jp
depends on the near nonstationarity hypothesis, we will express their di�erences

in terms of �. The following theorems formulate the �rst and second order moments of the least squares

estimator �̂ around the true parameter � as the respective moments of �̂
jp
plus an error term depending

on �.

Theorem 3 Assume A1 (with so = 8), A2, A3, and A4. Then

E(�̂� �) = E(�̂
jp
� �) +O

(�
1� �
a

1 + �

� 1
a

2

)
: (4:2)

The proof is in Appendix B. Since (1 � �)=(1 + �) = O(T��) and given that E(�̂
jp
� �) = O(T�1)

(see, for instance, Bhansali, 1981) we need a value � > 2 for the biases to be equal up to terms of order

O(T�1), whereas for root-T consistency we only need � � 1.

Theorem 4 Assume A1 (with so = 8), A2, A3, and A4. Then

Ef(�̂� �)(�̂� �)0g = Ef(�̂jp � �)(�̂jp � �)
0
g+O

"
max

(�
1� �
a

1 + �

�1
a

2

T�
1
a

2 ;
1� �
a

1 + �

)#
:

See proof in Appendix B. We can see from this theorem that the MSE's are closer to each other than

the biases. If � is such that � > 1 then both expressions for the MSE are equal up to terms O(T�1).

5 Mean squared error of H-steps ahead prediction

In this section, we obtain the mean squared error of predicting yT+H form t = T . The PMSE of a

properly speci�ed autoregression is (see, for instance, Kunitomo & Yamamoto, 1985)

PMSE(�yT+H) = �2
H�1X
h=0

(e0
p+2A

h

�
ep+2)

2 +
�2
a

T

H�1X
h=0

H�1X
k=0

(e0
p+2A

h

�
ep+2)(e

0
p+2A

k

�
ep+2) (5.1)

�tr
�
AH�1�h
� �yA

0
�

H�1�k��1y

�
+ O(T�3=2):

In order to compare the PMSE of the AR(p+1) model (PMSE(�yT+H)) with the PMSE of the misspeci�ed

ARIMA(p; 1; 0) model (PMSE(ŷT+H)) this expression is, however, inconvenient. We will rewrite the
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estimated H-steps ahead predictions in terms of their estimated increments ( �wt and ŵt, respectively).

Hence, PMSE(�yT+H) =
P

H

h=1 PMSE( �wT+h)+2
P

H

h=1

P
H

k=h+1 E f(wT+h � �wT+h)(wT+k � �wT+k)g, where

�wt = �yt � �yt�1. A similar expression applies for PMSE(ŷT+H) .

5.1 PMSE of the properly speci�ed AR(p+1) predictor

Let �A� be the least squares estimator of A� using the properly speci�ed model (2.2). The estimated

increment �wT+h de�ned as a function of the estimated coe�cients �A� is

�wT+h = e0p+2
�Ah�1
� ( �A� � Ip+2)YT ; (5:2)

where Ip+2 is the identity matrix. The observed value wT+h is

wT+h = e0p+2A
h�1
� (A� � Ip+2)YT + Lh;

where Lh = L1 � L2, with L1 =
P

h�1
k=0 e

0
p+2A

k

�
UT+h�k;p+2; and L2 =

P
h�1
k=1 e

0
p+2A

k�1
�

UT+h�k;p+2.

The PMSE( �wT+h) and E f( �wT+h � wT+h)( �wT+k � wT+k)g are shown in the following theorem (see proof

in Appendix C). The assumptions about s0 in theorems 5 and 6 are needed in order to apply the results

of Kunitomo & Yamamoto (1985) in the proof of the theorems.

Theorem 5 Let wt follow (2.3), where � = exp(�c=T �) and � > 1. Assume A2, A3, A4, and A1 with

s0 = 32 when h = 1; 2 and s0 = 16h when h � 3. Then

PMSE( �wT+h) = �2
h�1X
j=0

(e0p+2A
j

1cp+2)
2 +

�2
a

T

h�1X
j=0

h�1X
k=0

(e0pA
j

pep)(e
0
pA

k

pep)

�tr

�
Ah�1�j
�

�yA
0
�

h�1�k��1
y

�
+O(T�

3
a

2 ); (5.3)

and, for k � h,

E f( �wT+h � wT+h)( �wT+k � wT+k)g = �2
h�1X
i=0

(e0
p+2A

i

1cp+2)(e
0
p+2A

i+(k�h)
1 cp+2)

+
�2
a

T

k�1X
n=0

h�1X
i=0

(e0pA
n

pep)(e
0
pA

i

pep)� tr

�
Ah�1�i
� �yA

0
�

k�1�n��1y

�
+ O(T�

3
a

2 ); (5.4)
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where cp+2 = (1; 0; :::; 0; 1)0.

The terms on the right hand side of (5.3) and (5.4) have two components. The �rst component includes

the variance of the prediction errors and the covariance between prediction errors at di�erent horizons,

respectively, of the noninvertible ARMA(p+ 1; 1) process. The second component is the sampling error,

due to the estimation of the p+ 2 parameters of the vector '.

5.2 PMSE of the overdi�erenced ARIMA(p,1,0) predictor.

Assume that we predict wT+h with the predictor derived from the estimated AR(p), that is ŵT+h =

e0
p
Âh

p
WT , where Âp is the least squares estimator of Ap. Then

ŵT+h = e0pA
h

pWT + e0p(Â
h

p �Ah

p)WT = E(wT+hjpjT ) + e0p(Â
h

p �Ah

p)WT :

The true value wT+h is, from (2.4), wT+h = e0
p+2A

h

1ZT +Lh = E(wT+hjT )+Lh. Then the h-steps ahead

prediction error is (wT+h � ŵT+h) = Lh � e0
p
(Âh

p
�Ah

p
)WT � vt, where, by (4.1),

vt = E(wT+h � ŵT+hjpjT ) =
1X

j=h�1

 j(1� �)zT+h�1�j +
h�2X
j=0

 j(1� �)�h�1�jzT : (5:5)

The following theorem gives an approximation of order o(T�1) of the expectation of the lead-h mean

squared prediction error (see proof in Appendix C).

Theorem 6 Let wt follow (2.3), where � = exp(�c=T �) and � > 1. Assume A2, A3, A4, and A1 with

s0 = 32 when h = 1; 2 and s0 = 16h when h � 3. Then

PMSE(ŵT+h) = �2
h�1X
k=0

(e0p+2A
k

1cp+2)
2 +

�2
a

T

h�1X
j=0

h�1X
k=0

(e0pA
j

pep)(e
0
pA

k

pep)

�tr

�
Ah�1�j
p �wjpA

0
p

h�1�k��1
wjp

�
+ o(T�1); (5.6)

and, for k � h,

E f(ŵT+h � wT+h)(ŵT+k � wT+k)g = �2
h�1X
i=0

(e0p+2A
i

1cp+2)(e
0
p+2A

i+(k�h)
1 cp+2)

11



+
�2
a

T

k�1X
n=0

h�1X
i=0

(e0pA
n

pep)(e
0
pA

i

pep)� tr

�
Ah�1�i
p �wjpA

k�1�n
p �wjpp

�1
�
+ o(T�1); (5.7)

where cp+2 = (1; 0; :::; 0; 1)0.

The terms on the right hand side of (5.6) and (5.7) have two components. The �rst one, the variance of

prediction errors and their covariance between di�erent horizons of the true ARIMA(p+ 1; 1; 1) process,

is the same than in theorem 5. The second one is the sampling error due to the estimation of the p pa-

rameters �, in contrast with the estimation of the p+2 parameters of the AR(p+1) model. It should be

observed that this second component di�er from the one on the previous subsection only in the elements

inside the trace operators.

6 Comparing prediction accuracy

In this section, we compare the PMSE's found in the last section for the two models. We prove that,

under the assumption of near nonstationarity exposed in (3.3), with � > 1, overdi�erencing may produce

lower PMSE (to terms of small order). The expressions in theorem 5 and theorem 6 reveal that the only

di�erence between PMSE(�yT+H) and PMSE(ŷT+H) is in the elements inside the trace operators. These

traces can be compared using the two following lemmas: lemma 1 compares such a trace in processes

with and without constant term; lemma 2 compares the trace in nearly nonstationary processes with no

constant term and the overdi�erenced one. The proofs of these lemmas can be found in Appendix D.

Lemma 1 Let yt follow process (2.1). Then

tr

�
Ai

��yA
0j
��

�1
y

�
= 1 + tr

�
Ai

o�~yA
0j
o �

�1
~y

�
:

Lemma 2 Let yt follow process (2.1) with � = exp(�c=T �) and � > 1. Then

tr(Ai

o�~yA
0j
o �

�1
~y ) = �i+j + tr

�
Ai

p�wjpA
j

p�
�1
wjp

�
+ o(T�1):
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Now we can prove the advantage of overdi�erencing when the process is nearly nonstationary.

Theorem 7 Let yt follow process (2.1) with � = exp(�c=T �) and � > 1, and let the conditions of

theorems 5 and 6 hold. Then, for H � 1,

PMSE(�yT+H)� PMSE(ŷT+H) = �H + o(H2T�1);

where

�H =
�2
a

T

0
@ HX
h=1

h�1X
j=0

 j

1
A
2

+
�2
a

T

0
@ HX

h=1

h�1X
j=0

 j�
h�1�j

1
A
2

> 0; (6:1)

with  j = (e0
p
Aj

p
ep), (j = 1; :::; H) .

The proof is a direct application of lemma 1 and lemma 2 to the di�erences between (5.3) and (5.6) and

between expression (5.7) and (5.4).

Expression (6.1) shows that the advantage of the overdi�erenced model can be decomposed into two

parts. The �rst term at the right side of (6.1) is the result of applying lemma 1 and, therefore, is due

to the MSE of estimating the constant term � in the AR(p + 1) model. The second term is the result

of applying lemma 2 and, then, is due to the MSE of estimating an extra parameter in the AR(p + 1).

Thus, the superior forecasting performance of the model ARIMA(p; 1; 0) is due to its more parsimonious

representation. For H = 1 the di�erence is 2�2=T if a constant is needed, and �2=T if � = 0 and no con-

stant is estimated. This result is similar to that of Ledolter & Abraham (1981) for overspeci�ed models,

where they state that each unnecessary estimated parameter increases the one- step ahead PMSE by �2=T .

Although these results are applicable to a general stationary autoregression, it is interesting to analyze

the AR(1) case. First, its simplicity avoids the use of some asymptotic approximations. Second, the

results will not be a�ected by any other root, as shown in (3.2), and they can be considered as a neutral

13



benchmark. The PMSE of the proper predictor in this case can be evaluated with (5.1), whereas the

PMSE in the overdi�erenced model is easily evaluated using as predictor a random walk. The following

remarks summarize the results for both the AR(1) case with no intercept (AR(1)) and with intercept

(AR(1,�)).

Remark 1. Let yt follow the process yt = �yt�1 + at ; j�j < 1. Then PMSE (�yT+H) � PMSE(ŷT+H) =

�H j AR(1) + o(H2
T
�

3
a

2 ), where

�H jAR(1) = �
2

(
H

2
�
2(H�1)
a

T
�

(1� �
H)2
a

1� �2

)
: (6:2)

Table 1 shows the values of � that make �H jAR(1) = 0. Larger values will produce �H jAR(1) > 0. These

values of � increase with H . Therefore, as the horizon grows, the process needs to be closer to the

unit root in order to get some gain when di�erencing. The advantage of overdi�erencing tends, then, to

decrease when the horizon is large. It can also be seen that as H ! 1 the limit of (6.2) is negative.

Then, the advantage of the overdi�erenced predictor eventually disappears. If � is close enough to unity,

this will happen at a horizon of no practical interest. This result has an interpretation in terms of the

time reversibility of the true process. Since the process is stationary, its long term prediction is the

unconditional mean, which in this case is known. Therefore, the AR(1) predictor will forecast the long

term with no error, whereas the random walk will not. Manipulating (6.2), we can conclude that, up to

terms of small order, overdi�erencing can produce better forecasts if

� > exp

�
�

2
a

T + 4H

�
: (6:3)

This expression can be approximated, omitting the inuence of H , as � > exp(�2=T ). This value of

c = 2 agrees with the empirical work of Stock (1996).
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Table 1: Values of � to obtain �
HjAR(1) = 0 and �HjAR(1;�) = 0 .

AR(1) AR(1,�)
a

Horizon Horizon

T a 1 2 5 10 20 a 1 2 5 10 20

25 a 0.923 0.937 0.940 0.951 0.963 a 0.852 0.862 0.881 0.898 0.913

50 a 0.961 0.965 0.966 0.970 0.976 a 0.923 0.926 0.932 0.940 0.948

75 a 0.974 0.976 0.976 0.978 0.982 a 0.948 0.949 0.953 0.957 0.962

100 a 0.980 0.981 0.982 0.983 0.985 a 0.961 0.962 0.964 0.966 0.970

150 a 0.987 0.987 0.987 0.988 0.989 a 0.974 0.974 0.975 0.976 0.978

300 a 0.993 0.994 0.994 0.994 0.994 a 0.987 0.987 0.987 0.988 0.988

Remark 2. Let yt follow the process yt = �+�yt�1+at ; j�j< 1. Then PMSE (�yT+H)�PMSE(ŷT+H) =

�H jAR (1;�) + o(H2
T
�

3
a

2 ), where

�H jAR (1;�) = �
2

(
H

2
�
2(H�1)
a

T
+
(1� �

H)2
a

T (1� �)2
�
(1� �

H)2
a

1� �2

)
: (6:4)

Table 1 shows the values of � that make �H jAR(1;�) = 0. From (6.4) it can be veri�ed that the overdi�er-

enced predictor produces better forecasts, up to terms of small order, if

� > exp

�
�

4
a

T + 4H

�
; (6:5)

that can be simpli�ed as � > exp(�4=T ). In this case, the limit of (6.4) as H ! 1 is still positive if

� > exp(�2=T ).

7 A simulation study
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Figure 1: fVy(H)� Vw(H)g=Vy(H) of model M1 for horizon H = 1; :::;30 and sample size T . The values of

� are (from down to top): 0:90; 0:92; 0:94; 0:96; 0:98 ; 0:99.

In this section, we illustrate the preceding results with a simulation exercise. We consider three dif-

ferent AR(2) models: M1: (1 � 0:5B)(1 � �B)yt = 10 + at; M2: (1 � 0:5B)(1� �B)yt = at; and M3:

(1+ 0:8B)(1� �B)yt = 10+ at, with � = 0:9; 0:92; 0:94; 0:96; 0:98; 0:99. Sample sizes are T = 50; 100.

Real series usually have non-zero mean, and models M1 and M3 can illustrate the consequences of overdif-

ferencing in such series. Also, model M2 can arise when in doubt about a second di�erence.

An important aspect in the simulation exercise is the possibility of obtaining an explosive estimated

predictor. There are two main reasons to avoid these explosive situations. Firstly, they are of limited

practical interest. A typical situation where a practitioner has doubts about di�erencing, for forecasting

purposes, deals mainly with estimated � close to, but lower than unity. Second, the explosive nature of

the predictions generated with a predictor with �̂ > 1 produces an excessive inuence on the averages re-

sulting from the simulations, because explosive estimated predictor is easily worse than its overdi�erenced

counterpart, especially at long term. Unreported simulations show that very few explosive estimated pre-

dictors can have an extremely high inuence in the computations, giving a too optimistic representation
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Figure 2: fVy(H)� Vw(H)g=Vy(H) of model M2 for horizon H = 1; :::;30 and sample size T . The values of

� are (from down to top): 0:90; 0:92; 0:94; 0:96; 0:98 ; 0:99.

of the e�ect of overdi�erencing. Therefore, in order to obtain a clearer picture of what can be expected

from overdi�erencing in a real situation, we have considered only those replications whose estimated roots

where outside the unit circle. The percentage of rejected replications is low. For instance, if � = 0:98

and T = 100 this is 1%, and with T = 50 it is 2:7%.

In each replication, we generate a random sample of the process of size 500 + T + 30 with random noise

at � N(0; 1). The �rst 500 observations were ignored to avoid the e�ect of initial values, and the last

30 were used to evaluate the prediction error. By averaging the predicting squared errors of 20000 valid

replications we obtain Vy(H) and Vw(H) as the sampling estimation of the PMSE of forecasting yT+H

using the forecasts generated by the correct AR(2) model or the overdi�erenced ARIMA(1,1,0) model

respectively. Figures 1 to 3 show the ratio fVy(H)�Vw(H)g=Vy(H) for M1 to M3 as a function of T and

�. This ratio represents the empirical expected gain (or loss if negative) of overdi�erencing at each horizon.

17



0 5 10 15 20 25 30
-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

Horizon

E
xp

ec
te

d 
ga

in

T=50

0 5 10 15 20 25 30
-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

Horizon

E
xp

ec
te

d 
ga

in

T=100

Figure 3: fVy(H)� Vw(H)g=Vy(H) of model M3 for horizon H = 1; :::;30 and sample size T . The values of

� are (from down to top): 0:90; 0:92; 0:94; 0:96; 0:98 ; 0:99.

These �gures reveal that, as expected from the theoretical results, there are situations where overdi�er-

encing outperformed the true model. The expected gain increases with the size of � and decreases with

T . Also, in agreement with equation (3.2), the gain is larger in the model with positive second root (M1)

than in the model with negative root (M3). The gain substantially decreases if � = 0 (M2).

The main feature of these �gures is the divergence of the curves as the horizon increases. In the very

short term, the di�erence between the two predictors is very small, even negligible. Nevertheless, in the

medium or long term the gain or loss can be important. The risk of falling into an important loss if � is

not large enough can, however, be diminished if some e�cient rule to decide about di�erencing is used.

A second important aspect of these �gures is that in the long run (H � T
1=2) the gain decreases and can

be negative. Also, as proved in the last section, the gain in the model with no constant always disappears

at su�ciently large H .
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Figures 4 and 5 show the absolute values of Vy(H) and Vw(H) for selected values of �. These �gures also

contain the population PMSE of the process (dotted lines). These population values can be obtained

from the �rst term on the right side of expression (5.1). The distance from these population curves to

each solid line is the PMSE due to the estimation of the unknown parameters. It can be seen that the

sampling variability of the nondi�erenced predictor (line with symbol +) increases notably when the

number of parameters increases (model M1 and M3 with respect to M2). This increment of the PMSE

due to the estimation of the parameters makes that the overdi�erenced predictor (line with symbol o)

can outperform its competitor when the process approach nonstationarity.

It can be seen that the theoretical results accurately explain this �nite sample performance. Since results

depend mainly on the size of the roots rather than on its number, it is reasonable to foresee similar

conclusions in larger autoregressions.
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Figure 4: Values of Vy (line with symbol +), Vw (line with symbol o), and population PMSE

(dotted line). Sample size T = 50.
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APPENDIX

A Lemmas

We present some lemmas used for the proof of theorems in subsequent sections. For an arbitrary

p � 1 vector x and a p � p matrix M , let kxk = (x0x)1=2 be the Euclidean norm of x and kMk =

supkxk�1(x
0
M

0
Mx)1=2 be the matrix norm of M .

Lemma A.1 Assume A1 and A2, with so = 2k and k � 1. Then, as T !1,

E(k�̂w � �̂wjpk
k) = O

(�
1� �
a

1 + �

� k
a

2

)
;

and

E(k̂w � ̂wjpk
k) = O

(�
1� �
a

1 + �

� k
a

2

)
: (A:1)

Proof: Let mij be a generic element of M . Since E(kMkk) = O

n
maxi;j E(jmij j

k)
o
; i; j = 1; ::; p; and by

Minkowski's inequality, E(k�̂w � �̂wjpk
k) = O

�
maxt;sEjwtwt�s � wtjpwt�sjpj

k
�
: A similar result applies

to (A.1). Using the decomposition (4.1), and by Minkowski's inequality,

Ejwtwt�s � wtjpwt�sjpj
k
�

��
Ejwtjprt�sj

k
� 1
a

k

+
�
Ejwt�sjprtj

k
� 1
a

k

+
�
Ejrtrt�sj

k
� 1
a

k

�k

; (A:2)

where rt =
P

1

j=0  j(1 � �)zt�1�j . By H�olders' inequality, Ejwtjprt�sj
k
�

�
Ejwtjpj

2kEjrt�sj
2k
�1
a

2

: Also,

by assumption A1, Ejwtjpj
2k = O(1). Similarly, Ejrt�sj

2k
�

�P
1

j=0 j j(1� �)j
�
Ejzt�s�1�j j

2k
� 1
a

2k

�2k
;

where it can be veri�ed, that

Ejztj
2k
� E

0
@ 1X

j=0

����2ja2t�j

���
1
A

k

�

8<
:

1X
j=0

�
E
����2ja2t�j

���k�
1
a

k

9=
;

k

= O

(�
1
a

1� �2

�k)
:

Therefore,

Ejrt�sj
2k = O

(�
1� �
a

1 + �

�k)
; (A:3)
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and hence,

Ejwtjprt�sj
k = O

(�
1� �
a

1 + �

� k
a

2

)
:

A similar result applies to the second term in (A.2). The third term in (A.2) can also be solved following

the previous arguments. It can be shown that

Ejrtrt�sj
k = O

(�
1� �
a

1 + �

�k
)
:

Applying these results to (A.2) proves the lemma. 2

Lemma A.2 Assume A1, A2, A3, and A4, with s0 = 2k. Then, as T !1,

E(k�̂�1w � �̂�1
wjp
k
k) = O

(�
1� �
a

1 + �

�k
a

2

)
:

Proof: It can be veri�ed that k�̂�1w � �̂�1
wjp
k
k = k�̂�1w (�̂w � �̂wjp)�̂

�1
wjp
k
k. By H�olders' inequality and

lemma A.1 the result follows. 2

Lemma A.3 Assume A1, A2, A3, and A4, with s0 = 4k. Then, as T !1,

E(k�̂� �̂jpk
k) = O

(�
1� �
a

1 + �

� k
a

2

)
; (A.4)

E(k�̂� �kk) = O

"
max

(�
1� �
a

1 + �

�k
a

2

; T�
k
a

2

)#
: (A.5)

Proof: The estimator �̂ can be expressed as

�̂ = (�̂�1w � �̂�1
wjp

)(̂w � ̂wjp) + (�̂�1w � �̂�1
wjp

)̂wjp + �̂�1
wjp

(̂w � ̂wjp) + �̂jp;

where �̂
jp = �̂�1

wjp
̂wjp. By Minkowski's inequality we obtain

E(k�̂� �̂jpk
k) �

�h
Efk(�̂�1w � �̂�1

wjp
)(̂w � ̂wjp)k

k
g

i 1
a

k

+
h
Efk(�̂�1w � �̂�1

wjp
)̂wjpk

k
g

i 1
a

k +
h
Efk�̂�1

wjp
(̂w � ̂wjp)k

k
g

i 1
a

k

�k

:
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By H�older's inequality and applying lemmas A.1 and A.2 expression (A.4) holds. In order to prove

(A.5) we use the decomposition �̂� � = ��1
wjp

(̂w � wjp) + (�̂�1w � ��1
wjp

)̂w; and also the decompositions

̂w � wjp = (̂w � ̂wjp) + (̂wjp � wjp) and �̂�1w � ��1
wjp

= (�̂�1w � �̂�1
wjp

) + (�̂�1
wjp

� ��1
wjp

): Applying that

E(k̂wjp�wjpk
2k) = O(T�k) and E(k�̂�1

wjp
���1

wjp
k
2k) = O(T�k) (see, for instance, lemma 3.3 of Bhansali,

1981), and using the same arguments as before, completes the result. 2

B Proofs of results in section 3

Proof of theorem 1:

Since E(z2t ) = �2=(1� �2), and by Chebyshev's Inequality, we obtain zt = Op

n
(1� �2)�

1
a

2

o
. Hence,

rt = Op

(�
1� �
a

1 + �

�1
a

2

)
: (B:1)

Since (1� �)=(1+ �) = O(T��), then wt = wtjp + op

�
T�

1
a

2

�
.

The elements of �̂w and ̂w can be decomposed as

PT�1
j=p+1 wj�twj�s
a

T � p� 1
=

PT�1
j=p+1 wj�tjpwj�sjp
a

T � p� 1
�

PT�1
j=p+1 wj�tjprj�s
a

T � p� 1
�

PT�1
j=p+1 wj�sjprj�t
a

T � p� 1

+

PT�1
j=p+1 rj�trj�t
a

T � p� 1
:

Applying (B.1) and the result that wtjp = Op(1), it can be veri�ed that

PT�1
j=p+1 wj�twj�s
a

T � p� 1
=

PT�1
j=p+1 wj�tjpwj�sjp
a

T � p� 1
+ op(T

�
1
a

2 )

and the theorem follows. 2

Proof of theorem 2: Using the decomposition �̂� � = ��1
wjp

(̂w � wjp) + (�̂�1w � ��1
wjp

)̂w, and by sta-

tionarity of fwtjpg, we have �
�1
wjp

= O(1). Also, if �̂�1w exists, we have (�̂�1w ���1
wjp

) = �̂�1w (�wjp� �̂w)�
�1
wjp

.
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Therefore, applying corollary 1, �̂ � � = Op(T
�1=2): 2

Proof of theorem 3: It can be veri�ed that E(�̂� �̂jp) = Ef(�̂�1w � �̂�1
wjp

)̂wjpg+ Ef�̂�1w (̂w � ̂wjp)g:

Applying H�olders' inequality and lemmas A.2 and A.1 the theorem follows. 2

Proof of theorem 4: We can decompose

MSE(�̂) = MSE(�̂jp) +E
n
(�̂� �̂jp)(�̂jp � �)

0

o

+E
n
(�̂

jp � �)(�̂� �̂jp)
0

o
+E

n
(�̂ � �̂

jp)(�̂jp � �)
0

o
:

Since kMk �

pa
tr(M 0M); and applying lemma A.3,

E
n
k(�̂� �̂jp)(�̂� �̂jp)

0
k

o
� E(k�̂� �̂jpk

2) = O

�
1� �
a

1 + �

�
:

Analogously, and applying the result that E
�
k�̂jp � �k

2
�
= O(T�1) (see, for instance, Bhansali, 1981),

it can be veri�ed that

E
n
k(�̂

jp � �)(�̂� �̂jp)
0
k

o
= O

(�
1� �
a

1 + �

�1
a

2

T�
1
a

2

)
;

E
n
k(�̂� �̂

jp)(�̂jp � �)
0
k

o
= O

(�
1� �
a

1 + �

�1
a

2

T�
1
a

2

)
;

and the theorem follows. 2

C Proofs of results in section 4:

Proof of theorem 5: The Taylor expansions of �Ah
� and �Ah�1

� around A� are

�Ak
� = Ak

� +
k�1X
j=0

Aj
�( �A� � A�)A

k�1�j
� +Op(T

�1); k = h; h� 1:
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Then, using
Ph�2

j=0 A
j
�(

�A� � A�)A
h�2�j
� =

Ph�1
j=1 A

j�1
� ( �A� � A�)A

h�1�j
� , and given that ( �A� � A�) =

ep+2(�'�')
0, we have

E( �wT+h� wT+h)
2 = E(L1 � L2)

2 +E(C 0

h;1YTY
0

TCh;1) + E(C 0

h;2YTY
0

TCh;2)

+E(C 0

h;1YTY
0

TCh;2) +E(C 0

h;2YTY
0

TCh;1) + O(T�
3
a

2 ); (C.1)

where C 0

h;1 = e0p+2A
0
�ep+2(�'�')

0Ah�1
� ; and C 0

h;2 =
Ph�1

j=1 e
0

p+2A
j�1
� (A�� Ip+2)ep+2(�'�')

0Ah�1�j
� ; and

where we have used the result that E(k �A� � A�k
k) = O(T�

k
a

2 ) (see, for instance, Bhansali, 1981, or

Kunitomo & Yamamoto, 1985) .

If we denote the k-th coe�cient of '(B)�1 by  k[AR(p+1)] and the k-th coe�cient of '(B)�1(1 � B)

by  k[ARMA(p+1;1)], then e0p+2A
k�1
� (A� � Ip+2) ep+2 =  h[AR(p+1)] �  k�1[AR(p+1)] =  k[ARMA(p+1;1)] =

e0p+2A
k
1cp+2; and hence,

E(L2h) = E
n
(L1 � L2)

2
o
= �2

h�1X
k=0

(ep+2A
h
1cp+2)

2: (C:2)

Since the e�ect of the dependence between YT and �' in the PMSE is O(T�
3
a

2 ) (Kunitomo & Yamamoto,

1985) and applying that MSE(�') = �2��1y =T +O(T�
3
a

2 ), we �nd

E(C 0

h;2YTY
0

TCh;2) =
�2
a

T

h�1X
j=1

h�1X
k=1

�
e0p+2A

j�1
1 cp+2

� �
e0p+2A

k�1
1 cp+2

�

�tr
�
Ah�1�j
� �yA

0

�
h�1�k��1y

�
+O(T�

3
a

2 ):

Applying the same arguments to the remaining terms of (C.1) we obtain

E[( �wT+h � wT+h)
2] = �2

h�1X
k=0

(e0p+2A
k
1cp+2)

2 +
�2
a

T

h�1X
j=0

h�1X
k=0

(e0p+2A
j
1cp+2)(e

0

p+2A
k
1cp+2)

�tr
�
Ah�1�j
� �yA

0

�
h�1��1y

�
+ O(T�

3
a

2 ):

If we denote the k-th coe�cient of �(B)�1 by  k[AR(p)], then  k[ARMA(p+1;1)] =  k[AR(p)]+O(1� �) and,

therefore, e0p+2A
k
1cp+2 = e0pA

k
pep + O(1� �). Then, if � > 1, expression (5.3) holds. Similarly, using the
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previous arguments, the proof of (5.4) follows. 2

Proof of theorem 6: The expectation of the square of wT+h � ŵT+h is

Ef(wT+h� ŵT+h)
2
g = E(L2h) +E

n
e0p(Â

h
p � Ah

p)WTW
0

T (Â
h
p �A

h
p)

0ep
o

+E(v2T ) + 2E
n
e0p(Â

h
p � Ah

p)WT vT

o
; (C.3)

where the term E(L2h) is the same than (C.2). Applying (A.3) with k = 1 and H�olders' inequality, then

E(v2T ) = o(T�1): In order to solve the remaining terms of (C.3), we will use a Taylor expansion of Âp

around Ap. The magnitude of the remainder term is determined by the root-T consistency of Âp. Then

Âh
p = Ah

p +
h�1X
j=0

Aj
p(Âp � Ap)A

h�1�j
p

+
h�1X
j=1

8<
:

j�1X
k=0

Ak
p(Âp � Ap)A

j�1�k
p

9=
;� (Âp �Ap)A

h�1�j
p + Op(T

�
3
a

2 ):

Thus, by lemma A.3, E
n
e0p(Â

h
p �A

h
p)WTvT

o
= O

h
E
n
k(�̂� �)0WT vTk

oi
= o(T�1): Let us denote

B0

h;1 = e0p
Ph�1

j=0 A
j
p(Âp�Ap)A

h�1�j
p : Then, by H�olders' inequality, Efe0p(Â

h
p�A

h
p)WTW

0

T (Â
h
p�A

h
p)

0epg =

E(B0

h;1WTW
0

TBh;1) + O
�
T�

3
a

2

�
. Applying theorem 4 and the result that the e�ect in the PMSE of the

dependency between �̂
jp and WT is O(T�

3
a

2 ) (Kunitomo & Yamamoto, 1985), it follows that

E(B0

h;1WTW
0

TBh;1) = (�2=T )
h�1X
j=0

j�1X
k=0

(e0pA
j
pep)(e

0

pA
k
pep)� tr(Ah�1�j

p �wA
0

p
h�1�k��1w ) + o(T�1);

and the proof of (5.6) is completed. Similarly, by the same arguments, expression (5.7) can be obtained.2

D Proofs of section 5:

Proof of lemma 1: Let us decompose Yt as Yt = (~Y 0

t ; 0)0 + �; where � = (�; �; :::; �; 1)0. Since

� = �(1�
Pp+1

i=1 'i), it can be shown that Ai
��A

0

�
j = ��; where �� = ��0. Then Ai

��yA
0

�
j = Ai

��
�

~yA
0

�
j+ ��;
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where ��~y is a (p+2)� (p+ 2) matrix with �~y in the �rst (p+ 1)� (p+1) submatrix and zero elsewhere.

Also, the covariance matrix �y has the following block structure

�y =

0
BB@ �o �o

�0o 1

1
CCA ;

where �o = E(YotY
0
ot), with Yot = (yt; yt�1; :::; yt�p)

0 and �o = E(Yot). Using the properties of the inverses

of block matrices, we can partition ��1y as

��1y =

0
BB@ B11 B12

B21 B22

1
CCA ;

where B11 = (�o � �o�
0

o)
�1 = ��1~y : Then it is veri�ed that tr(Ai

��
�

~yA
0

�
j��1y ) = tr(Ai

o�~yA
0j
o
��1
~y
). Hence,

tr(Ai

�
�yA

0j

�
��1
y
) = tr(Ai

o
�~yA

0j

o
��1

~y
) + tr(���1

y
). Given that tr(����1

y
) = �

0��1
y
�, and applying a result of

Searle (1984, pag. 258), it can be seen that �0��1
y
� = 1� j �y � ��

0
j = j �y j= 1, since the last column

and row of �y � ��
0 are zero and �y is invertible. 2

Proof of lemma 2: Let C be the following nonsingular matrix

C =

0
BBBBBBBBBBBBBBB@

1 �� 0 � � � 0 0

0 1 �� � � � 0 0

...
...

...
...

...

0 0 0 � � � 1 ��

1 ��1 ��2 � � � ��p�1 ��p

1
CCCCCCCCCCCCCCCA

:

Then

D = CAoC
�1 =

0
BB@

Ap 0

0 �

1
CCA :

Let �k be an eigenvalue of the matrix Q = ��1

~y
Ai

o
�~yA

0

o

j . Then

jDi�CD
0j
� ��C j = 0; (D:1)
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where �C = C�~yC
0. This matrix �C can be considered as the covariance matrix of the transformed series

Zt = CYt, where Zt = (z1;t; z1;t�1; :::; z1;t�p+1; z2;t)
0 and

Zt = DZt�1 + atcp+1: (D:2)

Therefore, the �rst p�p submatrix of �C is the covariance matrix of a process z1;t following the coe�cient

matrixAp and noise at; namely, the matrix �wjp. Denoting by V12, V21, and V22 the remaining submatrices

of this partitioning, we can rewrite (D.1) as

��������

(Ai

p
�wjpA

0

p

j
� ��wjp) (Ai

p
V12�

j
� �V12)V

�
1
a

2

22

(�iV21A
0

p

j
� �V21)V

�
1
a

2

22 (�i+j
� �)

��������
= 0:

From (D.2), the term V22 is the variance of an AR(1) process with coe�cient �. Therefore V
�1

22
= O(1��).

Hence, using the rule to evaluate the determinant of a partitioned matrix (see, for instance, Searle, 1984)

jQ� �I j =
���Ai

p
�wjpA

0

p

j
� ��wjp

���
n
�i+j +O(1� �)� �

o
= 0:

Since the trace of a matrix equals the sum of its eigenvalues, the lemma follows. 2
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