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Abstract

This article analyses the use of model selection criteria for detecting non linearity

in the residuals of a linear model. Model selection criteria are applied for finding

the order of the best autorregressive model fitted to the squared residuals of the

linear model. If the order selected is not zero, this is considered as an indication of

non linear behavior. The BIC and AIC criteria are compared in three Monte Carlo

experiments to some popular nonlinearity tests. We conclude that the BIC model

selection criterion seems to offer a promising tool for detecting non linearity in time

series. An example is shown to illustrate the performance of the tests considered and

the relationship between non linearity and structural changes in time series.

Key Words and Phrases: AIC, BIC, Bilinear, GARCH, Portmanteau tests, Threshold au-

toregressive.
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1 Introduction

Non linear time series models have received a growing interest both from the the-

oretical and the applied points of view. See the books by Priestley (1989), Tong

(1990), Granger and Teräsvirta (1992), Terdik (1999), Peña, Tiao and Tsay (2001)

and Fan and Yao (2003), among others. Non linearity testing has been an active

subject of research. First, some tests were developed based on the frequency domain

approach by using the biespectral density function. See Subba Rao and Gabr (1980)

and Hinich (1982), among others. Second, the Volterra expansion suggests testing for

non linearity by using the residuals of the linear fit and by introducing added vari-

ables which can capture nonlinear effects. Keenan (1985), Tsay (1986, 1991, 2001)

and Luukkonen et al. (1988), among others, have proposed specific tests based on

this idea. Third, we can use a non parametric approach as in Hjellvik and Tjφstheim

(1995) and Brock, Dechert, Scheinkman and LeBaron (1996).

Another way to obtain a non linear test is by noting that if the residuals of the

linear fit ε̂t are not independent, they could be written as

ε̂t = m(ε̂t−1) + utv(ε̂t−1), (1)

where ε̂t−1 = (ε̂t−1, ..., ε̂1) is the vector of past residuals and ut is a sequence of zero

mean and unit variance i.i.d random variables independent of ε̂t−1. Assuming that the

residuals follow a zero mean stationary sequence, we have that E(m(ε̂t−1)) = 0 and
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E(m2(ε̂t−1)) = c1, and E(v2(ε̂t−1)) = c2, where c1 and c2 are constants. Expression

(1) includes, among others, bilinear, TAR (threshold autoregressive), STAR (smooth

transition threshold autoregressive) ARCH (autoregressive conditional heteroskedas-

tic) and GARCH models. Making a Taylor expansion around the zero mean value of

the residuals in (1), and by using that the residuals should be uncorrelated, we have

ε̂t =
1

2

XX ∂2m(ε̂t−1)
∂ε̂t−j∂ε̂t−g

ε̂t−j ε̂t−g+ut

·X ∂v(ε̂t−1)
∂ε̂t−j

ε̂t−j +
1

2

XX ∂2v(ε̂t−1)
∂ε̂t−j∂ε̂t−g

ε̂t−j ε̂t−g

¸
+R

where R includes higher order terms and it is of order smaller than 1/T . Taking the

squared of this expression and computing the conditional expectation given the past

values then, approximately, we can write

E(ε̂2t |ε̂t−1) = c+
X

aiε̂
2
t−i +

XX
bij ε̂

2
t−iε̂

2
t−j +R

0 (2)

where c is a constant and R0 includes terms of order equal or higher than 3. This

equation implies a complex autoregressive dependency among the squared residuals,

and suggests that we can test for non linear behavior by analyzing the presence of

linear dependency among the squared residuals. This idea was proposed by Granger

and Andersen (1978) and Maravall (1983), and it has been used for McLeod and Li

(1983) and by Peña and Rodriguez (2002, 2005) for building portmanteau test of

goodness of fit.

Finally, specific tests for a particular kind of non linearity have also been de-

veloped. In particular, these tests can be useful when the Taylor expansion which
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justifies (2) is not appropriate and therefore the power of global non linear tests based

on squared residuals is expected to be low. For instance, in threshold autorregressive

models (TAR) the non linear function which relates the series to its past is not smooth,

and therefore we will need many terms in the Taylor expansion to approximate it.

Tsay (1989) has developed a powerful test for checking for TAR behavior. Other area

in which several specific tests have been proposed is conditional heteroskedastic mod-

els, see, among others, the Engle LM test to detect ARCH disturbances, the Harvey

and Streibel (1998) test and the Rodriguez and Ruiz (2005) test. However, for these

models procedures based on the squared residuals are expected to work well.

In this article we consider an alternative way to check if the residuals of a linear

fit have linear dependency. Based on expression (2), we explore the performance of

using a model selection criterion to obtain the order of the best autoregressive model

fitted to the squared residuals. If the selected order is zero, we conclude that there

is no indication of non linearity, whereas if the selected model is AR(p), p > 0, we

conclude that the time series is non linear. A similar idea was advocated in the linear

case by Pukkila et al. (1990). They proposed an iterative procedure for determining

the order of ARMA(p,q) models which consists of fitting an increasing order ARMA

structure to the data and verifying that the residuals behave like white noise by

using an autoregressive order determination information criterion. They found that

the BIC criterion worked very well in the linear case; see also Koreisha and Pukkila
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(1995).

The rest of the paper is organized as follows. In section 2, we briefly describe the

global non linearity tests that we will consider in the Monte Carlo analysis. In section

3, we discuss model selection criteria which can be used for fitting autoregressive

models to the squared residuals of the linear fit. Section 4 presents the Monte Carlo

study. Section 5 contains an example and Section 6 some concluding remarks.

2 Types of non-linear test

In this section we describe briefly four types of global non-linear tests which we will

include in all the experiments of the Monte Carlo study. These four tests have been

chosen by using two criteria. First, they are based on different principles and, second,

all of them have shown a good performance for some class of non linear models in

previous Monte Carlo experiments; see Tsay (1991), Lee, White and Granger (1993)

and Ashley and Patterson (1998). The first two tests are based on the residuals of

the linear fit. The Tsay test checks for the inclusion of added variables to represent

the non linear behavior, whereas the BDS test relies on smoothness properties. The

second two tests are based on the squared residuals. The McLeod and Li (1983) test

uses the asymptotic sample distribution of the estimated autocorrelations, whereas

the Peña and Rodriguez (2005) test uses the determinant of their correlation matrix.

Keenan (1985) proposed a test in which the residuals of a linear fit are related to
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a proxy variable of the non linear behavior in the time series, as follows: (1) A linear

model is fitted to the time series byt =PM
i=1 bαiyt−i, and the residuals of the linear fit,

ε̂t = yt− byt, which will be free from linear effects, are computed; (2) A proxy variable
for the non-linear part in the time series is obtained by xt = by2t − byt; (3) A regression
is made between these two variables, ε̂t = δxt + ut, and the non linearity test is the

standard regression test for δ = 0. Note that this test uses a proxy variable which

includes jointly the squares and cross products of the M lags of the series.

The first test we will include in our Monte Carlo study is due to Tsay (1986), who

generalizes the previous proposal by Keenan. Tsay improves this test by decomposing

the proxy variable xt into different regressors in a multiple linear regression equation.

Thus, instead of using jointly the squared and cross product effects of the variables

(yt−1, ..., yt−M) in by2t , h = M(M + 1)/2 variables are defined which include all

the possible squares and cross product terms of these lag variables. The test is

implemented as follows: (1) Fit the linear model byt = PM
i=1 bαiyt−i, and compute the

residuals ε̂t = yt−byt; (2) Define z1t = y2t−1, z2t = yt−1yt−2, ..., zMt = yt−1yt−M , zM+1,t =
y2t−2, zM+2,t = yt−2yt−3, ...., zht = y2t−M . Then, regress each of these h variables zjt

against (yt−1, ..., yt−M), and obtain the residuals, xjt = zjt −
PM

i=1
bβjiyt−i, which will

be our proxy variables for non linear behavior; (3) Regress ε̂t to the h proxy variables

xjt, and compute the usual F statistic for testing that all the regression coefficients in

the population are equal to zero. The linearity is rejected if the F test finds any proxy
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variable as significant to explain the residuals of the linear fit. Thus, in practice the

null hypotheses of this test is that there is no linear relationship between the residuals

of the linear fit and the set of proxy variables which include the squared and cross

products terms. Note that the only parameter that needs to be defined in this test

is the number of lags, M, used in the AR fitting. This test has been extended to

include some specific forms of nonlinear models, see Tsay (1991, 2001) but in this

paper we will use the original formulation.

The second test based on the residuals of the linear fit is the one by Brock et al.

(1991, 1996). These authors proposed a test, called the BDS test in the literature,

which has become quite popular. The idea of the test is as follows. No matter how

the non linear relation is, if we start the time series by using the same starting values,

the future values are expected to be similar, at least in the short run. Therefore,

given two blocks of time series points

(ε̂t, ..., ε̂t+k−1) and (ε̂t+s, ..., ε̂t+s+k−1) (3)

which are close in some metric, we expect that the future evolution of the next

values after these two blocks, (ε̂t+k, ..., ε̂t+k+g) and (ε̂t+s+k, ..., ε̂t+s+k+g) should also

be close in the same metric. These authors propose as measure of closeness the largest

euclidean distance between members of the two blocks which have the same position.

That is, if we consider the two sequences in (3), the distances dj = |ε̂t+j − ε̂t+s+j| for

j = 0, ..., k−1 are computed and the sequences are judged to be close if max(dj) ≤ c.
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This idea is implemented in a test as follows. We form all possible sequences

of k elements (ε̂t, ..., ε̂t+k−1), for t = 1, ..., n − k and we count the number of other

sequences of k consecutive elements which are close to the one we are considering.

The result of comparing two sequences or blocks of size k, one starting at time s and

the other starting at time t is given by a dummy variable, Ct,s, which takes the value

one when the two sequences are close and zero otherwise. The comparison among all

the sequences of size k is summarized by the proportion of them which are close, and

this proportion is computed by

Ck,T =
2

(T − k)(T − k − 1)
T−kX
t=1

T−k−1X
s=t+1

Ct,s.

The BDS test statistic is the standardized value of Ck,T :

wk,T =
√
T − k − 1(Ck,T − C

k
1,T−k+1)

σk,T−k+1

which, under the hypotheses of independence, follows a normal distribution asymp-

totically. The null hypotheses of the test is that the number of sequences which

are close in the residuals of the time series is similar to the number expected with

independent data. In order to use this test we have to define k and d.

The third test we discuss is the one proposed by McLeod and Li (1983). They

computed the squared residuals and their autocorrelations by

rk =

PT
t=k+1

¡
ε̂2t − σ̂2

¢ ¡
ε̂2t−k − σ̂2

¢PT
t=1

¡
ε̂2t − σ̂2

¢2 , (k = 1, 2, ...,m) , (4)
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where σ̂2 =
P

ε̂2t/T, and suggested checking for non linearity by using the Ljung-Box

statistic but now applied to the autocorrelations among the squared residuals. The

test statistic is

QML = T (T + 2)
mX
k=1

(T − k)−1r2k. (5)

They showed that, under the hypotheses of linearity, the statistic QML follows aymp-

totically a χ2m distribution. The null hypotheses of this test is that the first m

autocorrelations among the squared residuals are zero. This test only depends on

the parameter m. A similar test can be developed by using the statistic based on the

partial autocorrelacions proposed by Monti (1994), but as its power is smaller than

the next statistic (see Peña and Rodriguez, 2002, 2005), we have not included it in

this study.

The fourth statistic we discuss here is the one proposed by Peña and Rodriguez

(2005):

Dm = − T

m+ 1
log |R̃m|,

where R̃m is the autocorrelation matrix of the standardized autocorrelation coeffi-

cients of the squared residuals r̃k, defined by

r̃2k =
(T + 2)

(T − k)r
2
k, (6)
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where rk is given by (4), and

eRm =



1 er1 · · · erm
er1 1 · · · erm−1
...

...
. . .

...

erm erm−1 · · · 1


. (7)

Under linearity, this statistic follows aymptotically a gamma distribution, G(α, β)

where α = 3m(m+1)/4(2m+1) and β = 3m/2(2m+1). The transformation NDm =

(Dλ
m − E(Dλ

m))/std(D
λ
m) where λ = g(α,β) is given in Peña and Rodriguez (2005)

follows a standard normal variable. This test was obtained from multivariate analysis

of covariance matrices and its null hypotheses is that the first m autocorrelations

among the squared residuals are zero. These authors showed that this test is more

powerful than other tests also based on the squared autocorrelations, including the

one by McLeod and Li.

3 Model Selection Criteria

Suppose that we want to select the autoregressive order for a given time series. We

cannot select the order by using the residual variance because this measure cannot

increase if we increase the order of the autoregression. Similar problems appear with

other measures of fit, as the deviance. Model selection criteria were introduced to
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solve this problem. The most often used criteria can be written as:

min
k

©
log bσ2k + k × C(T, k)ª , (8)

where bσ2k is the maximum likelihood estimate of the residual variance, k is the number
of estimated parameters for the mean function of the process, T is the sample size and

the function C(T, k) converges to 0 when T →∞. These criteria have been derived

from different points of view. Akaike (1969), a pioneer in this field, proposed selecting

the model with the smallest expected out of sample forecast error, and derived an

asymptotic estimate of this quantity. This led to the final prediction error criterion,

FPE, where C(T, k) = k−1 log(T+k
T−k). This criterion was further generalized, using

information theory and Kullblack - Leibler distances, by Akaike (1973), in the well

known AIC criterion where C(T, k) = 2/T . Shibata (1980) proved that this criterion

is efficient, which means that if we consider models of increasing order with the sample

size, the model selected by this criterion is the one which produces the least mean

square prediction error. The AIC criterion has a bad performance in small samples

because it tends to overparametrize too much. To avoid this problem, Hurvich and

Tsai (1989) introduced the corrected Akaike’s information criterion, AICC, where

C(T, k) = 1
k
2(k+1)
T−(k+2) .

From the Bayesian point of view it is natural to choose among models by se-

lecting the one with the largest posterior probability. Schwarz (1978) derived a

large sample approximation to the posterior probability of the models assuming
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the same prior probabilities for all of them. The resulting model selection crite-

rion is called the Bayesian information criterion, BIC, and in (8) it corresponds to

C(T, k) = log(T )/T. As the posterior probability of the true model will go to one

when the sample size increase, it can be proved that BIC is a consistent criterion,

that is, under the assumption that the data come from a finite order autoregressive

moving average process, we have a probability of obtaining the true order that goes

to one when T →∞. Other often used consistent criterion is the one due to Hannan

and Quinn (1979), called HQC, where C(T, k) = 2m log log(T )/T with m > 1.

Galeano and Peña (2004) proposed to look at model selection in time series as a

discriminant analysis problem. We have a set of possible models, M1, ...,Mα, with

prior probabilities P (Mi),
P
P (Mi) = 1, and we want to classify a given time series,

y = (y1, ..., yn) as generated from one of these models. The standard discriminant

analysis solution to this problem is to classify the data in the model with highest

posterior probability and, if the prior probabilities are equal, this leads to the BIC

criterion. From the frequentist point of view the standard discriminant analysis solu-

tion when the parameters of the model are known is to assign the data to the model

with the highest likelihood. If the parameters of the models are unknown we can

estimate them by maximum likelihood, plug them in the likelihood, and select again

the model with the highest estimated likelihood. However, although this procedure

works well when we are comparing models with the same number of unknown pa-
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rameters, it cannot be used when the number of parameters are different. As the

estimated likelihood cannot decrease by using a more general model, the maximum

estimated likelihood criterion will always select the model with more parameters. To

avoid this problem, Galeano and Peña (2004) proposed to select the model which

has the largest expected likelihood, as follows. Compute the expected value of the

likelihood over all possible sequences generated by the model and choose the model

with largest expected likelihood. These authors proved that the resulting procedure

is equivalent to the AIC criterion.

4 Monte Carlo Experiments

In these section we present three experiments to compare non linearity tests andmodel

selection criteria for detecting non linear behavior in time series. The first experiment

is designed to compare the size and power of the methods under investigation when the

process is non linear in the mean function, but has a constant variance. The second

experiment compares them for detecting non linearity in the variance function, as in

the ARCH, GARCH and SV processes. The third experiment replicates the design

of the competition among non linear test in Barnett et al. (1997), which includes

also deterministic chaos as well as non linearity, either in the mean or in the variance

function.

In the first experiment ten non linear models were used. These models have been
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M1: Yt = 0.4Yt−1 + 0.8Yt−1εt−1 + εt

M2: Yt =


1− 0.5Yt−1 + εt Yt−1 ≤ 1

1 + 0.5Yt−1 + εt Yt−1 > 1

M3 Yt =


1− 0.5Yt−1 + εt Yt−1 ≤ 1

1 + εt Yt−1 > 1

M4: Yt = −0.4εt−1 + 0.3εt−2 + 0.5εtεt−2 + εt

M5: Yt = −0.3εt−1 + 0.2εt−2 + 0.4εt−1εt−2 − 0.25ε2t−2 + εt

M6: Yt = 0.4Yt−1 − 0.3Yt−2 + 0.5Yt−1εt−1 + εt

M7: Yt = 0.4Yt−1 − 0.3Yt−2 + 0.5Yt−1εt−1 + 0.8εt−1 + εt

M8: Yt = 0.2ε
3
t−1 + εt

M9: Yt = 0.6εt−1
£
ε2t−2 + 0.8ε

2
t−3 + 0.8

2ε2t−4 + 0.8
3ε2t−5

¤
+ εt

M10a: Yt = 0.5Yt−1 + εt

M10b: Yt = 0.3Yt−1 + 0.5Yt−2 − 0.5Yt−3 + εt

Table 1: Models included in the first Monte Carlo experiment

previously proposed in the literature for comparing non linear tests and are presented

in Table 1, were throughout εt ∼ N(0, 1) is a white noise series. Models M1, M2 and

M3 were analyzed by Harvill (1999), models M4, M5, M6 and M7 by Keenan (1985),

and models M8 and M9 by Ashley and Patterson (1998). Models M10a and M10b are

linear AR(1) and AR(3) models and they are used to compute the size of the tests.
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The experiment was run as follows. For each model in Table 1 and one of the

three sample sizes considered, n = 50, 100, 250, a time series was generated. A linear

AR(p) model was fitted to the data, where p was selected by the AIC criterion,

(Akaike, 1974) with p ∈ {1, 2, 3, 4}, and the residuals were computed. Then, the four

linearity tests described in the previous section were applied. The value of M in the

test by Tsay is M = 5, and this test will be indicated in the tables by F5Tsay. In the

BDS test the parameters are k = 2, 3, 4, and d = ε/σ = 1.5; the corresponding results

of the test will be given in the tables under the heading BDS2, BDS3, BDS4. The

value of m for both the Dm and QML tests is m = [
√
T ], and the maximum AR order

is pmax = [
√
T ]. The best model is then selected by the three criteria considered, AIC,

AICC, BIC. For each model and sample size 5000 runs were made.

We first present in Table 2 the size of the tests when the time series is really

generated by a linear model, M10a, or M10b. Columns 2 to 6 of this table show the

proportion of the 5000 runs in which a given test rejects the hypotheses of linearity

when the test is applied with a significant level of .95. Columns 7 to 9 show the

proportions in which the model selection criterion selects a value greater than zero

as best order for the squared residuals. The results in this table indicate that for

n = 250 all the tests have sizes close to the nominal value, .05. The size of the tests

Dm, QML and F5Tsay improve with T and get close to the value .05 when the sample

size increases. This is in agreement with the fact that we are using asymptotic critical
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percentiles. However, for the BDS test instead of the asymptotic percentiles we have

used the estimated finite sample empirical percentiles obtained by Kanzler (1990), and

therefore we do not expect any improvement when the sample size increases. This

is in agreement with the performance of this test, as shown in the table. Regarding

the model selection criteria, only the BIC criterion has an acceptable performance.

AIC finds non linear structure when it does not exit around one out of four times,

and the AICC, although has better performance than AIC, also presents a bad size,

especially when the sample size grows. This is in agreement with the fact that BIC is

a consistent criterion, and, therefore, the probability of selecting the true model goes

to one when the sample size goes to infinity. The AIC and AICC are not consistent

and we cannot recommend them for detecting non-linearity as the probability of type

I error cannot be controlled and grows with the sample size. Note that the consistency

property of the BIC criterion leads to an improvement of its performance with larger

sample sizes. For instance, in samples of size 250 the BIC has only a type I error of

rejecting linearity for linear processes of 1.8%. A conclusion of this table is that only

consistent criteria are expected to be useful for testing non linearity. Thus, we have

decided to include only the results of the BIC criterion in the following tables.

Tables 3, 4 and 5 indicate the power of the tests and the performance of the

BIC criterion in finding non linear behavior. To simplify the interpretation of these
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T F5Tsay BDS2 BDS3 BDS4 QML Dm AIC BIC AICC

M10a 50 0.043 0.059 0.050 0.053 0.031 0.037 0.246 0.041 0.061

100 0.048 0.059 0.052 0.054 0.045 0.046 0.263 0.032 0.093

250 0.050 0.046 0.055 0.048 0.051 0.049 0.269 0.018 0.102

Average 0.047 0.055 0.053 0.052 0.042 0.044 0.260 0.030 0.085

M10b 50 0.058 0.070 0.070 0.066 0.028 0.038 0.251 0.052 0.080

100 0.047 0.064 0.071 0.081 0.039 0.043 0.256 0.037 0.091

250 0.047 0.049 0.054 0.055 0.046 0.045 0.260 0.020 0.102

Average 0.051 0.061 0.065 0.067 0.038 0.042 0.256 0.036 0.091

Table 2: Size of the tests and type I error of the model selection criteria

tables we have also displayed the estimated main effects when we consider each table

as presenting the output of an ANOVA experiment with two factors: model and

method. Thus, the estimation of the main effect for a particular method is obtained

as the difference between the average power of all the methods and the average power

for this particular one. Let yi· be the average power of each method in the nine

models considered in the experiment. The main effect of each method is computed

as

αi = yi· − y..

where y.. is the overall mean for all the methods. In the same way, the column y·j

19



represents the average power for this model over all the methods and the main effect

of each model is estimated by βj = y·j − y...

Table 3 gives the power of the tests as a function of the model for small sample

size, n = 50, and the estimated main effects of model and method. The most powerful

method is the BIC criterion, with the largest αi value, αBIC = .059, followed by F 5Tsay

with αTsay = .029. The two tests, Dm and BDS3 have a similar performance, whereas

QML is clearly behind. All the methods have very small power to detect non linearity

in the threshold models, M2 and M3, and in the non linear moving average model,

M4.

Tables 4 and 5 present the results for T = 100 and T = 250. With these larger

sample sizes the relative performance of the BDS test, with k = 3, 4, improves.

This test has the highest average power in tables 4 and 5. For medium sample size,

T = 100, the average power of BDS4 is .450, and αBDS4 = .034, which means that this

test has 3.4 points more power than the average of all methods. The F5Tsay and the

BIC criterion have a good performance, similar to the BDS3 test. The lowest power

corresponds to QML, which is a clear loser with relation to all the other methods.

For large sample size, T = 250, Table 5 shows that BDS4 is again the best but with

small difference with regards to BIC and Dm methods. These methods appear now

as second best, with a similar power to the BDS3 test and very close to the power of

BDS4.
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F5Tsay BDS2 BDS3 BDS4 QML Dm BIC y·j βj

M1 0.534 0.563 0.581 0.555 0.332 0.478 0.614 0.522 0.298

M2 0.069 0.063 0.056 0.055 0.036 0.064 0.086 0.061 -0.164

M3 0.055 0.056 0.052 0.048 0.040 0.054 0.042 0.049 -0.175

M4 0.085 0.037 0.042 0.047 0.035 0.058 0.063 0.052 0.052

M5 0.200 0.104 0.133 0.127 0.093 0.150 0.182 0.141 -0.083

M6 0.428 0.326 0.324 0.303 0.191 0.328 0.462 0.337 0.113

M7 0.418 0.319 0.334 0.319 0.186 0.297 0.386 0.323 0.098

M8 0.121 0.194 0.177 0.158 0.112 0.227 0.316 0.187 -0.038

M9 0.372 0.279 0.365 0.403 0.258 0.359 0.406 0.349 0.124

yi· 0.254 0.216 0.229 0.224 0.142 0.224 0.284 0.225

αi 0.029 -0.009 0.005 -0.001 -0.082 -0.001 0.059

Table 3: Powers for the models in the first experiment when T = 50.
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We conclude from this first experiment that: (i) the BDS test has the overall

better performance, being the winner for medium or large samples, although its power

decreases for small samples, (ii) the BIC criterion appears as a strong competitor for

the BDS test. It has smaller type I error than the BDS test and better power for

small sample size. Also it has only a small difference in power with the BDS test

for large sample size; (iii) F5Tsay and Dm have a overall comparable performance and

are slightly behind the BDS and BIC methods. F5Tsay is better than BDS for small

samples, but worse than BIC in this case and Dm is better than BIC for large sample

sized, but behind BDS. (iv) QML is dominated by the other alternatives.

The second experiment is designed to analyze non linearity in the variance func-

tion, such as ARCH, GARCH and stochastic volatility effects. The four models

considered are presented in Table 6. M11 corresponds to an ARCH(p) and the pa-

rameters ai have been sampled from an uniform U(0, 1) and are re-escaled by an

auxiliary variable, s, from an uniform distribution U(0, 1) so that
Pp

i=1 ai = s. M12

and M13 are GARCH(1,1) models with parameters values taken from environmen-

tal data (see Tol, 1996), and M14 is a stochastic volatility model from Harvey and

Streibel (1998) with CV (σt)2 = .5. In this experiment two additional tests for het-

eroskedasticity, are included. The first one was proposed by Harvey and Streibel

(1998) and uses the statistic

HS = −T−1
T−1X
k=1

krk,
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F5Tsay BDS2 BDS3 BDS4 QML Dm BIC y·j βj

M1 0.757 0.930 0.951 0.943 0.610 0.736 0.824 0.822 0.406

M2 0.082 0.077 0.067 0.068 0.052 0.080 0.090 0.074 -0.343

M3 0.090 0.065 0.058 0.059 0.047 0.058 0.038 0.059 -0.357

M4 0.108 0.040 0.070 0.086 0.062 0.097 0.082 0.078 0.078

M5 0.606 0.188 0.280 0.299 0.208 0.292 0.288 0.309 -0.107

M6 0.860 0.756 0.757 0.725 0.482 0.669 0.782 0.719 0.303

M7 0.707 0.715 0.768 0.767 0.433 0.562 0.672 0.661 0.244

M8 0.189 0.432 0.409 0.377 0.273 0.448 0.560 0.384 -0.032

M9 0.532 0.618 0.771 0.838 0.501 0.604 0.620 0.641 0.224

yi· 0.442 0.402 0.445 0.450 0.287 0.390 0.435 0.416

αi 0.026 -0.014 0.029 0.034 -0.130 -0.026 0.019

Table 4: Powers for the models in the first experiment when T = 100.
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F5Tsay BDS2 BDS3 BDS4 QML Dm BIC y·j βj

M1 0.917 1.000 1.000 1.000 0.910 0.957 0.979 0.966 0.357

M2 0.151 0.120 0.104 0.089 0.093 0.137 0.150 0.121 -0.489

M3 0.209 0.069 0.065 0.056 0.056 0.064 0.030 0.078 -0.531

M4 0.196 0.047 0.137 0.176 0.135 0.185 0.131 0.144 0.144

M5 0.988 0.363 0.634 0.669 0.493 0.642 0.575 0.623 0.014

M6 0.993 0.997 0.997 0.991 0.924 0.981 0.995 0.982 0.373

M7 0.952 0.992 0.997 0.996 0.845 0.917 0.960 0.951 0.342

M8 0.274 0.810 0.787 0.738 0.666 0.825 0.895 0.713 0.104

M9 0.705 0.960 0.995 0.999 0.852 0.908 0.910 0.904 0.295

yi· 0.617 0.605 0.659 0.661 0.567 0.646 0.642 0.609

αi 0.008 -0.004 0.049 0.052 -0.042 0.037 0.033

Table 5: Powers for the models in the first experiment when T = 250.
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M11: Yt = εtσt, σ2t = a0 + a1y
2
t−1 + · · ·+ apy2t−p

M12: Yt = εtσt, σ2t = 1.21 + 0.404y
2
t−1 + 0.153σ

2
t−1

M13: Yt = εtσt, σ2t = 1.58 + 0.55y
2
t−1 + 0.105σ

2
t−1

M14: yt = εtσt, log(σ2t ) = µ+ φ log(σ2t−1) + ηt

where εt ∼ NID(0, 1) and ηt ∼ NID(0, (1− φ2)σ2h).

Table 6: Models for the second experiment.

where rk is the autocorrelation coefficients of the squared residuals defined by (4).

Under linearity, this statistic has asymptotically the Cramér-von Mises distribution.

The second one was proposed by Rodriguez and Ruiz (2005) and uses the statistic

RRm = T
m−iX
k=1

"
iX
l=0

rk+l

#2
,

where i = m/3 + 1 and m = [
√
T ]. Under linearity it follows a gamma distribution.

The results of this experiment are given in Table 7. For simplicity only the

results for T = 250 are reported. As before the results are displayed as an ANOVA

experiments with two factors: model and tests. The two tests, Dm and BDS4 have a

similar performance and are the best procedures in average power. The BIC criterion

has an intermediate performance, similar to QML and RRm, but much better than HS

and F5Tsay.When the persistence in the autocorrelations increases, the average power

in the BIC and BDS decreases (see M11 with p = 5 and M14 with φ = 0.985) and HS

and RRm have a good performance in SV with φ close to 1 where the autocorrelation
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F5Tsay BDS2 BDS3 BDS4 QML Dm RRm HS BIC y·j βj

M11 p=1 0.413 0.812 0.796 0.771 0.716 0.764 0.589 0.261 0.796 0.658 0.056

p=3 0.411 0.552 0.649 0.695 0.634 0.668 0.638 0.347 0.650 0.583 -0.019

p=5 0.380 0.445 0.525 0.574 0.585 0.601 0.618 0.391 0.535 0.517 -0.084

M12 0.393 0.959 0.962 0.951 0.846 0.920 0.666 0.253 0.940 0.766 0.164

M13 0.552 0.994 0.995 0.989 0.959 0.984 0.825 0.352 0.984 0.848 0.247

M14 0.840 0.247 0.365 0.482 0.544 0.395 0.457 0.449 0.247 0.341 0.392 -0.209

0.985 0.233 0.274 0.374 0.433 0.571 0.527 0.658 0.646 0.305 0.447 -0.155

yi· 0.376 0.629 0.683 0.708 0.672 0.703 0.635 0.357 0.650 0.601

αi -0.226 0.027 0.082 0.107 0.071 0.101 0.033 -0.245 0.049

Table 7: Powers for the models in the second experiment when T = 250.

is very persistent (M14 with φ = 0.985).

The third experiment follows the design by Barnett et al. (1997). Five models

were included in this study. The first is the logistic equation or the deterministic

chaotic Feigenbaum sequence:

yt = ayt−1(1− yt−1)

with a = 3.57 and initial condition y0 = .7. The logistic equation may produce sample

paths looking as a nonstationary process or white noise depending on a and y0. The
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second model is a GARCH(1,1). The third is the nonlinear moving average,

yt = ²t + .8²t−1²t−2,

the fourth is an ARCH(1) and, finally, the fifth is an ARMA (2,1) model. Table 8

shows the results for a sample size n = 380. Following the design in Barnett et al.

(1997), we report if the hypotheses of linearity was accepted (A), rejected (R) or

the procedure was ambiguous (?) about it. The table presents the results of the four

previous tests, the BIC criterion and four of the tests included in the study by Barnett

et al. (1997) with the same samples generated by these five models. Regarding the

BDS we have taken the implementation used in Barnett et al. (1997). From Table 8

it can be seen that the only procedure which always finds the correct answer is the

Kaplan test. The second best are the Dm and QML tests and the BIC criterion, which

does not detect the non linearity in the GARCH model. Table 9 shows the results for

n = 2000, and now four procedures, Kaplan, Dm, QML, and the BIC criterion, are

able to find the right answer.

The conclusion of these three experiment is that, among the tests compared, the

BDS test performs the best. It has overall the highest power for detecting non linear

behavior in both the mean and the variance function of the process and also seems

to be able to detect chaotic behavior. The second best among the tests compared

is the Dm. It is similar to the F5Tsay for the mean, but clearly superior for detecting

non linearity in the variance function. Also, it detects the chaotic behavior in the
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Process F5Tsay QML Dm BIC Hinich BDS White Kaplan True

I (Feig) R R R R A R R R R

II (GARCH) A A A A A ? A R R

III (NLMA) R R R R A ? A R R

IV (ARCH) ? R R R A ? A R R

V (ARMA) A A A A A A A A A

Table 8: Models from Barnett et al, A=accept linearity, R=Reject, ?=Ambiguous,

T=380

Process F5Tsay QML Dm BIC Hinich BDS White Kaplan True

I (Feig) R R R R A R R R R

II (GARCH) A R R R A ? A R R

III (NLMA) R R R R A ? A R R

IV (ARCH) ? R R R A ? A R R

V (ARMA) A A A A A A A A A

Table 9: Models from Barnett at al, A=accept linearity, R=Reject, ?=Ambiguous,

T=2000
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third experiment. The BIC criterion is a strong competitor of the best linear test in

all cases:it is better than BDS and Dm for small samples sizes and it has almost the

same power for large sample.

5 An example

We will explore the non linearity in the series of quarterly US real GNP, Yt, from the

first quarter of 1947 to the second quarter of 2003. The data are seasonally adjusted

and are shown in Figure 1. Figure 2 shows the rate of growth of this series given

by the transformation yt = ∇ log Yt. This series has been extensively analyzed in the

econometrics and statistics literature, see for instance Tiao and Tsay (1994), and also

in the economic literature, see for instance McConnell and Pérez-Quirós (2000).

The best ARMA model fitted for this series, as selected by BIC, is modelM1. The

second row of Table 10, gives the estimated parameter values, the BIC and the Ljung-

Box statistics, QLB(10), for this model M1. The residuals of this model show some

extreme values which can be modelled as outliers and this leads to model M2. The

third row of Table 10 describes this model which includes two additive outliers (AO)

a transitory change (TC) and one level shift (LS), as detected by program TSW,

Windows version of TRAMO-SEATS ( c° Gómez and Maravall, 1996). The table

shows that, as expected, model M2 with outlier correction has a smaller residual

variance and a smaller value of BIC. We have applied to the residuals of these two
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Figure 1: Real US GNP seasonally adjusted from 1947 to 2003.

models the previous non linearity tests and the outcomes are presented in the second

and third rows of Table 11. As most of the tests detect non linear behavior in the

residuals of these two models, we conclude that the series seems to be non linear. We

also note thatM2 is found non linear more often thanM1, which implies that cleaning

this series from outliers makes easier the identification of the non linear behavior. The

residuals and the autocorrelation function of the squared residuals from model M2

are given in Figure 3. Note that, among the first 20 autocorrelations, those of lags 2,

4, 6 and 9 seem to be different from zero.

As the sample is large, one possible explanation of the detected non linear be-

havior is the presence of a structural break in the period. In order to explore this
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Model Period Size AR MA BIC bσ2 × 10−4 AO TC LS QLB(10)

M1 1/47-2/03 226 0.342
(0.063)

— -9.28 0.900 — — — 11.39

M2 1/47-2/03 226 0.423
(0.060)

— -9.46 0.693 4/49 1/58 2/78 12.57

4/70

M3 1/47-1/75 113 0.468
(0.083)

— -9.09 0.989 4/49 — — 8.26

4/70

M4 2/75-2/03 113 0.477
(0.083)

— -10.01 0.380 2/81 — 2/78 9.54

2/80

M5 1/47-1/83 145 0.429
(0.075)

— -9.07 1.001 4/49 — 2/78 7.59

4/70

M6 2/83-2/03 81 — −0.306
(0.106)

-10.44 0.258 — — — 8.4

−0.352
(0.107)

M7 4/83-2/03 79 −0.283
(0.11)

-10.49 0.247 — — — 6.11

−0.318
(0.11)

Table 10: Models for US Real Growth series in different periods.
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Figure 2: Rate of growth of US GNP. 1947 to 2003

possibility we split the series into two halves and analyze the non-linear behavior in

each subsample. The first half is taken from 1/47-1/75, with 113 observations, and

the second from 2/75-2/03, also with 113 observations. The models fitted to the two

subsamples are M3 and M4, and are given in rows 4th and 5th of Table 10. We see

that the estimated AR parameter has a similar value in both models, whereas the

residual variance is much smaller in M4. In fact, the standard F test of comparison

of the variances for the two models is highly significant. The results of the linearity

tests are given in rows 4th and 5th of Table 11. We found that all the tests indicate

that the series is linear in the first half period, and non linear in the second half.

This non linear behavior happens with a strong reduction of variability, as the resid-
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Figure 3: Residuals and the acf of these squared residuals from model M2.

ual variance of M4 is one third of the one of M3. In order to understand better this

change in variability, Figure 4 shows a robust measure of scatter, the MAD (median

of absolute deviations), computed in non overlapping groups of 24 observations (6

years) over the whole period. This figure indicates that the variance in the last three

groups, which correspond to the last 18 years in the sample, is much smaller than in

the rest of the groups.

In order to identify the time of this variance change in the series we apply the

Cusum procedure for retrospective detection of variance changes developed by Inclán

and Tiao (1994). The plot of the statistic proposed by these authors is given in Figure

5. This statistic shows that the largest change is around observation 145. Note that

Figure 5 gives, in a more accurate way, the same information that was found in Figure

4: a decrease in variability after observation 50, followed by a larger decrease around
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Model Period BIC Dm QML F2,3,4,5Tsay BDS2,3,4,5 RR HS

M1 1/47-2/03(NO) L NL NL L,L,L,L L,NL,NL,NL NL NL

M2 1/47-2/03 NL NL NL L,L,L,L L,L,L,NL NL NL

M3 1/47-1/75 L L L L,L,L,L L,L,L,L L L

M4 2/75-2/03 NL NL NL NL,NL,NL,NL NL,NL,NL,NL NL NL

M5 1/47-1/83 L L L L,L,L,L L,L,L,L L L

M6 2/83-2/03 NL L L NL,NL,NL,NL L,L,L,L L L

M7 4/83-2/03 L L L NL,NL,NL,NL L,L,L,L L L

Table 11: Non linearity tests applied to the residuals of models for US Real Growth

series in different periods.

observation 145. These findings are also in agreement with the residuals plot in Figure

3. From now on we will concentrate in this large variance change at t = 145.

As the large variance change occurs in the time period used to fit model M4,

which showed non linear behavior, we wonder if this non linearity can be due to the

variance change. In fact, some authors, see for instance Shumway and Stoffer (2002),

have found GARCH effects in this series. We show in the appendix that a variance

change in a residual series is expected to produce correlations among the squared

residuals. Thus, the large variance change found in this series can be responsible for

the non linear behavior observed when checking the autocorrelations of the squares.

As it is well known that squared autocorrelations could also be due to the conditional
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Figure 4: Median absolute deviation (MAD) and time in groups of 24 observation for

the real growth GNP.

heteroskedasticity of a GARCH model, in order to differentiate between these two

explanations we have fitted a GARCH model and a variance change model to the

residuals et, of the GNP series in the whole period 1/1947-2/2003, after cleaning

these residuals from outliers. The estimated GARCH model is

et = εtσt

σ2t = 4.8× 10−7 + 0.9292σ2t−1 + 0.0601e2t−1

and Figure 6 shows the squared residuals and the estimated volatility σ2t . A global

measure of the fit for this model is given by

X (e2i − σ2t )

T
= 1.0961× 10−8.

We have compared this measure to the one obtained with the variance change model
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Figure 5: Cusum chart for identifying variance changes.

given by

et = εtσt

σ2t = 1.0 + (.26− 1.0)S(145)t

where S(145)t is a step function. Note that this model implies that for t < 145 the

residual variance is 1.001 and for t ≥ 145 the residual variance is .258. Figure 7 shows

the plot of the residuals from this model which has a measure of fit of

X (e2i − σ2t )

T
= 1.0334× 10−8.

We conclude that, although both models seem to be compatible with the data, the

variance change model gives a better fit with smaller number of parameters. Thus,

it will be the one selected by any model selection criterion.
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Figure 6: Squared residuals and conditional variance for the GARCHmodel estimated

to the residuals of the GNP series. Period 1/1947-2/2003.

The previous analysis suggests that instead of splitting the series into two halves,

it may be more informative splitting it before and after the large variance change.

Thus, we now split the total available time period in the subsamples 1/47 to 1/83

and from 2/83 to 2/03, and estimate models M5 and M6, given in rows 5th and 6th

of Table 10, in these two periods. The best model fitted in the first subsample (1/47

to 1/83) according to BIC is an AR(1), see model M5, whereas in the second period

is a MA(2), see modelM6. The residual variances estimated in both periods are very

different and similar to the ones estimated by the variance change model. The results

of the non linearity tests applied to the residuals from models M5 and M6 are given
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Figure 7: Squared residuals and variance change in the residuals of the GNP series.

Period 1/1947-2/2003.

in rows 5th and 6th of of Table 11. Now the first series is clearly linear, whereas the

last one is unclear: The BIC and Tsay tests indicate non linear behavior, whereas

the other tests, based on the correlation of the squared residuals, do not reject the

linearity hypotheses. We conclude that the strong non linear behavior found in model

M4 was probably due to the large variance change in the time period used to fit this

model.

Let us study with more detail the posibility of non linear behavior in the second

subsample, from 2/83 to 2/03, by comparing the performance of nonlinearity tests

for the residuals of model M6 . Figure 8 presents the residual plot and the autocor-
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relation function of the squared residuals.There is a relatively large coefficient at lag

1: r1(ε2t ) = 0.3191 with a standard deviation of 0.1125. This explains the non linear

behavior of M6 found in Table 11 by the BIC criterion, as an AR(1) model will be

appropriate for the series of squared residuals. The failure of the Qm and the Dm

tests in rejecting the linearity hypotheses is due to the large value of m chosen. We

are always using m =
√
T , which means m = 9 in this case, and as we only have a

significant coefficient these tests will have power for a small value ofm, as for instance

m = 5, but not for larger m.

We have carried out a sensitivity analysis for checking the influence of the splitting

time in the presence of non linearity in the last part of the series. As the starting

point of the period of smaller variance is not clear, as indicated in Figure 5, we have

also analyzed the second subsample but starting at 4/83 instead of 2/83. This leads

to model M7, presented in the last rows of Tables 10 and 11. When comparing M6

and M7, the estimated parameters change slightly and the results of the tests in

Table 11 are the same, expect for the BIC test. For M6 the BIC indicates non linear

behavior whereas for M7 it accepts linearity. Thus, only the Tsay test keeps showing

indication of non linear behavior for both modelsM6 andM7, and the reason for this

is a strongly significant coefficient associated to ε2t−1. The plots of εt with respect to

both εt−1 and ε2t−1 are shown in Figure 9. Both plots shows clear signs of threshold

autoregressive (TAR) non linear behavior. Figure 9a shows that the dependency

39



between εt and εt−1 seems to be different when εt−1 < 0 and when εt−1 > 0. The

plot of εt with respect ε2t−1 shows a negative relationship between both variables,

which explains why the Tsay detects non linearity. As most of the portmanteau non

linearity test are not powerful for TAR, it is not surprising that they fail to find this

type of non linear behavior. It is interesting to note that Tiao and Tsay (1994) found

evidence of threshold behavior in this series and fitted a four regimes TAR model to

data in the period 1/47 to 1/91. We conclude that the series has very likely TAR

behavior and only the Tsay test, among the tests considered, has been able to show

this feature. The estimated TAR model on the original data is:

M8 : yt =


.0031
(.001)

+ 1.0345
(.1711)

yt−1 + ε1t yt−1 ≤ .0084 and ε1t ∼ N(0, 1.87 · 10−5)

.0045
(.003)

+ .2340
(.2525)

yt−1 + ε1t yt−1 > .0084 and ε1t ∼ N(0, 1.77 · 10−5)

We conclude that the series of US real GNP growth has suffered a structural break

in 1983. Before this period the series was linear and follows an AR(1). After 1983,

the variance is reduced to 1/4 and the series shows non linear TAR behavior.

Finally, we have analyzed the out of sample performance of models M1,M2, M7

and M8. The last ten observations in the time series have been dropped, the model

estimated without them, and ten one-step-ahead out-of-sample forecasts have been

computed by rolling forecasts, that is reestimating the model when a new observation

becomes available for the next one-step-ahead forecast. The mean squared prediction

error of these four models for one step ahead out of sample forecasts are given in
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M1 M2 M7 M8

5.42 1.67 2.63 4.66

Table 12: Mean squared prediction error of four models for one-step-ahead out of

sample forecasts. The values given are divided by 105

Table 12

It can be seen that the TARmodel,M8, does not improve the forecasts obtained by

modelsM2 andM7 in this exercise. These two models are both linear, and this result

confirms that, as often found by other authors, non linear models may not provide

clear gains over liner ones in out of sample forecast. Also, allowing for outliers and

level shifts in a linear model, as in model M2, can lead to a significative forecast

improvement with respect to a linear model as M1 which does not take them into

account.

6 Conclusion

The main conclusion from this paper is that by checking with the BIC criterion if

the order selected when fitting an AR model to the squared residuals of a linear fit

is zero we may have an effective way for detecting non linear behavior. The BIC

criterion has an overall good performance: its power for detecting non linearity is

either the largest or close to the first best of the tests compared. For large sample

size the type I error of the BIC is the smallest among the procedures compared.
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Also this procedure is robust to the parameter pmax, maximum order of the AR

fitted to the squared residuals. The other information criteria considered cannot be

recommended, because of their large type I error. Thus, efficient criteria do not seem

to be useful with this objective, whereas the BIC property of consistency guarantees a

good performance in large samples. The worst behavior of the BIC criterion is found

for detecting some forms of heteroskedasticity with respect to tests designed to take

into account the expected structure of the squared autocorrelations. Also, it has no

power for threshold behavior. Therefore, we conclude that although the BIC criterion

is useful as a kind of Portmanteau non linearity test, it is better to supplement it

with specific tests for the type of non linear behavior that is expected to appear in

the data.

The BDS test has also an overall good performance, confirming the results ob-

tained in previous studies. The F5Tsay and Dm tests are simpler alternatives which

can work as well, or better, than BDS in small samples and are competitive in large

samples. In particular, as shown in the example, the F5Tsay is able to show threshold

behavior in situations which are non detected by the rest of the tests included in our

study.

A conclusion we draw from the example is that we should be careful when inter-

preting the results of a test that finds significative autocorrelation among the squared

residuals. This could be due to a non linear model, outliers, variance changes or
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conditional heteroskedastic models, and it is important to differentiate among these

effects. Finally, taking these changes into account can have a large improvement in

the forecasting performance of the model.
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Appendix

We compute the large sample autocorrelations of the squared values in a white

noise series, at, with a variance change. Suppose that the variance change happens at

time t = h = αT, where to simplify we assume that αT is an integer, T is the sample

size and α ∈ (0, 1) and, without loss of generality, let us assume that the variance

changes from 1 to c2. Thus, from t = 1, ..., h we observe at with variance 1 and from

t = h+ 1, ..., T we observe cat. Then, the variance of the series will be

σ̂2 =

Ph
t=1 a

2
t + c

2
PT

t=h+1 a
2
t

T

and, assuming T large, we approximate this variance for its expected value,

σ2 = α+ c2(1− α)
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The autocorrelation of the squares are

rk =

PT
t=k+1

¡
a2t − σ̂2

¢ ¡
a2t−k − σ̂2

¢PT
t=1

¡
a2t − σ̂2

¢2
and the numerator can be written as

TX
t=k+1

¡
a2t − σ̂2

¢ ¡
a2t−k − σ̂2

¢
=

TX
t=k+1

a2ta
2
t−k − σ̂2

TX
t=k+1

a2t − σ̂2
TX

t=k+1

a2t−k + (T − k)σ̂4

and if we now approximate each term by its expected value

E(
TX

t=k+1

a2ta
2
t−k) = (h− k) + kc2 + (T − k − h)c4

and using that, approximately

E(σ̂2
TX

t=k+1

a2t ) ≈ E(σ̂
2

TX
t=k+1

a2t−k) ≈ (T − k)σ4

we have that

E(
1

T

TX
t=k+1

¡
a2t − σ̂2

¢ ¡
a2t−k − σ̂2

¢
) ≈ α+ c4(1− α)− σ4 + (k/T )(σ4 + c2 − c4 − 1).

The denominator can be approximated by

E(
1

T

TX
t=1

¡
a2t − σ̂2

¢2
) = 3(α+ c4(1− α))− σ4

and, therefore

rk =
α+ c4(1− α)− σ4 + (k/T )(σ4 + c2 − c4 − 1)

3(α+ c4(1− α))− σ4
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This expression shows that the autocorrelacion coefficients of the squared values of

the time series will be different from zero. For instance, for large c2, this function can

be approximated by

rk =
1

3
− (2− α)

3(1− α)

k

T

which is greater than zero, and could be close to 1/3. Note that the autocorrela-

cion coefficients will decrease slowly, and their structure would be similar to the one

produced by GARCH effects.
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Figure 8: Residuals of their acf of squared residuals for model M6.
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Figure 9: Residuals of US GNP with respect to lag residuals (left, case (a)) and to

squared lag residuals (right, case (b)). Model M7.
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