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Abstract

This paper studies the detection of step changes in the variances and in the correlation structure of the components of a vector
of time series. Two procedures based on the likelihood ratio test (LRT) statistic and on a cumulative sums (cusum) statistic are
considered and compared in a simulation study. We conclude that for a single covariance change the cusum procedure is more
powerful in small and medium samples, whereas the likelihood ratio test is more powerful in large samples. However, for several
covariance changes the cusum procedure works clearly better. The procedures are illustrated in two real data examples.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

The problem of detection of a sudden change in the marginal variance of a univariate time series has been extensively
studied. For instance, Wichern et al. (1976) considered a detection procedure for a variance change at an unknown
position in a first order autoregressive model. Abraham and Wei (1984) studied inference in the parameters of a time
series under the presence of a variance change at an unknown point. Baufays and Rasson (1985) proposed an iterative
algorithm for changes in autoregressive models by means of a maximum likelihood procedure. Tsay (1988) studied
outliers, level shifts and variance changes in ARIMA models. Inclán (1993) and McCulloch and Tsay (1993) proposed
Bayesian procedures for autoregressive processes with variance changes. Inclán and Tiao (1994) proposed an iterative
procedure based on a cumulative sum of squares statistic for the detection of several variance changes in Gaussian
independent observations. The cusum statistic they proposed for variance changes was related to similar statistics
studied for level shifts by Andrews (1993), Bai (1994a), Bai et al. (1998) and Bai and Perron (1998). Chen and Gupta
(1997) considered an information theoretic approach based on the Bayesian Information Criteria (BIC) for detection of
step changes. Wang and Zivot (2001) proposed a model for time series with changing variance. Park et al. (2000) and
Lee and Park (2001) extended the Inclán and Tiao approach to autoregressive and moving average models, respectively.

The case of multivariate sequences has, to the best of our knowledge, not been considered yet. The multivariate
case is more challenging than the univariate case because then we can consider changes in both the variances of the
components and in the correlation structure among them. The effect of a change in the covariance structure depends
on the magnitude of the change and on the parameters of the model. In fact, if we look for variance changes in each
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of the components of the series, we can find that several of these variance changes can be explained by a single
covariance change. In this article we study the detection of step changes in the variance and in the correlation structure
of the components of a vector autoregressive moving average (VARMA) model. Two approaches are introduced and
compared. The first one is a likelihood ratio approach and the second is a cusum approach.

The rest of this article is organized as follows. In Section 2 we present the model for covariance changes and two
statistics that can be used for testing for the change. In Section 3 we consider the particular case of changes only in
the variances of the components, and present two statistics for testing for such a change. In Section 4 we study two
different procedures for detection and estimation of these changes. In Section 5 the two procedures are compared in
a Monte Carlo experiment for different models, sample sizes, number of changes and location of the changepoints.
Finally, in Section 6 we illustrate the procedures by means of two real data examples. We conclude that the procedure
based on the cusum statistic has an overall better performance than the one based on the likelihood ratio test, whereas
for a single change and large sample size the likelihood ratio test appears to be more powerful.

2. Testing for covariance changes in multivariate time series

Let xt = (x1t , . . . , xkt )
′, t = 1, . . . , n, be a k-dimensional vector of time series following a vector ARIMA model,

given by

�(B)xt = c + �(B)at , (1)

where B is the backshift operator, Bxt = xt−1, �(B) = I − �1B − · · · − �pBp and �(B) = I − �1B − · · · − �qBq ,
are k ×k matrix polynomials of finite degrees p and q, c is a k-dimensional constant vector, and at = (a1t , . . . , akt )

′ is a
sequence of independent and identically distributed (iid) Gaussian random vectors with zero mean and positive-definite
covariance matrix, �. We assume that �(B) and �(B) are left coprime and that all the zeros of the determinants |�(B)|
are on or outside the unit circle and those of |�(B)| outside the unit circle. The series xt is stationary if |�(z)| �= 0
for all |z| = 1 and is unit-root nonstationary if |�(1)| = 0. The autoregressive representation of model (1) is given
by �(B)xt = c� + at , where �(B) = �(B)−1�(B) = I − ∑∞

i=1�iB
i , and c� = �(1)−1c is a vector of constants.

We also have the moving-average representation, xt = c� + �(B)at , where �(B) = I + ∑∞
i=1�iB

i is defined by
�(B)�(B) = �(B) and c� is a constant if the process is stationary and a deterministic function of time otherwise.

Suppose that instead of observing xt we observe a time series yt = (y1t , . . . , ykt )
′, defined as follows. Let S

(h)
t be a

step function such that S
(h)
t = 0, t < h, and S

(h)
t = 1, t �h. Let W be a lower triangular matrix of size k × k denoting

the magnitude of the covariance change. We assume that the innovations affecting the series, et , is not a sequence of
iid Nk(0, �) variables, due to a change in the covariance of the components at t = h, given by et = at + WS

(h)
t at .

Therefore, the observed vector time series yt = (y1t , . . . , ykt )
′ can be written as

�(B)yt = c + �(B)(at + WS
(h)
t at ). (2)

The relation between the observed series, yt , and the unobserved vector ARMA time series, xt , is given by

yt = xt + �(B)WS
(h)
t at . (3)

The covariance of et changes from � to �= (I +W)�(I +W)′ at the time point t =h. Without loss of generality, it
is assumed that (I +W) is a positive defined matrix so that W is well identified. For that, let �=L�L′

� and �=L�L′
�

be the Cholesky decompositions of � and �, respectively. Then, by taking,

W = L�L−1
� − I , (4)

we obtain � = (I + W)�(I + W)′, and the matrix W is unique.
To test the significance of a covariance change at t = h, suppose that the parameters of the vector ARMA model are

known and by using them we compute the innovations

et = yt −
p∑

i=1

�iyt−i − c +
q∑

j=1

�j et−j . (5)
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We want to test the hypothesis that these innovations are iid homoskedastic, versus the alternative hypothesis that
they are heteroskedastic because of a covariance change at a known location t = h. Thus, in Eq. (2) we consider the
null hypothesis H0 : W = 0 versus the alternative hypothesis H1 : W �= 0. The most usual method for testing the
homogeneity of the covariance matrices of two Gaussian populations is the likelihood ratio test (LRT) statistic, which
is asymptotically the most powerful test. Let us define the three matrices S = ∑n

t=1(et e
′
t )/n, S1 = ∑h

t=1(et e
′
t )/h and

S2 = ∑n
t=h+1(et e

′
t )/(n − h). The LRT statistic for testing for a covariance change at the time point m = h + 1 of the

innovations in (5) is given by

LRh = n log
|S|

|S1|�|S2|1−� , (6)

where � = h/n. Statistic (6), for a fixed time point h, under the null hypothesis of no covariance change and assuming
that the model is known, has an asymptotic chi-squared distribution with k(k + 1)/2 degrees of freedom.

An alternative cusum test statistic can be built as follows. Let Ah = ∑h
t=1e

′
t�

−1et be the multivariate cumulative
sum of squares of {e1, . . . , eh} for a fixed time point h with 1�h�n. Let

Ch = h√
2kn

(
Ah

h
− An

n

)
(7)

be the centered and standardized cumulative sum of squares of the sequence {e1, . . . , eh}. We study the asymptotic
behavior of statistic (7) under the hypothesis of homoskedasticity. Let M� be a standard Brownian motion on [0, 1].
Let M0

� denote a Brownian bridge given by M0
� =M� − �M1. The asymptotic distribution of the statistic Ch is obtained

in the following theorem, which is proved in the appendix.

Theorem 1. Let {e1, . . . , en} be a sequence of independent, identically distributed Gaussian, random variables with
zero mean and common covariance matrix �. For � = h/n, the statistic Ch in (7) converges weakly to M0

� , a standard
Brownian bridge on [0, 1].

A conclusion from Theorem 1 is that we can test for the presence of a covariance change at the time point m=h+ 1
in the innovations in (5), by obtaining the value of the statistic Ch in (7) and comparing it with the percentiles of the
distribution of a Brownian bridge at the time point �=h/n, which is a normal distribution with zero mean and variance
�(1 − �). We note that the Brownian bridge limit is operational only to test for a break of known location.

Finally, the magnitude of a covariance change is estimated from (4) by

Ŵ = LS2L
−1
S1

− I . (8)

3. The case of variance changes

When W is a diagonal matrix, the innovations have a change only in their variances but their correlations remain
constant. The observed vector time series yt =(y1t , . . . , ykt )

′ can be written as in (3) with W diagonal and the covariance
matrix of et at the time point t = h changes from � to � = (I + W)�(I + W). We assume that (I + W) is a positive
defined matrix, so that the matrix W is well identified. To show this, let � = D�R�D� and � = D�R�D� be the
spectral decompositions of the matrices � and �, respectively, where R� and R� are the correlation matrices of � and
�, which are assumed to be equal, and D� and D� are diagonal matrices whose elements are the standard deviations
of each component. By taking W = D�D−1

� − I , with W diagonal, we obtain � = (I + W)�(I + W), and the matrix
W is unique because the Cholesky decomposition of a matrix is unique. We note that this change may affect one or
several components and the elements different from 0 of W indicate the components with changing variance.

As in the previous case, to test the significance of a change at m = h + 1, suppose that the parameters of the vector
ARMA model are known and by using them we compute the innovations as in (5). We consider the null hypothesis
H0 : W = 0 versus the alternative hypothesis H1 : W �= 0 in Eq. (2) with W diagonal. Let us define the variances
s2(i) = ∑n

t=1(e
2
it )/n, s2

1 (i) = ∑h
t=1(e

2
it )/h and s2

2 (i) = ∑n
t=h+1(e

2
it )/(n − h), for i = 1, . . . , k. The LRT statistic of
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the innovations in (5) for a variance change at the time point m = h + 1 is given by

LRh = n log
s2(1) · · · s2(k)

(s2
1 (1) · · · s2

1 (k))�(s2
2 (1) · · · s2

2 (k))1−� , (9)

where � = h/n. Statistic (9), for a fixed time point h, under the null hypothesis of no variance change and assuming
that the model is known, has an asymptotic chi-squared distribution with k degrees of freedom.

A cumulative sums statistic can be built as follows. Under the null hypothesis of homoskedasticity, define bt =D−1
� et

with Cov(bt ) = R�. The principal components of the series bt are given by ct = U�bt , where U� is the matrix whose
columns are the eigenvectors of the matrix R�, and Cov(ct )=�, which is a diagonal matrix. The components of ct are
uncorrelated with variances equal to the elements of the matrix �. Let Ah = ∑h

t=1c
′
t ct be the multivariate cumulative

sums of squares of the sequence {c1, . . . , ch} for a fixed h with 1�h�n. Let

Ch = h√
2tr(�2)n

(
Ah

h
− An

n

)
(10)

be the centered and standardized cumulative sums of squares of the sequence {e1, . . . , eh}. The asymptotic distribution
of statistic (10) under the hypothesis of homoscedasticity can be obtained similarly to the case of changing covariance,
as it is shown in the following theorem, which is proved in the appendix.

Theorem 2. Let {e1, . . . , en} be a sequence of independent identically distributed Gaussian random variables with
zero mean and common covariance matrix �. Let bt = D−1

� et with Cov(bt ) = �, where D� is a diagonal matrix with
elements the standard deviations of the variances of the components of et and let ct be the principal components of the
series bt . Therefore, the statistic Ch in (10) converges weakly to M0

� , a standard Brownian bridge on [0, 1].

Thus, to test for the presence of a variance change at the time point m=h+1 of the innovations in (5), we obtain the
value of the statistic Ch in (10) and compare it with the percentiles of a N(0, �(1 − �)), the distribution of a Brownian
bridge at the time point � = h/n. As in the case of covariance changes, we note that the Brownian bridge limit is
operational only to test for a break of known location.

The magnitude of a variance change is estimated as follows:

Ŵ = diag(S1)
−1diag(S2) − I, i = 1, . . . , k. (11)

Under the null hypothesis of no variance change, (1+Ŵ (i, i))2 is distributed as an F distribution with (n−h+1, h−1)

degrees of freedom, so that we can test the null hypothesis of W(i, i)=0 by using this distribution.A confidence interval
for W(i, i), at significant level 	, is given by

1 − 	 = P

⎛
⎜⎝ 1 + Ŵ (i, i)√

F
1−	/2
(n−h+1,h−1)

− 1�W(i, i)� 1 + Ŵ (i, i)√
F

	/2
(n−h+1,h−1)

− 1

⎞
⎟⎠ ,

where F
	/2
(n−h+1,h−1) and F

1−	/2
(n−h+1,h−1) are the critical values of the F distribution with n − h + 1 and h − 1 degrees of

freedom, for significance levels 	/2 and 1 − 	/2, respectively.

4. Procedures for covariance change detection

A series can be affected by several covariance or variance changes. In this case, we observe a time series yt =
(y1t , . . . , ykt )

′ defined as follows:

yt = xt + �(B)(I + WrS
(hr )
t ) · · · (I + W1S

(h1)
t )at ,

where {h1, . . . , hr} are the time of r changepoints and W1, . . . , Wr are k × k lower triangular or diagonal matrices
denoting the impact of the r changes. Assuming that the parameters are known, the filtered series of innovations is
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Fig. 1. Three bivariate series and two statistics for covariance change detection. The first column is the no changes case, the second column is the
one change case at t = 250 and the third is the two changes case at t = 166 and t = 333.

given by

et = (I + WrS
(hr )
t ) · · · (I + W1S

(h1)
t )at ,

and the innovational covariance matrix of et changes from � to (I + W1)�(I + W1)
′ at t = h1, and to (I + W2)(I +

W1)�(I + W1)
′(I + W2)

′ at t = h2, and so on.
In practice, the number, location and sizes of the covariance changes are unknown. To motivate the proposed

procedures, let us consider a bivariate series generated by a first order vector autoregressive model. We consider three
different situations which are illustrated in the matrix of plots in Fig. 1. The first column corresponds to the case of
no covariance changes. The second column corresponds to the case of a single change at t = 250, where the variances
and the covariances of the components goes to 3 and 1, respectively. The third column corresponds to the case of two
changes at t =166, where the innovational covariance matrix changes as in the previous case, and at t =333, where the
innovational covariance matrix goes back to be I. The first (second) rows in Fig. 1 shows a sample of 500 observations
of the first (second) component of this bivariate series, and the third and fourth rows show the LRT statistic (6) and
the absolute value of the cusum statistic (7), respectively. In the first column in Fig. 1, no covariance change case, the
two statistics plotted in the third and fourth rows are always under the two straight lines corresponding to the 95%
critical values of the distributions of the maximums of statistic (6) and the absolute value of statistic (7), computed as
we will explain next. In the second column the maximum of both statistics is around t = 250, the time of the single
covariance change, and we obtain values larger than the corresponding critical values, so that the hypothesis of no
change is rejected in both cases. In the third column, these changes appear as two significant extremes around the times
of the changes, t = 166 and t = 333. These results suggest to look for the maximum of statistics (6) and (7) to discover
the location of a changepoint.
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We define the statistics,

�max = max
1� t �n

LRt , 
max = max
1� t �n

|Ct |, (12)

and let hLR
max and hC

maxbe the time indices in which the maximums are attained, respectively. The time indices hLR
max + 1

and hC
max + 1 are the estimates of the time of the change using the LRT and cusum statistics, respectively. The

distribution of �max in (12) is intractable, and critical values are obtained by simulation. The distribution of 
max in
(12) is asymptotically the distribution of sup{|M0

� | : 0���1}, which is given by (see, Billingsley, 1968, p. 85)

P {sup |M0
� |�a : 0���1} = 1 + 2

∞∑
i=1

(−1)i exp(−2i2a2),

and critical values can be obtained from this distribution. Note that the statistics in (12) can be obtained for covariance
changes as well as for variance changes. In the latter case, statistics (6) and (7) are replaced by statistics (9) and (10).

It is important to note that, in practice, the model should be identified and their parameters estimated. The effects of
model selection and parameter estimation in the statistics in (12) are very complex. In the case of the cusum statistics,
Bai (1993, 1994b) and Ling (1998) showed that the asymptotic distribution of the cusum statistics for detecting a change
in the level of stationary and non-stationary time series, respectively, are not affected by using estimated residuals. Park
et al. (2000) showed similar results for a change in the variance of autoregressive models fitted by least squares. The
case of covariance change detection in multivariate time series is much more difficult than in the previous cases because
the statistic 
max depends on estimated covariance matrices. We carried out Monte Carlo experiments that suggested
that the statistic 
max using the true model and parameters and using identified models and estimated parameters have
the same asymptotic distribution. The critical values of the LRT statistics are obtained via simulation using estimated
residuals.

In practice, we will compute the statistics in (12) for d + 1� t �n − d, where d is a positive integer denoting the
minimum number of residuals needed to estimate the parameters of the model. We have taken d as the number of
parameters to estimate plus one in each case,

d = k(p + q + 1) + k(k + 1)

2
+ 1, d = k(p + q + 1) + k + 1,

for covariance and variance changes, respectively. Usually, the limiting properties of the maximum test statistics may
differ if one trims the top and bottom 	% of the sample (see, for instance, Gombay and Horvath, 1990). In our case
we choose d independent of the sample size and as d/n → 0, the limiting distribution does not change. The empirical
critical values of the LRT statistics are computed taking this proposed trimming into account.

If several changes have occurred in the series, we propose iterative procedures based on the statistics �max and 
max
to detect them and estimate their impacts. We present the procedures for the case of covariance changes, while the case
of variance changes is considered later.

4.1. LRT procedure

The following procedure is a generalization to the one in Tsay (1988) for univariate time series. The algorithm is
based on cleaning the series after finding a change and proceeds as follows:

1. Assuming no covariance changes, specify a vector ARIMA model for the observed series yt . Obtain the maximum
likelihood estimates of the model and the filtered series of residuals, which we denote by êt . Define y∗

t = yt .
2. Compute the statistics LRh, h = d + 1, . . . , n − d, by using the residuals obtained in Step 1. Obtain the statistic

�max in (12) and denote by hLR
max the time index in which �max is attained. Compare �max with a specified critical

value C for a given critical level. If �max < C, assume that there is not a covariance change and the procedure stops.
If �max �C, assume that there is a possible covariance change at time t = hLR

max + 1.
3. Estimate the matrix W with (8), and compute a modified residual series as follows:

e∗
t =

{
êt , t < hLR+1

max ,

(I + Ŵ )−1êt , t �hLR+1
max ,
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and the corrected time series yt by

yt =
{

y∗
t , t < hLR

max + 1,

ĉ + �̂1y
∗
t−1 + · · · + �̂py∗

t−p + e∗
t − �̂1e

∗
t−1 − · · · − �̂qe∗

t−q, t �hLR
max + 1,

where the polynomials �̂(B) and �̂(B) are the maximum likelihood estimates of the parameters. Then, go back to
Step 1 considering yt as the observed process.

4. When no more covariance changes are detected, estimate the parameters of the series and all the covariance changes
found in the previous steps by using the model

�(B)yt = c + �(B)(I + WrS
(hr )
t ) · · · (I + W1S

(h1)
t )at . (13)

This joint estimation is carried out in two steps. First, estimate the parameters assuming no covariance changes and
then estimate the matrices Wi . After that, correct the series, and repeat these two steps until convergence.

4.2. Cusum procedure

The following procedure is a generalization to the one proposed by Inclán and Tiao (1994) for univariate time series.
The algorithm is based on successive divisions of the series into two pieces when a change is detected and proceeds as
follows:

1. Assuming no covariance changes, specify a vector ARIMA model for the observed series yt . Obtain the maximum
likelihood estimates of the model and the filtered series of residuals, êt . Let t1 = 1.

2. Compute the statistics Ch, h = d + 1, . . . , n − d , using the residuals obtained in Step 1. Obtain 
max in (12) and
denote by hC

max the time index in which 
max is attained. If 
max < C, assume that there is not a covariance change
and the procedure stops. If 
max �C, where C is a specified critical value for a given critical level, go to Step 3.

3. Step 3 has three substeps:
(a) Obtain 
max for t = 1, . . . , t2, where t2 = hC

max. If 
max > C, redefine t2 = hC
max and repeat Step 3(a) until


max < C. Define hfirst = t2, where t2 is the last value such that 
max > C.
(b) Obtain 
max for t = t1, . . . , n, where t1 = hC

max + 1 in Step 2. If 
max > C, redefine t1 = hC
max and repeat Step

3(b) until 
max < C. Define hlast = t1, where t1 is the last value such that 
max > C.
(c) If |hlast − hfirst| < d , there is just one change point and the algorithm stops here. Otherwise, keep both values

as possible change points and repeat Steps 2 and 3 for t = hfirst, . . . , hlast, until no more possible changes are
detected. Then, go to Step 4.

4. Define a vector � = (�1, . . . , �s) where �1 = 1, �s = n and �2, . . . , �s−1 are the points detected in Steps 2 and 3 in
increasing order. Obtain the statistic 
max in each interval (�i, �i+2) and check if it is significant. If not, eliminate
the corresponding point. Repeat Step 4 until the number of possible change points does not change, and the points
found in previous iterations do not differ from those in the last one. The vector (�2 +1, . . . , �s−1 +1) are the points
of covariance changes.

5. Finally, estimate the parameters of the series and the magnitudes of the covariance changes detected in the previous
steps jointly by using (13).

Some comments with regard to these algorithms are in order. First, the procedures for variance changes are similar
but with statistics (9) and (10), and the magnitudes of the changes are estimated by using (11). Second, the critical
values for the LRT statistics have to be computed by simulation as we will study in Section 5, while those of the
cusum procedure are the asymptotic critical values of the maximum of the absolute value of a Brownian Bridge. Third,
in both algorithms we require a minimum distance between changes, larger than d. If several changes are found in
an interval smaller than d, these changes will be considered as outliers and estimated by the procedure proposed in
Tsay et al. (2000). Third, the last step in the LRT procedure is needed for avoiding bias in the size of the estimated
covariance changes. Note that in Step 4, when a covariance change is detected, its magnitude is estimated and a new
series is defined by using this estimation. Thus, for instance, if there are two covariance changes, the magnitude of
the first change is estimated without taking into account the second one. Then, a new series is obtained based on the
biased estimated covariance matrix, which introduces bias in the estimation of the magnitude of the second change. In
conclusion, a joint estimation is needed to avoid biases in the estimation of the magnitudes of the changes.
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Table 1
Models for the simulation study

k = 2 k = 3

� � � �

∣∣∣∣0.6 0.2
0.2 0.4

∣∣∣∣
∣∣∣∣1 0
0 1

∣∣∣∣
∣∣∣∣∣∣
0.6 0.2 0
0.2 0.4 0
0.6 0.2 0.5

∣∣∣∣∣∣
∣∣∣∣∣∣
1 0 0
0 1 0
0 0 1

∣∣∣∣∣∣

Table 2
Empirical quantiles of the �max and 
max statistics based on 10 000 realizations

Probability-LRT Probability-cusum

W diagonal
k = 2 50% 90% 95% 97.5% 99% 50% 90% 95% 97.5% 99%

n = 100 9.71 15.09 16.94 18.62 21.03 0.75 1.12 1.27 1.38 1.49
n = 200 10.42 15.49 17.13 18.89 21.65 0.77 1.14 1.28 1.39 1.51
n = 500 11.26 16.46 18.09 19.87 22.32 0.79 1.19 1.33 1.44 1.56
n = 1000 11.72 17.07 19.00 21.02 23.31 0.80 1.21 1.34 1.47 1.60
n = ∞ – – – – – 0.82 1.22 1.35 1.48 1.62

k = 3 50% 90% 95% 97.5% 99% 50% 90% 95% 97.5% 99%
n = 100 11.98 17.70 20.00 21.95 23.93 0.75 1.13 1.26 1.37 1.49
n = 200 13.17 18.88 20.99 22.96 25.45 0.76 1.16 1.29 1.41 1.55
n = 500 13.99 19.73 21.48 23.57 25.74 0.78 1.17 1.31 1.43 1.56
n = 1000 14.81 20.75 22.70 24.44 27.52 0.79 1.20 1.34 1.44 1.61
n = ∞ – – – – – 0.82 1.22 1.35 1.48 1.62

W lower triangular

k = 2 50% 90% 95% 97.5% 99% 50% 90% 95% 97.5% 99%
n = 100 12.06 17.83 20.17 22.15 25.01 0.75 1.13 1.28 1.40 1.53
n = 200 12.61 18.30 20.30 22.40 25.30 0.78 1.17 1.29 1.43 1.55
n = 500 13.47 19.14 21.15 22.97 25.53 0.79 1.18 1.32 1.44 1.58
n = 1000 13.70 19.79 21.76 23.73 25.75 0.80 1.20 1.33 1.45 1.59
n = ∞ – – – – – 0.82 1.22 1.35 1.48 1.62

k = 3 50% 90% 95% 97.5% 99% 50% 90% 95% 97.5% 99%
n = 100 17.29 24.44 26.75 28.63 31.94 0.76 1.13 1.27 1.41 1.54
n = 200 18.29 25.25 27.70 29.48 32.20 0.78 1.15 1.28 1.43 1.56
n = 500 19.31 26.09 28.55 30.77 33.03 0.79 1.17 1.29 1.44 1.57
n = 1000 19.94 26.60 28.99 30.97 33.80 0.81 1.21 1.34 1.46 1.60
n = ∞ – – – – – 0.82 1.22 1.35 1.48 1.62

5. Monte Carlo results

The Monte Carlo results in this section and the analysis of real data examples in the next one have been carried out
by means of various routines written by the authors in MATLAB (developed by The MathWorks, Inc). We first obtain
critical values for the statistic �max in (12) for W diagonal and W lower triangular by simulating from the vector AR(1)
models in Table 1, where k = 2, 3 and sample sizes n = 100, 200, 500 and 1000. For each model and sample size, we
generate 10 000 realizations, estimate a vector AR(1) model, obtain the residuals, êt , and compute the statistic �max.
Table 2 provides some quantiles of the distribution of �max for both models and different sample sizes under the null
hypothesis of no covariance change in the sample. Note that the quantiles depend on the time series dimension. The
asymptotic distribution of the statistic 
max is known but we also study the finite sample behavior of the quantiles of this
statistic, see Table 2. As we can see, the finite sample quantiles are always smaller than the asymptotic ones, implying
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Table 3
Covariance matrices for the changes

�1 �2 �3 �4

∣∣∣∣ 2 0.5
0.5 2

∣∣∣∣
∣∣∣∣ 0.5 −0.125
−0.125 0.5

∣∣∣∣
∣∣∣∣∣∣

2 0.5 0.5
0.5 2 0.5
0.5 0.5 2

∣∣∣∣∣∣
∣∣∣∣∣∣

0.5 −0.125 −0.125
−0.125 0.5 −0.125
−0.125 −0.125 0.5

∣∣∣∣∣∣

Table 4
Results for model 1 and one covariance change

� n h LRT procedure Cusum procedure

Frequency ĥ Frequency ĥ

0 1 �2 Med Mad 0 1 �2 Med Mad

I 100 – 95.6 4.4 0.0 – – 97.2 2.8 0.0 – –
I 200 – 95.4 4.6 0.0 – – 97.1 2.9 0.0 – –
I 500 – 95.2 4.5 0.3 – – 97.0 2.6 0.4 – –

�1 100 25 69.2 30.3 0.5 26 6 60.4 39.4 0.2 39 10
50 46.6 53.4 0.0 50 5 18.2 80.6 1.2 52 3
75 60.4 39.2 0.4 75 3 30.6 69.1 0.3 75 3

�1 200 50 29.1 69.3 1.6 51 5 18.4 79.3 2.3 61 10
100 8.8 88.1 3.1 101 4 1.4 96.0 2.6 101 3
150 16.8 81.8 1.4 150 5 4.8 92.0 3.2 148 5

�1 500 125 0.0 96.2 3.8 126 4 0.0 95.4 4.6 137 11
250 0.0 97.4 2.6 251 3 0.0 93.8 6.2 252 4
375 0.2 95.8 4.0 376 4 0.2 95.8 4.0 375 5

�3 100 25 63.6 35.9 0.5 25 3 46.6 51.8 1.6 27 4
50 52.0 47.0 1.0 49 5 25.6 71.4 3.0 48 3
75 65.0 34.6 0.4 75 4 64.2 35.1 0.7 65 8

�3 200 50 17.2 80.4 2.4 50 3 5.4 90.6 4.0 51 4
100 4.8 91.7 3.5 99 3 0.6 94.8 4.6 99 3
150 19.8 77.8 2.4 149 4 14.4 81.5 4.1 141 8

�3 500 125 0.0 97.6 2.4 124 2 0.2 94.0 5.8 125 3
250 0.0 97.5 2.5 249 3 0.0 93.8 6.2 249 3
375 0.0 97.0 3.0 374 3 0.0 95.7 4.3 367 8

Med is the median and Mad, the median of the absolute deviations from the Med.

that the use of the asymptotic quantile is a conservative decision and, therefore, the type I error will not increase. Note
also that the quantiles do not depend on k.

Now, we consider the case of covariance changes and make a Monte Carlo analysis in order to study the size and
power of both procedures. For that, we consider the models in Table 1 and sample sizes, n = 100, 200 and 500. For the
case of one covariance change, for each n, we consider three locations of the change point, h = [0.25n], [0.50n] and
[0.75n]. The changes are introduced by transforming the original covariance matrix, � = I , into one of the matrices
�i , i = 1, 2, 3, 4, in Table 3. For each case, we generate 5000 realizations. Then, we apply the two procedures with the
95% critical values from Table 2. The results are shown in Tables 4 and 5 , where columns 4–6 and 9–11 report the
number of covariance changes detected by the algorithms and columns 7, 8, 12 and 13 show the median and the mean
absolute deviation of the estimates of the change points for each case. The cases with � = I indicate the type I error of
the procedures, which is around 5% in all the sample sizes considered. From these two tables we conclude that when
n = 100 the cusum procedure appears to work better than the LRT procedure. For n = 200, the cusum procedure is
slightly better than the LRT one, but for a larger change �2 and �4, the LRT seems to be slightly more powerful. In
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Table 5
Results for model 2 and one covariance change

LRT procedure Cusum procedure

� n h Frequency ĥ Frequency ĥ

0 1 �2 Med Mad 0 1 �2 Med Mad

I 100 – 94.4 5.4 0.2 – – 97.0 3.0 0.0 – –
I 200 – 94.4 5.3 0.3 – – 96.0 3.8 0.2 – –
I 500 – 95.2 4.8 0.0 – – 95.5 4.5 0.0 – –

25 58.3 40.7 1.0 26 5 49.1 49.7 1.2 34 7
�2 100 50 34.5 64.9 0.6 50 3 10.4 88.0 1.6 51 3

75 47.5 51.5 1.0 75 5 18.4 81.6 0.0 74 3

50 13.2 85.3 1.5 50 4 5.4 92.4 2.2 57 7
�2 200 100 3.0 95.6 1.4 101 3 0.2 97.5 2.3 101 3

150 9.6 88.5 1.9 151 3 0.4 97.4 2.2 150 3

125 0.0 97.6 2.4 125 3 0.0 91.3 8.7 133 8
�2 500 250 0.0 96.5 3.5 250 3 0.0 94.4 5.6 252 3

375 0.0 96.8 3.2 375 2 0.0 94.2 5.8 375 3

25 31.5 68.1 0.4 24 2 21.2 77.6 1.2 26 3
�4 100 50 14.2 84.3 1.5 50 2 8.4 89.5 2.1 49 2

75 36.9 60.5 2.6 74 2 40.1 57.7 2.2 70 5

50 1.8 95.2 3.0 50 2 0.0 97.0 3.0 51 3
�4 200 100 0.0 97.1 2.9 100 2 0.0 94.3 5.7 99 2

150 3.4 94.4 2.2 150 2 4.2 89.8 6.0 145 5

125 0.0 97.2 2.8 125 2 0.0 94.7 5.3 125 2
�4 500 250 0.0 97.6 2.4 250 1 0.0 92.5 7.5 249 2

375 0.0 97.4 2.6 375 2 0.0 93.6 6.4 369 6

Med is the median and Mad, the median of the absolute deviations from the Med.

almost all the cases, the time of the changes is better estimated with the LRT procedure. Also for n = 500, the LRT
procedure is slightly better than the cusum one.

For two change points, we consider the same sample sizes and changes at h1 =[0.33n] and h2 =[0.66n]. Each change
point is associated with two matrices �i , i = 1, 2, 3, 4, which give the residual covariance matrices after each change.
Four combinations are considered. For each case, we generate 5000 realizations with the corresponding changes. Then,
we apply the two procedures with the 95% critical values from Table 2. The results are shown in Tables 6 and 7. Columns
6–9 in these tables are the number of covariance changes detected by the algorithms, and columns 10–13 show the
median and the mean absolute deviation of the estimates of the changepoints. For two changepoints, the advantage
of the cusum procedure over the LRT one is clearer. Note that, first, the detection frequency of two change points is
larger for the cusum procedure in almost all the cases, and, second, the LRT procedure suffers of an overestimation of
the number of changes in some situations. When k = 2, the sample size is small (n = 100) and small changes (�2 and
I), the detection frequency of the cusum procedure is low: 9.6% and 17.4% for k = 2 and k = 3, respectively. In the
rest of the cases, the cusum procedure works quite well, with several cases over the 90% of detection frequency. As
in the previous case, as the sample size increases, the change is larger and the number of components increases, the
procedure works better. It also appears that the estimate of the second changepoint has smallest Mad, suggesting that
the procedure detects more precisely the change at the end of the series. The medians of the estimates are quite closed
to the real changepoints, except with the smallest sample size and the smallest changes.

Now, we study the case of changes in the variances. We make a simulation in order to study the power of the proposed
procedures for a single change. We consider the same models and sample sizes for k = 2 as in the previous case, and
the changes are introduced by transforming the original covariance matrix, � = I , into one of the matrices, �5 = 2 × I

and �6 =0.5× I . For each case, we generate 5000 realizations. Then, we apply the two procedures with the 5% critical
values from Table 2. The results are shown in Table 8, with the same design as before. The case with � = I shows the
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Table 6
Results for model 1 and two covariance changes

� � n h1 h2 Frequency ĥ1 ĥ2

0 1 2 �3 Med Mad Med Mad

LRT procedure
�1 I 100 33 66 83.6 12.4 4.0 0.0 29 4 66 2

200 66 133 61.1 20.0 18.8 0.0 66 4 133 4
500 166 333 9.6 3.6 84.3 2.5 165 4 335 2

�2 I 100 33 66 90.2 9.2 0.5 0.1 30 4 66 2
200 66 133 84.0 13.4 2.2 0.4 62 8 134 2
500 166 333 44.5 6.8 42.4 6.3 161 5 340 7

�1 �2 100 33 66 7.1 73.3 19.2 0.4 31 5 66 1
200 66 133 0.0 46.3 53.5 0.2 66 5 133 1
500 166 333 0.0 0.2 91.4 6.6 166 4 333 1

�2 �1 100 33 66 15.4 82.6 2.0 0.0 28 18 67 1
200 66 133 0.4 81.6 16.8 1.2 60 6 134 1
500 166 333 0.0 4.2 89.0 6.8 162 5 334 1

Cusum procedure
�1 I 100 33 66 75.4 9.2 15.0 0.4 36 3 65 2

200 66 133 39.3 6.8 52.6 1.3 68 3 131 3
500 166 333 0.6 0.0 94.0 5.4 168 4 331 3

�2 I 100 33 66 72.0 17.8 9.6 0.6 31 2 69 3
200 66 133 46.7 8.4 41.3 3.6 65 2 135 2
500 166 333 1.6 0.0 91.3 7.1 164 3 335 3

�1 �2 100 33 66 3.8 33.9 62.1 0.2 34 3 65 1
200 66 133 0.2 6.6 90.4 2.8 68 4 132 1
500 166 333 0.0 0.0 91.9 8.1 168 4 332 1

�2 �1 100 33 66 53.5 18.8 26.1 1.6 32 2 66 1
200 66 133 0.4 18.3 74.7 6.6 65 3 134 1
500 166 333 0.0 0.0 93.1 6.9 164 3 334 1

Med is the median and Mad, the median of the absolute deviations from the Med.

type I error of the procedures, which is around the 5% in all the sample sizes considered. When n = 100, the cusum
procedure appears to work better than the LRT procedure. For n = 200 the cusum procedure is slightly better than the
LRT one, but when n=500, the detection frequency of one changepoint is larger than 90% and there is a small increase
in the detection of two or more changes by the cusum procedure. The time of the changes is slightly better estimated
with the LRT procedure.

Finally, we study the power of these statistics when there is also a change in the parameter matrices, which will be
called a structural change. Let yt be a series generated by the following model:{

�1(B)yt = c1 + �1(B)at , t < h,

�2(B)yt = c2 + �2(B)(at + WS
(h)
t at ), t �h,

such that the covariance matrix as well as the polynomials of the model changes at time t =h. The polynomials �1(B),
�2(B), �1(B) and �2(B) are assumed to verify the conditions for stationarity and invertibility in Section 2. If the
procedures had good power properties for detecting a covariance change under a structural change, they could be a
useful tool for detecting both covariance changes and structural changes. We consider the case of k = 2 and sample
sizes n = 100, 200 and 500. The changes are introduced by transforming the original covariance matrix, � = I , into
�1 and �2, and the autoregressive polynomial �1 into �2, where

�1 =
(

0.6 0.2
0.2 0.4

)
, �2 =

(
0.3 0.4
0.4 0.7

)
.
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Table 7
Results for model 2 and two covariance changes

� � n h1 h2 Frequency ĥ1 ĥ2

0 1 2 �3 Med Mad Med Mad

LRT procedure
�3 I 100 33 66 79.6 15.6 4.8 0.0 27 7 67 6

200 66 133 47.7 19.6 32.3 0.4 66 4 133 4
500 166 333 2.0 0.4 96.1 1.5 166 3 333 3

�4 I 100 33 66 88.8 11.0 0.2 0.0 29 1 82 1
200 66 133 74.1 19.8 6.0 0.0 63 3 136 3
500 166 333 18.2 0.2 59.6 21.9 163 3 336 3

�3 �4 100 33 66 0.6 75.9 23.2 0.3 30 4 66 1
200 66 133 0.0 32.9 66.5 0.6 65 4 133 1
500 166 333 1.8 0.2 95.9 2.1 166 3 333 3

�4 �3 100 33 66 4.6 94.0 1.4 0.0 28 9 70 2
200 66 133 0.0 70.5 28.4 1.1 62 4 134 1
500 166 333 0.0 0.0 77.2 22.8 163 3 333 0

Cusum procedure
�3 I 100 33 66 68.5 12.6 18.8 0.0 34 2 65 2

200 66 133 19.4 1.8 75.7 3.1 67 3 132 3
500 166 333 0.0 0.0 91.4 8.6 167 3 331 3

�4 I 100 33 66 67.7 14.4 17.4 0.4 32 2 68 2
200 66 133 26.7 1.0 68.5 3.8 65 2 134 2
500 166 333 0.0 0.0 89.7 10.3 165 2 335 2

�3 �4 100 33 66 1.4 28.3 69.9 0.4 34 2 65 1
200 66 133 0.2 1.4 95.1 3.3 67 3 133 1
500 166 333 0.0 0.0 94.6 5.4 167 3 331 2

�4 �3 100 33 66 1.0 55.5 42.1 1.4 33 2 66 1
200 66 133 0.2 3.6 87.4 8.8 65 2 134 1
500 166 333 0.2 0.0 84.3 15.5 165 2 333 1

Med is the median and Mad, the median of the absolute deviations from the Med.

For each case, we generate 5000 realizations. Then, we apply the two procedures with the 5% critical values from
Table 2. The results are shown in Table 9. We conclude that both procedures have a small decrease in power for small
samples sizes, specially when h = [0.25n], but they do not lose power for big sample sizes, here n = 500, except the
LRT procedure when the change is h = [0.75n]. Note that we do not take into account the existence of the break in the
parameter matrix. Therefore, the change in the parameter matrix affects the estimation of the covariance matrices and,
thus, the value of the statistics for covariance changes. Comparing the results in Tables 4 and 9 we conclude that the
presence of the parameter change decreases the power of both statistics for covariance change detection, but specially
to the LRT one.

6. Illustrative examples

6.1. Example: flour data

We consider the trivariate series of the logarithms of monthly flour price indices from three US cities over the period
August 1972 through November 1980. This vector series was analyzed by Tiao and Tsay (1989), Grubb (1992) and
Lütkepohl and Poskitt (1996) and is shown in Fig. 2. Tiao and Tsay (1989) fitted a restricted vector ARMA(1,1) to
the series, whereas Grubb (1992), by using the Akaike Information Criteria (AIC), chose a restricted VAR(2) model.
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Table 8
Results for model 1 with variances changes

� n h LRT procedure Cusum procedure

Frequency ĥ Frequency ĥ

0 1 �2 Med Mad 0 1 �2 Med Mad

I 100 – 94.2 5.8 0.0 – – 96.8 3.2 0.0 – –
I 200 – 95.6 4.2 0.2 – – 95.6 4.2 0.2 – –
I 500 – 96.4 3.6 0.0 – – 96.0 3.8 0.2 – –

�5 100 25 63.5 35.8 0.7 26 5 58.9 40.5 0.6 36 7
50 42.9 56.7 0.4 50 5 14.2 85.0 0.8 52 3
75 49.9 49.9 0.2 75 4 27.5 72.2 0.3 74 3

�5 200 50 22.2 76.2 1.6 51 5 11.2 85.6 3.2 60 9
100 6.4 90.3 3.3 100 4 0.6 95.9 3.5 101 3
150 16.8 80.2 3.0 150 5 3.2 95.2 1.6 150 4

�5 500 125 0.0 97.8 2.2 126 4 0.0 95.2 4.8 134 9
250 0.0 96.2 3.8 250 3 0.0 93.6 6.4 251 3
375 0.0 95.4 4.6 376 4 0.0 93.5 6.5 375 4

�6 100 25 66.7 33.1 0.2 25 3 54.1 45.7 0.2 26 3
50 49.7 49.7 0.6 50 4 27.9 69.8 2.3 48 3
75 64.9 33.7 1.4 74 6 66.5 31.9 1.6 65 8

�6 200 50 23.4 74.1 2.4 49 4 12.0 84.2 3.8 50 4
100 11.8 84.3 3.9 99 4 1.2 96.0 2.8 98 3
150 24.6 72.3 3.0 149 5 15.4 81.0 3.6 140 9

�6 500 125 0.2 97.0 2.8 124 4 0.0 91.8 8.2 125 4
250 0.0 97.5 2.5 251 3 0.0 96.7 3.3 250 3
375 0.2 97.0 2.8 374 4 0.2 94.3 5.5 365 10

Med is the median and Mad, the median of the absolute deviations from the Med.

Lütkepohl and Poskitt (1996) investigated cointegration in these series using Johansen’s test (see Johansen, 1991) in
a VAR(2) model, rejecting the null hypothesis of cointegration. Then, they fitted a VAR(1) for the differenced series,
which is showed in the second row in Table 10.

Using this model, we first apply the LRT and cusum procedures for variance changes. Table 11 summarizes the
results. No variance changes are detected by both procedures (see the values for W diagonal). Then, we apply the LRT
and cusum procedures for covariances changes, and both procedures detect one change point at t = 33 (April, 1975).
The estimation of W is done as in (8). We include in the table the values of the Akaike and Bayesian information criteria
(AIC and BIC) for each model, given by −(2/n) log(maximized likelihood) + (c/n)(number of parameters), where
c = 2 for AIC and c = log(n) for BIC. Note that the values of both criteria are reduced when the covariance change is
introduced. Both criteria indicate that the model with one covariance change at t = 33 (April, 1975) appears to be the
most appropriate for the data. The final estimated model is shown in the third row in Table 10.

Finally, we estimate a VAR(1) model to the subsamples 1–32 and 33–100. The two estimated models with their
standard errors are given in the fourth and fifth rows in Table 10. As we can see, the parameters of the model and the
sample residual covariance matrices are quite different in both models, so that we conclude that the series may have a
structural change at t = 33. The model for the second part of the series is apparently a random walk and the sample
residual covariance matrix has smaller values than those of the first part of the series.

6.2. Example: wheat data

We consider the series of the logarithms of the monthly wheat price indices from five provinces in Castillia, Spain,
over the period July 1880 through December 1890. This vector series was analyzed in Peña and Box (1987) and is
shown in Fig. 3. We investigate cointegration in these series using Johansen’s test and by using the BIC we chose a
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Table 9
Results for structural changes

� � n h LRT procedure Cusum procedure

Frequency ĥ Frequency ĥ

0 1 �2 Med Mad 0 1 �2 Med Mad

�2 �1 100 25 76.0 23.8 0.2 25 7 75.0 24.8 0.2 39 11
50 58.5 40.8 0.7 50 6 27.5 72.2 0.3 52 4
75 60.7 39.1 0.2 75 6 33.3 65.5 1.2 74 4

�2 �1 200 50 44.9 53.3 1.8 50 7 40.9 58.1 1.0 66 15
100 15.8 81.2 3.0 101 7 2.6 94.2 3.2 102 6
150 15.2 78.3 6.4 151 5 4.2 93.4 2.4 149 5

�2 �1 500 125 4.2 91.6 4.2 126 7 3.2 93.1 3.7 141 16
250 0.0 91.0 9.0 251 5 0.2 95.6 4.2 253 5
375 0.0 75.7 24.3 376 4 0.0 92.8 7.2 375 4

�2 �2 100 25 51.5 48.1 0.4 24 3 35.3 63.1 1.6 26 3
50 41.9 56.7 1.4 50 4 23.2 73.6 3.1 49 3
75 51.1 47.1 1.8 75 5 80.0 19.8 0.2 62 8

�2 �2 200 50 10.0 85.2 4.8 50 3 0.8 93.0 6.2 50 3
100 5.0 89.3 5.7 100 4 0.2 92.9 6.9 99 3
150 18.4 76.6 5.0 151 6 40.3 56.1 3.6 136 13

�2 �2 500 125 0.0 92.0 8.0 124 2 0.0 91.1 8.9 125 3
250 0.0 87.9 12.1 250 4 0.0 91.9 8.1 248 4
375 0.4 76.0 23.6 376 9 0.8 91.4 7.8 362 13

Med is the median and Mad, the median of the absolute deviations from the Med.

Table 10
AR parameter matrix (�̂) and estimated covariance matrix (�̂) for three models fitted to the flour series

Model �̂ 102�̂

VAR(1)

∣∣∣∣∣∣∣∣
−0.86
(0.17)

1.01
(0.18)

0

−0.43
(0.17)

0.62
(0.19)

0

0 0.25
(0.10)

0

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣
0.20 0.21 0.20
0.21 0.24 0.22
0.20 0.22 0.27

∣∣∣∣∣∣

VAR(1) + covariance change at h = 33

∣∣∣∣∣∣∣∣
−0.83
(0.15)

0.96
(0.16)

0

−0.48
(0.13)

0.64
(0.14)

0

0 0.21
(0.11)

0

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣
0.20 0.21 0.20
0.21 0.23 0.22
0.20 0.22 0.26

∣∣∣∣∣∣

First part (1–32)

∣∣∣∣∣∣∣∣
−0.61
(0.14)

0.95
(0.20)

0

0 0.40
(0.16)

0

0 0.43
(0.18)

0

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣
0.24 0.26 0.27
0.26 0.30 0.31
0.27 0.31 0.37

∣∣∣∣∣∣

Second part (33–100)

∣∣∣∣∣∣∣
−0.28
(0.11)

0.26
(0.11)

0

0 0 0
0 0 0

∣∣∣∣∣∣∣
∣∣∣∣∣∣
0.19 0.26 0.17
0.20 0.21 0.19
0.17 0.19 0.21

∣∣∣∣∣∣
Standard errors of the coefficients are under parenthesis.

vector error correction model given by ∇yt =−�yt−1 +et , with three cointegration relationships. This is in agreement
with the two factors found by Peña and Box (1987).

First, we apply the LRT and cusum procedures for variance changes assuming the vector error correction model
with three cointegration relationships shown in the second row in Table 12. Table 13 summarizes the results: the LRT
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Fig. 2. Monthly flour price indices for three US cities.

Table 11
Summary of the LRT and cusum procedures for the flour data

Method VAR(1) LRT
W diag

Cusum
W diag

LRT
W triang.

Cusum
W triang.

h – 28 60 33 33
�max/
max – 13.26 0.63 28.95 1.78

Ŵ – – –

∣∣∣∣∣∣
−0.14 0 0
0.40 −0.53 0

−0.02 −0.17 −0.09

∣∣∣∣∣∣
∣∣∣∣∣∣
−0.14 0 0
0.40 −0.53 0

−0.02 −0.17 −0.09

∣∣∣∣∣∣
AIC −14.01 −14.01 −14.01 −27.39 −27.39
BIC −13.77 −13.77 −13.77 −26.99 −26.99

procedure detects one change at h = 90 (December, 1888), and the cusum procedure detects one change at h = 41
(November, 1883). The estimation of the changes and their confidence intervals appear in Table 13. If one of the changes
in one component is not significant, we represented it by 0. The minimum values of both the AIC and BIC correspond
to the model proposed by the cusum with one change.

Then, we apply the LRT and cusum procedures for covariances changes, see Table 14. The LRT procedure detects
now one change at h = 90 (December, 1888), while the cusum procedure detects two changes: at h = 35 (May, 1883)
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Table 12
AR parameter matrix (�̂) and estimated covariance matrix (�̂) for two models fitted to the wheat series

Model �̂ 103�̂

ECM

∣∣∣∣∣∣∣∣∣

0.04 0.13 0.02 −0.37 0.17
−0.15 0.67 −0.05 −0.41 −0.03
0.08 0.31 0.56 −0.94 −0.00

−0.10 0.23 −0.17 0.07 −0.03
0.13 0.04 −0.10 −0.56 0.48

∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣

1.40 0.45 0.53 0.64 0.54
0.45 0.81 0.45 0.30 0.38
0.53 0.45 2.37 0.60 0.66
0.64 0.30 0.60 0.90 0.52
0.54 0.38 0.66 0.52 1.97

∣∣∣∣∣∣∣∣∣

ECM + 2 cov. changes

∣∣∣∣∣∣∣∣∣

0.10 0.05 −0.01 −0.31 0.16
0.02 0.37 −0.13 −0.25 −0.01
0.23 −0.00 0.40 −0.66 0.03

−0.11 0.11 −0.17 0.26 −0.09
0.19 −0.16 −0.12 −0.41 0.50

∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣

2.21 0.88 1.05 1.25 0.99
0.88 1.43 1.18 0.54 0.83
1.05 1.18 4.62 1.10 1.26
1.25 0.54 1.10 1.66 0.94
0.99 0.83 1.26 0.94 2.47

∣∣∣∣∣∣∣∣∣

1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891

3

3.5

1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891

3

3.5

1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891

3

3.5

1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891

3

3.5

1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891

3

3.5

A
vi

la
P

al
en

ci
a 

S
al

am
an

ca
 

V
al

la
do

lid
 

Z
am

or
a 

Fig. 3. Monthly wheat price indices for five provinces in Castillia, Spain.

and h = 90 (December, 1888). The estimation of the changes appears in Table 14. The minimum of the values of both
the AIC and BIC corresponds to the model proposed by the cusum with two changes.

The final model is selected by the BIC (although AIC gives the same result) and is the one obtained by the
cusum procedure allowing covariance changes. The estimated parameters for this ECM are shown in the third row in
Table 12.
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Table 13
Summary of the LRT and cusum procedures for variance changes for the wheat data

Method VAR(1) LRT Cusum

h – 90 41
�max/
max – 72.58 2.25
Ŵ (1, 1)

I.C.
– −0.47

(−0.56,−0.36)
−0.37

(−0.52,−0.50)

Ŵ (2, 2)
I.C.

– −0.31
(−0.43,−0.17)

0

Ŵ (3, 3)
I.C.

– −0.56
(−0.64,−0.47)

−0.30
(−0.47,−0.11)

Ŵ (4, 4)
I.C.

– −0.28
(−0.41,−0.13)

−0.35
(−0.51,−0.18)

Ŵ (5, 5)
I.C.

– −0.35
(−0.46,−0.21)

−0.29
(−0.46,−0.09)

AIC −19.53 −28.05 −29.31
BIC −18.97 −27.41 −28.64

Table 14
Summary of the LRT and cusum procedures for covariance changes for the wheat data

Method h �max/
max Ŵ AIC BIC

ECM – – – −19.53 −18.97

LRT 90 74.35

∣∣∣∣∣∣∣∣∣

−0.47 0 0 0 0
−0.02 −0.32 0 0 0
−0.09 −0.11 −0.51 0 0
−0.16 0.22 −0.04 −0.22 0
−0.25 0.15 −0.18 0.52 −0.40

∣∣∣∣∣∣∣∣∣
-30.51 -29.04

35 1.81

∣∣∣∣∣∣∣∣∣

−0.30 0 0 0 0
−0.09 −0.16 0 0 0
0.00 0.00 −0.37 0 0

−0.15 0.20 0.01 −0.38 0
−0.07 −0.08 0.02 −0.05 −0.05

∣∣∣∣∣∣∣∣∣
Cusum −30.97 −29.73

90 2.03

∣∣∣∣∣∣∣∣∣

−0.37 0 0 0 0
0.00 −0.37 0 0 0

−0.01 −0.27 −0.35 0 0
−0.04 0.06 −0.10 −0.02 0
−0.03 −0.09 −0.09 0.48 −0.24

∣∣∣∣∣∣∣∣∣
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Appendix

Proof of Theorem 1. We define the process �h = e′
h�

−1eh − k, with E[�h] = 0 and finite variance,

�2
� = E[�2

h] = E[(e′
h�

−1eh − k)2] = 2k.

The process �h satisfies the conditions of Theorem 3.4 in Phillips and Solo (1992). Therefore, for h = n�,

1

��
√

n

h∑
t=1

�t−→dM�, (14)
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and

1

��
√

n

h∑
t=1

�t − h

n

1

��
√

n

n∑
t=1

�t = h√
2kn

(
Ah

h
− An

n

)
−→dM0

� ,

which proves the stated result. �

Proof of Theorem 2. We define the process �h = c′
hch − k, with E[�h] = 0 and finite variance,

�2
� = E[�2

h] = E[(c′
hch − k)2] = 2tr(�2).

The process �h satisfies (14) for h = n� and consequently,

1

��
√

n

h∑
t=1

�t − h

n

1

��
√

n

n∑
t=1

�t = h√
2tr(�2)n

(
Ah

h
− An

n

)
−→dM0

� ,

which proves the stated result. �
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