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This article compares three methods for computing the posterior probabilities of the possible orders
in polynomial regression models. These posterior probabilities are used for forecasting using Bayesian
model averaging. It is shown that Bayesian model averaging provides a closer relationship between the
theoretical coverage of the high-density predictive interval (HDPI) and the observed coverage than those
corresponding to selecting the best model. The performance of the different procedures is illustrated with
simulations and some known engineering data.
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1. INTRODUCTION

In many engineering situations where the response variable
of interest is a polynomial function of an independent vari-
able, an important problem is to determine the degree of the
polynomial. From the frequentist standpoint, the most com-
mon approaches are (1) applying a variable selection method
(e.g., forward or backward selection), which uses the t statis-
tic for testing the coefficient of the highest-order polynomial,
and (2) selecting the model by an order determination criterion,
such as that of Akaike (1973) and others. From the Bayesian
standpoint, two alternative options are available: (1) determin-
ing the order of the polynomial by means of the Bayes fac-
tors and (2) using an asymptotic approximation to the posterior
model probabilities, such as the criteria of Schwarz (1978),
Philips and Guttman (1998), and others.

Although these approaches are very useful for selecting the
model that seems to have generated the data, they are less use-
ful for forecasting purposes when there is a considerable un-
certainty regarding the degree of the polynomial. In particular,
the highest posterior prediction intervals, or the confidence in-
tervals for the parameters, may be too short because the un-
certainty about the degree of the polynomial involved is not
completely taken into account. In this article we first compare
different procedures for computing the posterior probabilities
for different polynomial degrees, then take into account the
model uncertainty for forecasting using Bayesian model aver-
aging (BMA).

The main idea of BMA is as follows. Suppose that we have
a set of possible models, M1,M2, . . . ,MK, that can generate
a given dataset y. Suppose that we have prior probabilities,
P(Mi), and are able to compute the posterior probabilities of
the models given the available data, P(Mi|y). Then the pre-
dictive distribution of a new observation yf can be obtained
by weighting the predictive distributions of each model by
their posterior probabilities, P(Mi|y). Accordingly, BMA takes
into account the uncertainty about the different models, as was
pointed out in the seminal work of Leamer (1978). (See Draper
and Guttman 1987; George 1999; Draper 1995; Chatfield 1995;
Kass and Raftery 1995; Hoeting et al. 1999; Raftery et al. 1997;

Fernandez et al. 2002 for different applications of this proce-
dure.)

The probability P(Mi|y) is proportional to p(y|Mi)P(Mi),
and p(y|Mi) is obtained by averaging over the possible para-
meter values, which requires the posterior probabilities for the
model parameters. If we do not have clear prior information
about the parameters and want to use a reference or nonin-
formative prior for them, then the probabilities P(Mi|y) can-
not be determined. To illustrate this problem, suppose that the
model Mi depends on some parameter vector θ i and that the
prior probabilities for these parameter vectors, p(θ i|Mi), are
improper, that is, p(θ i|Mi) ∝ g(θ i), so that p(θ i|Mi) = cig(θ i),

which means that the integral of g(θ i) diverges. Then the mar-
ginal distribution of the data when Mi holds is given by

p(y|Mi) = ci

∫
p(y|θ i,Mi)g(θ i)dθ i,

and the posterior probability that model Mi holds is

p(Mi|y) = ci(m(y))−1
{∫

p(y|θ i,Mi)g(θ i)dθ i

}
p(Mi), (1)

where m(y) = ∑K
i=1 p(y|Mi)p(Mi). Thus we see that this prob-

ability, which is needed for choosing among the models and
for computing a forecast by BMA, depends on the unknown
constant ci. We note that, using (1) with the definition of m(y)

given below (1),
∑K

i=1 p(Mi|y) = 1. The Bayes factor for com-
paring two models, Mi and Mj, is

Bij = p(Mi|y)

p(Mj|y)
= ci

cj

p(y|Mi)

p(y|Mj)

p(Mi)

p(Mj)
, (2)

and depends on the unknown and indeterminate ratio ci/cj.

Once this problem is solved, we can compute forecasts taking
into account all sources of uncertainty as follows. For a given
model Mi, the posterior predictive distribution, p( yf |y,Mi)
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when predicting a future observation, yf , where we assume that
yf is independent of y, is given by

p( yf |y,Mi) =
∫

p( yf |θ i,Mi)p(θ i|y,Mi)dθ i, (3)

where p(θ i|y,Mi) is the posterior distribution for the parame-
ters involved in model Mi. This predictive distribution takes
into account the variability of the parameters, measured by
p(θ i|y,Mi). The unconditional predictive distribution is then
found by

p( yf |y) =
K∑

k=1

p( yf |y,Mk)p(Mk|y). (4)

We use (4) in the sequel and refer to it as BMA, for indeed
the predictive of yf , given the data y stated in (4), is a weight-
ing of predictives of yf under models Mk, k = 1, . . . ,K, with
the weights given by the posterior probabilities that model Mk

holds.
This equation can also be written, inserting (3) in (4), as

p( yf |y) =
K∑

k=1

p(Mk|y)

∫
p( yf |θk,Mk)p(θk|y,Mk)dθk,

which shows that by using BMA, we are taking into account
both the parameter variability, as measured by the weighting
over the possible parameter values made by the integral, and
the model variability, as measured by the weighting over the
possible models.

Here we focus on the general polynomial regression
model, Mj,

y = β0 + β1x + · · · + βjx
j + ε,

where ε is N(0, σ 2) and the degree j is unknown but is assumed
to be such that 0 ≤ j ≤ d. To estimate j, a sample of values
(xi, yi) are obtained for i = 1, . . . ,n. Thus for some j, the ob-
servations are generated by

y = Xjβj+ε, (5)

where β j = (β0, . . . , βj)
′, y = ( y1, . . . , yn)

′, and Xj = (1,x,x2,

. . . ,xj), with the n × 1 column vector xk given by xk =
(xk

1, . . . , xk
n)

′. Then, under model Mj,

E(y|Mj) =
j∑

i=0

βixi, j = 0,1, . . . ,d.

The rest of the article is organized as follows. Section 2 in-
troduces three priors for the model space: one that is noninfor-
mative and two that favor the parsimony principle with respect
to the degree of the polynomial. Section 3 presents three dif-
ferent approaches for computing the posterior probabilities of
the models given the available data: the intrinsic Bayes factor
(IBF) of Berger and Pericchi (1996b), the fractional Bayes fac-
tor (FBF) proposed by O’Hagan (1995), and an approximate
method based on the Bayesian information criterion (BIC), pro-
posed by Schwarz (1978). These methods are compared in a
Monte Carlo study in Section 4 and using some real data ex-
amples in Section 5. Finally, Section 6 gives some concluding
remarks.

2. THE PRIOR FOR THE MODELS

We consider three possible choices for the prior distribu-
tion p(Mj). The first choice is the uniform distribution over the
set of possible orders, j = 0,1, . . . ,d, that is,

p(Mj) = (d + 1)−1. (6)

The second choice for p(Mj) is a prior that penalizes the de-
gree of the polynomial. We use a truncated geometric prior dis-
tribution over the degree of the polynomial,

p(Mj) = (1 − q)

(1 − qd+1)
q j, j = 0,1, . . . ,d, (7)

for 0 < q < 1, where j is the degree of the model. We are in-
terested in choosing a model, given the data, that is as parsi-
monious as possible, and with this aim, we have chosen the
prior (7) that favors M0, so that a priori E(Y) = β0. Mak-
ing a correspondence between J and Mj, this implies that we
should choose the prior in such a way that E(J) < .5, that is,

E(J) = q
(1−q)

1−(d+1)qd+dqd+1

(1−qd+1)
< .5, which, as may be verified,

holds if we choose q < 1/3. The prior (7) decreases as j in-
creases and has the advantage that the ratios p(Mj)/p(Mj+1) are
constant for j = 0, . . . ,d − 1.

The third prior proposed is a truncated binomial prior distri-
bution B(n,p), which implies that

p(Mj) = cp j(1 − p)n−j, j = 0,1, . . . ,d, (8)

where c in chosen so that
∑

p(Mj) = 1. We have chosen in the
examples n = 7 and p = 1/3.

3. METHODS FOR DETERMINING POSTERIOR
MODEL PROBABILITIES

Assuming the standard noninformative prior for (β j, σ
2), to

compute the posterior probabilities that model Mj holds (i.e.,
the degree is j) using (1), we would need the normalizing con-
stant (m(y))−1. Using (1) with the definition of m(y) that fol-
lows (1), we are involved with parameter vector θ i = (β ′

i, σ
2)′

of dimension i + 2 and also note that, using (2), it is straightfor-
ward to show that

p(Mj|D) = p(D|Mj)p(Mj)∑d
i=0 p(D|Mi)p(Mi)

=
[

d∑
i=0

Bij
p(Mi)

p(Mj)

]−1

, (9)

where Bij = p(D|Mi)/p(D|Mj) is the Bayes factor needed. It
is important to note that when improper priors are used, the
Bayes factors depend on the unknown indeterminate ratio ci/cj

[see (2)]. Also, we use the notation D to denote the data (Xd,y)

with the understanding that for model j, j < d, a subset of D is
used, namely (Xj,y). We also remark that

∑d
j=0 p(Mj|D) = 1,

which easily follows from (9).

3.1 Intrinsic Bayes Factors (IBF)

Berger and Pericchi (1996a, b) proposed solving the indeter-
mination problem in the Bayes factor when using a noninforma-

TECHNOMETRICS, FEBRUARY 2005, VOL. 47, NO. 1



BAYESIAN APPROACH FOR PREDICTING 25

tive prior for the parameters by selecting at random a training
sample of minimum size and using this sample as data to com-
pute a proper posterior distribution for the parameters. Then this
posterior is used as prior for the analysis of the rest of the data.
Of course, the result then may depend on the particular training
sample used, and some kind of averaging is required to avoid
this effect.

Let Xj be the n × ( j + 1) design matrix with the complete
data and columns (1, x, . . . , xj) used when fitting model Mj.

Then a training sample of m = j + 2 out of n observations is
selected. We index the use of a particular training sample of
size m by t, t = 1, . . . ,T = (n

m

)
, and we assume from now on

that the first m observations of the y vector, say yt, and the first
m rows of the matrix Xj, say Xt( j), correspond to the training
sample, Dt = (Xt( j),yt), and D(−t) refers to the rest of the data,
say (X(−t)( j),y(−t)). Suppose that the standard noninformative
prior for (β j, σ

2) is used. Then the posterior distribution for the
parameters given a training sample is

p(β j, σ
2|Dt)

= K1(σ
2)−(m/2+1)

× exp

(
− 1

2σ 2

(
yt − Xt( j)β j

)′(yt − Xt( j)βj
))

, (10)

where K1 is a constant depending only on t. Now we use the
posterior (10) as a prior for the remaining analysis. Note that

Bij = p(D|Mi)

p(D|Mj)
= p(D(−t)|Dt,Mi)p(Dt|Mi)

p(D(−t)|Dt,Mj)p(Dt|Mj)
= Bij(t)B

t
ij,

where Bij(t) is the conditional Bayes factor given the data in
the training sample and Bt

ij is the Bayes factor using only the
training sample. Thus we have that

Bij(t) = BijB
t
ji.

Suppose that we use noninformative priors, so that Bij and Bt
ji

depend [as shown in (2)] on unknown constants. These con-
stants will then be cancelled out when computing the con-
ditional Bayes factor. Because the conditional Bayes factor
depends on the training sample, Berger and Pericchi (1996a, b)
proposed several types of averaging over all the possible train-
ing samples. One of their proposals is to use the arithmetic IBF,
defined as the arithmetic mean of Bij(t) over the T possible
training samples. This factor is very expensive to compute and
is unstable for small sample sizes. A better solution is the ex-
pected IBF, say BE

ij , which in nested models with Mi ⊂ Mj can
be computed by

BE
ij = C∗

ij

|X′
jXj|1/2|X′

t(i)Xt(i)|1/2

|X′
iXi|1/2|X′

t( j)Xt( j)|1/2

(
Ri

Rj

)−(n−i−1)/2

×[exp(−λij(t)/2)]M
(

1

2
,

j − i + 1

2
,
λij(t)

2

)
,

where Rj = y′(In −Xj(X′
jXj)

−1X′
j)y is the sum of squares of the

residuals for Xj,

C∗
ij = �( n−i−1

2 )�(
i−j+1

2 )

�(
n−j−1

2 )�( 1
2 )

(
�

(
1

2

)−1)(
n − i − 1

2

)( j−i)/2

,

(11)

λij(t) = Ri

n − j − 1
β ′

iX
′
t(i)

× [
I − Xt( j)

(
X′

t( j)Xt( j)
)−1X′

t( j)
]−1Xt(i)β i, (12)

and M(a,b, c) is Kummer’s function (see Abramowitz and
Stegun 1970, chap. 13). Then Abramawitz and Stegun (1970)
define BE

ji = 1/BE
ij . We use the expected IBF for the comparison

of the posterior probabilities. The posterior probabilities can be
obtained using (9) by

pI(Mj|D) =
(

d∑
i=0

BE
ij

p(Mi)

p(Mj)

)−1

,

where the ratio p(Mi)/p(Mj) depends on the particular prior for
the models used.

3.2 Fractional Bayes Factor (FBF)

O’Hagan (1995) proposed avoiding the problem of indeter-
mination with noninformative priors by using a modified Bayes
factor, the FBF. For a dataset D = (X,y), this is defined as

Bb
ij(D) =qi(b,D)

qj(b,D)
, (13)

where b = m/n and m is the size of the minimal training sample,
with

qi(b,D) =
∫

g(θ i)pi(y|θ i,Mi)dθ i∫
g(θ i)[ pi(y|θ i,Mi)]b dθ i

, (14)

where g(θ i) is the prior distribution for the parameters and
pi(y|θ i,Mi) is the full likelihood under the model Mi. Note that
if b = 0, then no training sample is involved. Then (13) is just
the standard Bayes factor, Bij(D) = B0

ij(D), for comparing mod-
els Mi and Mj. The posterior probability for a model can now
be written as

p(Mj|D) =
[

d∑
i=0

Bb
ij

p(Mi)

p(Mj)

]−1

. (15)

Now qi(b,D) may be computed for the polynomial model (5)
using a noninformative prior for the parameters θ i = (β i, σ

2),

given by g(θ i) = p(βi, σ
2) ∝ σ−2. Then the denominator of

qi(b,D) in (14) is∫
g(θ i)[ pi(y|θ i,Mi)]b dθ i

= (2π)−nb/2
∫

σ−(nb/2+1)

× exp

{
− b

2σ 2

(
Ri + (β i − β̂ i)

′X′
iXi(β i − β̂ i)

)}
dβi dσ 2,

where β̂ i = (X′
iXi)

−1X′
iy and

Ri = y′(In − Xi(X′
iXi)

−1X′
i

)
y. (16)

Integrating with respect to σ 2 and β i, we have that the de-
nominator of qi(b,D) is∫

g(θ i)[ pi(y|θ i,Mi)]b dθ i

= 1

2
(πRi)

−w/2b−nb/2�

(
w

2

)
|X′

iXi|−1/2,
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where w = nb − d − 1 are the degrees of freedom. Because the
numerator of qi(b,D) is equal to the expression for the denom-
inator with b = 1, we then have that

qi(b,y) =
∫

g(θ i)pi(y|θ i,Mi)dθ i∫
g(θ i)[ pi(y|θ i,Mi)]b dθ i

= �( v
2 )

�(w
2 )

b+nb/2(πRi)
−n(1−b)/2.

For our polynomial problem, the minimum sample size that
makes the prior proper for the parameters is m = d +2, and then
b = m/n = (d + 2)/n. To compute the posterior probability for
the models, we use

Bb
ki(D) =�( n−k−1

2 )�( nb−i−1
2 )

�( nb−k−1
2 )�( n−i−1

2 )

(
Rk

Ri

)−n(1−b)/2

, (17)

and from (15), the model posterior probabilities are

p(Mj|D) = KFBF
�(

n−j−1
2 )

�(
d+1−j

2 )
(Rj)

−(n−d−2)/2,

where

KFBF =
[

d∑
i=0

�( n−i−1
2 )

�( d+1−i
2 )

(Ri)
−(n−d−2)/2

]−1

.

3.3 The Bayes Information Criterion
(BIC) Approximation

An alternative approach is to compute the posterior probabil-
ities p(Mj|D) using the BIC approximation. The Schwarz crite-
rion for Mi is defined as

S(Mi) = log pi(y|̂θ i) − 1

2
di log n,

where θ̂ i is the maximum likelihood estimator (MLE) of the pa-
rameter vector (β i, σ ) under model Mi and di is the dimension
of the vector β i. The BIC of a model Mi is

BIC(Mi) = −2S(Mi),

and, as Kass and Raftery (1995) pointed out, exp(S(Mi) −
S(Mj)) approximates the Bayes factor Bij with a relative er-
ror O(1). Then we can approximate the Bayes factors by

BBIC
ij = exp(S(Mi) − S(Mj)) = exp(−.5BIC(Mi))

exp(−.5BIC(Mj))

and obtain the posterior probability for a model by

p(Mj|D) ∝ p(Mj) exp

(
log pj(y|̂θ j) − 1

2
dj log n

)
.

The likelihood for a normal linear model evaluated at the
MLE θ̂ j of (β j, σ ) is easily seen to be

pj(y|̂θ j) = (2π)−n/2
(

Rj

n

)−n/2

e−n/2,

and the posterior probability of Mj, may be approximated, after
absorbing common constants, by

p(Mj|D) = KBICp(Mj)R
−n/2
j n−( j+1)/2, (18)

Figure 1. Standardized Penalty of the BIC Method (- ·- ·) and FBF
Method (—). The maximum degree d is 5, for the models, constant,
j = 0; linear, j = 1; and quadratic j = 2.

where

KBIC =
[

d∑
j=0

R−n/2
j n−( j+2)/2p(Mj)

]−1

.

It is interesting to compare (18) with the probabilities ob-
tained by the previous methods. It can be shown (see the App.)
that assuming a uniform prior, the posterior probabilities com-
puted by the FBF and the BIC approximation can be written as
a function of the residual sum of squares and a penalty function
that depends on the order of the polynomial. Figure 1 shows
these standardized penalty functions as functions of the sample
size, n, for j = 0,1,2 with maximum degree d = 5, where n is
allowed to vary between 50 and 500. Similar results were ob-
tained for other d. This figure shows that BIC penalizes more
than FBF; BIC gives more weight than FBF to the model with
lowest degree, and thus gives less weight than FBF to polyno-
mials of higher degree.

4. SIMULATIONS

In this section we compare, using a Monte Carlo study, the
procedures presented in the previous section. We also study
the effect of the prior distribution on these procedures using
the three priors defined in Section 2. We envision the follow-
ing scenario: We generate observations using a model Mj of
Table 1 (see Fig. 2 for a sample generated from each one of

Table 1. Model Used in the Monte Carlo Study

Model y = σ 2

M1 2 + x + ε 1
M2 3 − x + ε 1
M3 10 − 2x2 + ε 5
M4 −10 − 3x + x2 + ε 5
M5 3 + 10x − 2x3 + ε 10
M6 −4 + x − 3x2 + x3 + ε 10

NOTE: In all the six cases, the distribution of the error term is N(0, σ 2 ).
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Figure 2. One Replication for the Six Models Under Study.

these models), where the x values are spaced equally in the in-
terval [−3,3], so that the sample size in each case is n = 61.

We generate N = 100 replications from each model. For each
replication, we fit polynomial models of order 0,1, . . . ,d =

p + h, where p is the correct degree of each model and h =
0,1,2,3,4, and compute the posterior probabilities for each
possible order using the three methods described in Section 3
and the three priors described in Section 2.

4.1 Posterior Probabilities of the Models

Table 2 gives the posterior probabilities that the model Mi
holds obtained using the nine methods. We emphasize (high-
lighting in bold type) the maximal posterior probability for each
model and for each value of h.

We note that the posterior probability that Mi holds, given the
data D, represents an updating of information. We start with
prior information that Mi holds, namely p(Mi), and then take
into account the relevant data D and proceed as indicated in
Sections 1–3 to update the prior, to the posterior that Mi holds,
given D, using Bayes’s theorem, which produces p(Mi|D). As
seen generally in Section 1, and in particular in (9), we have
that

∑d
i=0 p(Mi|D) = 1.

An experiment confronted with the set of these posterior
probabilities p(Mi |D ), i = 0, . . . ,d, might well look for the
maximum, say

p(Mk|D) = max
i

{ p(Mi|D)},
and use this result to fit model Mk. We advocate taking this
approach in this situation because, based on prior and sample

Table 2. Posterior Probability That the Model Mi Holds, Using the Nine Methods

IBFG IBFB IBFU BICG BICB BICU FBFG FBFB FBFU

M1
h = 0 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
h = 1 .9913 .9374 .9284 .9726 .8286 .8054 .9788 .8553 .8348
h = 2 .9911 .9255 .9109 .9692 .7973 .7528 .9663 .7739 .7283
h = 3 .9937 .9376 .9221 .9754 .7963 .7377 .9653 .7236 .6514
h = 4 .9923 .9308 .9159 .9720 .7985 .7479 .9565 .6922 .6122

M2
h = 0 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
h = 1 .9936 .9442 .9351 .9783 .8324 .8083 .9832 .8601 .8389
h = 2 .9921 .9242 .9089 .9737 .7963 .7537 .9700 .7713 .7274
h = 3 .9938 .9412 .9286 .9786 .8291 .7850 .9696 .7599 .7005
h = 4 .9904 .9291 .9142 .9733 .8079 .7545 .9588 .7015 .6176

M3
h = 0 .9983 1.0000 1.0000 .9998 1.0000 1.0000 .9996 1.0000 1.0000
h = 1 .9849 .9300 .8877 .9807 .8906 .8094 .9849 .9112 .8412
h = 2 .9861 .9292 .8696 .9760 .8716 .7584 .9727 .8539 .7328
h = 3 .9895 .9369 .8747 .9782 .8775 .7496 .9688 .8285 .6653
h = 4 .9854 .9281 .8601 .9738 .8635 .7439 .9587 .7902 .6066

M4
h = 0 .7343 .9120 .9209 .8364 .9565 .9618 .7941 .9413 .9480
h = 1 .7460 .8663 .8411 .8366 .8578 .7888 .8283 .8753 .8160
h = 2 .7202 .8456 .8152 .7893 .8141 .7156 .7870 .8037 .6966
h = 3 .7332 .8637 .8151 .8179 .8416 .7294 .8158 .8004 .6536
h = 4 .7508 .8590 .8057 .8169 .8274 .7143 .8121 .7641 .5892

M5
h = 0 .7058 .9787 .9861 .8424 .9979 .9988 .8073 .9965 .9981
h = 1 .7164 .8769 .8067 .8249 .9104 .7913 .8306 .9278 .8240
h = 2 .7806 .9248 .8330 .8282 .9199 .7703 .8398 .9110 .7463
h = 3 .7879 .9194 .8101 .8233 .9091 .7328 .8371 .8818 .6525
h = 4 .7739 .9056 .7770 .7858 .8994 .7276 .8039 .8539 .5950

M6
h = 0 .4966 .6637 .7166 .6675 .8367 .8829 .6014 .7980 .8536
h = 1 .3951 .5775 .6118 .5610 .7336 .6941 .5409 .7397 .7198
h = 2 .4673 .6535 .6570 .6538 .7764 .6707 .6454 .7761 .6580
h = 3 .4634 .6603 .6873 .6138 .7576 .6806 .6144 .7540 .6241
h = 4 .4527 .6450 .6642 .6054 .7355 .6378 .6083 .7226 .5406
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(a) (b)

(c) (d)

Figure 3. Main Effects and 95% Confidence Intervals for the Posterior Probabilities of a Correct Model.

information, the posterior probability that Mk holds is maxi-
mum, so that the experimenter has the most confidence in fitting
model Mk and acting as if Mk is the model that best explains the
data.

The results of Table 2 can be analyzed as an experiment
with four factors: method, prior, model, and h. Figure 3 shows
the estimation of the main effects for the four factors and the
95% confidence intervals for these estimations. We conclude
that the IBF has the best performance, followed by BIC and
FBF. Regarding the priors, the binomial is the best, followed
closely by the geometric. The three first models have small un-
certainty about the polynomial degree, and for them the proba-
bilities of the correct degree are very high with all the methods,
whereas the last three models, especially model M6, show more
uncertainty. The effect of increasing h is to decrease the poste-
rior probabilities of a correct model, as expected.

Some interactions between priors and models are found. For
the first three models (M1–M3), the probabilities are higher with
the geometric prior, whereas the binomial is better for higher-
order models (M4–M6). There are also interactions between
models and methods. For the three first models, IBF is the best,
whereas BIC is the best for models M4–M6. Regarding the in-
teractions between priors and methods, IBF works better with
the binomial, whereas BIC and FBF work better with the geo-
metric. From the standpoint of robustness to the value of h,

the more robust methods are BIC and IBF, and this important
property, as well as their good overall performance, lead us to
recommend them.

4.2 Predictive Distributions

To compare the prediction ability of the three methods, we
generate observations at 10 equally spaced points in the in-
terval xh = [−3,3] and compute the response at these points
from the six models described in Table 1. We also introduce

in the comparison three standard methods for selecting the best
model in linear regression applied to finding the order of the
polynomial degree: all-subsets regression with the Akaike in-
formation criterion (AIC) (Akaike 1973), the forward selec-
tion (FS) method and the backward elimination (BE) method
(see, e.g., Thompson 1978). The process is repeated 100 times,
and the frequency with which the true values are included in
the 85%,90%,95%, 97.5%, and 99% highest predictive den-
sity interval (HPDI) obtained by the 12 methods considered
is recorded. The HPDI have been computed for the Bayesian
methods by (a) BMA and (b) selecting the best model (SBM).
For the three classical procedures, the prediction confidence in-
tervals (PCIs) are those provided by the best model selected.

Let f(α, i), with α = (.85, .90, .95, .975, .99), be the rela-
tive frequency with which the true value is included in the
HPDI(α, i) interval, i =IBFG, IBFB, IBFU, BICG, BICB,
BICU, FBFG, FBFB, FBFU, or in the PCI(α, i), with i = AIC,
FS, BE. Let

d(α, i) = (f(α, i) − α)100

be the percentage deviation between the observed interval cov-
erage and the theoretical interval coverage. Table 3 presents the
values of d(α, i). The best result for each model is highlighted
in bold type.

We can observe that all the values are negative, which in-
dicates that all of the methods underestimate the length of the
true predictive interval; that is, they underestimate the uncer-
tainty involved in forecasting. For the three standard methods,
FS works better in the first two methods, whereas AIC shows
better behavior in the last three methods. Further examination
of the results shows that BE does not perform very well, but that
for M5, the methods with a geometric prior demonstrate worse
results than BE, and again for M5, FS is worse than BE. We also
note that prediction intervals generated by BMA almost always
have better coverage than those generated by the best selected
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Table 3. Results for the Mean of the Difference Between the Number of Points Contents in the α HDI and
the Nominal Value α Multiplied by 100

IBFG IBFB IBFU BICG BICB BICU FBFG FBFB FBFU AIC BE FS

M1
BMA −.0002 −0 .0003 −.0001 −.0003 −.0002 −.0002 −.0002 −.0002
SBM −.0002 −.0007 −.0008 −.0003 −.0011 −.0014 −.0003 −.0013 −.0015 −.0014 −.0039 −.0009

M2
BMA −.0032 −.0036 −.0029 −.0035 −.0033 −.0030 −.0034 −.0030 −.0028
SBM −.0032 −.0036 −.0036 −.0036 −.0042 −.0043 −.0036 −.0040 −.0038 −.0044 −.0057 −.0035

M3
BMA −.0036 −.0035 −.0027 −.0037 −.0035 −.0043 −.0037 −.0038 −.0045
SBM −.0039 −.0039 −.0042 −.0039 −.0048 −.0054 −.0039 −.0050 −.0058 −.0057 −.0147 −.0054

M4
BMA −.0104 −.0103 −.0094 −.0110 −.0107 −.0116 −.0102 −.0109 −.0116
SBM −.0156 −.0127 −.0123 −.0140 −.0117 −.0126 −.0145 −.0118 −.0129 −.0126 −.0153 −.0144

M5
BMA −.0170 −.0153 −.0154 −.0174 −.0160 −.0166 −.0171 −.0156 −.0165
SBM −.0303 −.0160 −.0171 −.0263 −.0165 −.0182 −.0238 −.0165 −.0183 −.0185 −.0209 −.0240

M6
BMA −.0119 −.0110 −.0088 −.0130 −.0129 −.0158 −.0112 −.0127 −.0154
SBM −.0205 −.0195 −.0204 −.0200 −.0192 −.0200 −.0195 −.0192 −.0205 −.0201 −.0224 −.0206

model. Note that intervals by BMA are larger than those by
SMB, but keep in mind that this property does not imply that
they have better coverage.

The results of Table 3 can also be analyzed as an experimen-
tal design with four factors: method, prior, procedure for pre-
diction (BMA or SBM), and model. To include the procedure
as a factor, we eliminate the three non-Bayesian methods (AIC,
FS, and BE) in the experimental design. Figure 4 shows the esti-
mated main effects and their 95% confidence intervals. The best
performance is again obtained by IBF, but now the differences
among the three methods are not significant at the .05 level,
corresponding to a 95% confidence interval. With regard to the
priors, the binomial works better, but there is no significant dif-
ference from the uniform, although both have a significantly
better performance than the geometric prior. There is a very pro-
nounced effect of predicting using BMA with respect to SBM,
with predictive coverage improved by approximately 30%. Fi-
nally, the uncertainty in the model is in agreement with previ-

Figure 4. Main Effects and 95% Confidence Intervals for the Differ-
ence Between Coverage of the Interval and the Nominal Value. The
scale is multiplied by 10−3.

ous results, although whereas the last model, M6, was the one
with the lowest posterior probability for the correct model, it is
model M5 that has the worst predictive capability. The conclu-
sions with respect to the interactions are similar to those of the
previous case.

5. EXAMPLES

5.1 Protein Content

The data on wheat yield and protein content were reported
by Snedecor and Cochran (1989, p. 399). This dataset has
n = 19 and is presented graphically in Figure 5. The authors
fit a quadratic model to these data to explain the protein content
given the yield. The fitted quadratic model and other fitted mod-
els are given in Table 4. The t value for the second-order coeffi-
cient in the quadratic model is 2.20, with a p value of .043. The
cubic model does not provide any improvement. As the data
show, point 4 might be regarded as an outlier. Table 4 shows
the residual standard deviation for the different models fitted to
both the complete data and the dataset when observation 4 is
deleted.

Figure 5. Graph of the Protein Data.
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Table 4. Different Polynomial Models Fitted to the Protein Content Data

Order Model ŷ = ŝR ŝR(4)

0 12.54 2.212 1.767
1 16.05 − .158x

(−5.16)
1.420 1.012

2 18.67 − .437x
(−3.37)

+ .00587x2

(2.20)
1.282 .8410

3 17.98 − .312x
(−.81)

− .00027x2

(−.015)
+ .000087x3

(.35)
1.319 .8704

4 14.43 + .606x
(−.55)

− .0073x2

(−.88)
+ .0023x3

(.92)
− .000023x4

(−.90)
1.328 .9031

NOTE: The third column shows the standard deviations of the residuals and the fourth column
ŝR(4) is the standard deviation when point 4 is deleted.

Table 5 gives the posterior probabilities for each order using
the three procedures and the three priors and the model selected
by the AIC, BE, and FS procedures. In all cases IBF selects
the linear model, except for d = 4 with the binomial and uni-
form prior. The BIC and FBF methods work similarly, select-
ing the linear model with the geometric prior and the quadratic
model for the other two priors. The AIC criterion and BE for
d ≥ 2 choose the quadratic model, whereas FS chooses the lin-
ear model in all cases. Note that when the quadratic model has
the highest probability, this value is relatively small, so that in
effect, there is much uncertainty about the right model.

Table 6 gives the posterior probability for each order when
data point 4 is deleted. All of the posterior probabilities for the
quadratic model increase a bit and decrease for the linear model,
except for the case of IBF with d = 4. BIC, FBF, AIC, and BE
choose the same models as in Table 5, and now FS chooses the
quadratic model instead of the linear model.

5.2 The Voltage Data

Montgomery and Peck (1992, p. 212) gave 41 observations
on the battery voltage drop in a guided missile motor over time.
A scatterplot of both variables is shown in Figure 6. These au-
thors fitted a cubic spline with two knots to these data, ob-
taining a residual standard deviation of .2678. An alternative
could be to fitted a polynomial regression model to these data.
Montgomery and Peck stated that the cubic polynomial regres-
sion shows a cyclical pattern in the residuals. Figure 7 shows
that this pattern disappears when fitting a polynomial of fourth
degree. Table 7 gives the residual variance for several orders;

it can be seen that the fourth-order model seems to fit the data
quite well.

As in the previous example, Table 8 presents the results
for the posterior probabilities of each model with degrees
from 2 to 6 with q = .15 for the geometric prior. All methods
choose the model of degree 4 (or the highest degree when the
maximum degree d is <4). This example is interesting because
it demonstrates good agreement of the IBF, BIC, and FBF meth-
ods in choosing a high-degree polynomial even in the case in
which a prior penalizing the degree of the polynomial is se-
lected. The AIC, FS, and BE methods also exhibit good behav-
ior in all cases.

5.3 Growth Rate Data

The data comprise 10 samples with growth rate data for ex-
perimental rats fed by various doses of a dietary supplement,
and come from Box et al. (1978, p. 480). These authors con-
cluded that in view of the graphics and the analysis of variance
table, the quadratic equation supplies an adequate representa-
tion over the region studied. A scatterplot of the data is given in
Figure 8.

Table 9 shows that for d = 1, all methods choose the con-
stant model and for d ≥ 2, all methods choose the quadratic
model except FS, which chooses the linear model in the first
case and the cubic in the third. Note that with d = 3, the uncer-
tainty about the best model can be important, and some meth-
ods give to the third-order-degree model a probability as high
as .36, which will have a clear effect on the forecast generated
by BMA.

6. CONCLUDING REMARKS

In this article we have carried out a comparative study of
three methods to estimate the degree of a polynomial model and
to obtain HDI for prediction. The three methods are compared
with three different priors, two that penalize the degree of the
polynomial and one that is uniform over the space of the model.

We conclude that IBF performs better than the other two
methods, FBF and BIC, in selecting the model. Regarding the
three priors used, the binomial seems to work better. For pre-
diction purposes, whatever method is used, prediction intervals

Table 5. Posterior Probability of the jth-Order Model for the Protein Data

d, j IBFG IBFB IBFU BICG BICB BICU FBFG FBFB FBFU AIC BE FS

1, 0 .0393 .0020 .0031 .0074 .0004 .0006 .0336 .0017 .0026 0 1 0
1, 1 .9607 .9980 .9969 .9926 .9996 .9994 .9664 .9983 .9974 1 0 1

2, 0 .0352 .0018 .0026 .0061 .0001 .0001 .0309 .0008 .0011 0 0 0
2, 1 .9631 .9799 .9754 .8195 .2972 .2606 .8696 .4400 .3956 0 0 1
2, 2 .0017 .0183 .0219 .1744 .7027 .7393 .0995 .5593 .6034 1 1 0

3, 0 .0346 .0012 .0017 .0061 .0001 .0001 .0371 .0008 .0009 0 0 0
3, 1 .9357 .7389 .6978 .8169 .2734 .2203 .8300 .3387 .2790 0 0 1
3, 2 .0294 .2549 .2892 .1738 .6464 .6249 .1307 .5925 .5856 1 1 0
3, 3 .0001 .0050 .0112 .0032 .0800 .1547 .0023 .0680 .1345 0 0 0

4, 0 .0321 .0008 .0011 .0061 .0001 .0001 .0490 .0009 .0010 0 0 0
4, 1 .8786 .4666 .4169 .8168 .2709 .2077 .8057 .2995 .2242 0 0 1
4, 2 .0890 .5259 .5666 .1738 .6404 .5893 .1415 .5844 .5250 1 1 0
4, 3 .0002 .0052 .0108 .0032 .0793 .1459 .0038 .1050 .1886 0 0 0
4, 4 0 .0002 .0017 .0001 .0093 .0569 .0001 .0102 .0612 0 0 0
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Table 6. Posterior Probability of the jth-Order Model for the Protein Data When the Point 4 Is Deleted

d, j IBFG IBFB IBFU BICG BICB BICU FBFG FBFB FBFU AIC BE FS

1, 0 .0104 .0005 .0008 .0014 .0001 .0001 .0094 .0005 .0007 0 1 0
1, 1 .9896 .9995 .9992 .9986 .9999 .9999 .9906 .9995 .9993 1 0 1

2, 0 .0108 .0004 .0005 .0008 0 0 .0080 .0001 .0001 0 0 0
2, 1 .8957 .4616 .4167 .5301 .0923 .0781 .7394 .2085 .1800 0 0 0
2, 2 .0929 .5380 .5827 .4691 .9077 .9219 .2526 .7914 .8199 1 1 1

3, 0 .0093 .0002 .0002 .0008 0 0 .0106 .0001 .0001 0 0 0
3, 1 .8256 .3100 .2718 .5257 .0834 .0641 .6876 .1577 .1241 0 0 0
3, 2 .1650 .6888 .7260 .4653 .8198 .7570 .2969 .7567 .7143 1 1 1
3, 3 .0001 .0006 .0013 .0082 .0969 .1789 .0050 .0855 .1614 0 0 0

4, 0 .0103 .0002 .0003 .0008 0 0 .0159 .0002 .0002 0 0 0
4, 1 .9283 .5593 .4881 .5256 .0828 .0615 .6767 .1460 .1054 0 0 0
4, 2 .0602 .4066 .4350 .4652 .8142 .7263 .2993 .7175 .6217 1 1 1
4, 3 .0008 .0309 .0646 .0082 .0962 .1716 .0080 .1273 .2207 0 0 0
4, 4 0 .0011 .0067 .0001 .0068 .0405 .0001 .0090 .0520 0 0 0

Figure 6. Graph of the Voltage Data.

Figure 7. Residuals for Different Degrees of the Polynomial Model in
the Voltage Data.

Table 7. Residual Standard Deviation for
the Voltage Data for Different Polynomial Degrees

Order 0 1 2 3 4 5 6
Residual std 2.563 2.345 1.076 .9335 .2576 .2609 .2640

computed by BMA have a higher precision than those corre-
sponding to the best model. These latter intervals are underesti-
mated, and the BMA prediction appears to correct this effect.

It would be interesting to explore whether the results ob-
tained in this article can be generalized to the case of several
exploratory variables as in response surface methodology. This
problem is now the subject of further research by us.
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APPENDIX: COMPARING PENALTY FUNCTIONS

Let pA(Mj |D ) be the posterior probabilities of model Mj

using method A, where A = {FBF; BIC} assuming a uniform
prior. For the FBF, the posterior probabilities are given by

pFBF(Mj|D) = K
�(

n−j−1
2 )

�(
d−j+1

2 )
R−(n−d−2)/2

j

whereas for the BIC approximation, the posterior probabilities
are

pBIC(Mj|D) = KR−n/2
j n−( j+2)/2.

These posterior probabilities have a similar functional form
but differ in their penalty function, which is given by

pnBIC(n, j) = n−( j+2)/2

and

pnFBF(n, j,d) = �(
n−j−1

2 )

�(
d−j+1

2 )
.

We note that the penalty function for the BIC method, pnBIC,
is decreasing with n, whereas the penalty function for the FBF,
pnFBF, is increasing with nn/2. To show this, using Stirling’s
approximation, we have

log�(x + 1) ≈ 1

2
log(2π) +

(
x + 1

2

)
log x − x,
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Table 8. Posterior Probability of the jth-Order Model for the Voltage Data Where the Maximum Degree Is d

d, j IBFG IBFB IBFU BICG BICB BICU FBFG FBFB FBFU AIC BE FS

2, 0 0 0 0 0 0 0 0 0 0 0 0 0
2, 1 0 0 0 0 0 0 0 0 0 0 0 0
2, 2 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1 1 1

3, 0 0 0 0 0 0 0 0 0 0 0 0 0
3, 1 0 0 0 0 0 0 0 0 0 0 0 0
3, 2 .8097 .3896 .2419 .1256 .0211 .0107 .2674 .0519 .0266 0 0 0
3, 3 .1903 .6104 .7581 .8744 .9789 .9893 .7326 .9481 .9734 1 1 1

4, 0 0 0 0 0 0 0 0 0 0 0 0 0
4, 1 0 0 0 0 0 0 0 0 0 0 0 0
4, 2 0 0 0 0 0 0 0 0 0 0 0 0
4, 3 0 0 0 0 0 0 0 0 0 0 0 0
4, 4 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1 1 1

5, 0 0 0 0 0 0 0 0 0 0 0 0 0
5, 1 0 0 0 0 0 0 0 0 0 0 0 0
5, 2 0 0 0 0 0 0 0 0 0 0 0 0
5, 3 0 0 0 0 0 0 0 0 0 0 0 0
5, 4 .9981 .9958 .9755 .9877 .9730 .8571 .9892 .9763 .8730 1 1 1
5, 5 .0019 .0042 .0245 .0123 .0270 .1429 .0108 .0237 .1270 0 0 0

6, 0 0 0 0 0 0 0 0 0 0 0 0 0
6, 1 0 0 0 0 0 0 0 0 0 0 0 0
6, 2 0 0 0 0 0 0 0 0 0 0 0 0
6, 3 0 0 0 0 0 0 0 0 0 0 0 0
6, 4 .9994 .9987 .9920 .9875 .9726 .8364 .9830 .9630 .7918 1 1 1
6, 5 .0006 .0013 .0080 .0123 .0270 .1394 .0168 .0366 .1807 0 0 0
6, 6 0 0 0 .0002 .0003 .0242 .0002 .0004 .0275 0 0 0

Figure 8. Graph of the Growth Rate Data.

so that

log
(
pnFBF(n, j,d)

) = log�

(
n − j − 1

2

)
− log�

(
d − j + 1

2

)
,

log
(
pnFBF(n, j,d)

) ≈ 1

2
(n − j − 2) log(n − j − 3)

− 1

2
(d − j − 2) log(d − j − 3)

+ 1

2
(−n + d + 6) log2,

and

log
(
pnFBF(n, j,d)

)

≈ 1

2
(n − j − 2) log(n − j − 3) − n

2
log 2 + h( j,d).

To compare these penalty functions, we standardize them to
sum to 1, yielding

pnsBIC( j) = pnBIC( j)∑d
j=0 pnBIC( j)

Table 9. Posterior Probability of the jth-Order Model for the Growth Data

d, j IBFG IBFB IBFU BICG BICB BICU FBFG FBFB FBFU AIC BE FS

1, 0 .9598 .5443 .6418 .9725 .6389 .7263 .9742 .6536 .7389 1 1 0
1, 1 .0402 .4557 .3582 .0275 .3611 .2737 .0258 .3464 .2611 0 0 1

2, 0 .2636 .0016 .0020 .0018 0 0 .2132 .0012 .0015 0 0 0
2, 1 .0068 .0007 .0006 .0001 0 0 .0087 .0010 .0008 0 0 0
2, 2 .7289 .9976 .9974 .9981 1.0000 1.0000 .7780 .9978 .9976 1 1 1

3, 0 .2340 .0013 .0016 .0018 .0000 .0000 .3388 .0020 .0021 0 0 0
3, 1 .0144 .0019 .0014 .0001 0 0 .0173 .0020 .0014 0 0 0
3, 2 .7250 .7748 .6338 .9669 .8227 .6988 .6234 .8171 .6930 1 1 0
3, 3 .0143 .2208 .3614 .0313 .1773 .3012 .0205 .1789 .3034 0 0 1
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and

pnsFBF( j) = pnFBF( j)∑d
j=0 pnFBF( j)

so that, after some algebra, we have

pBIC(Mj|D) = (KL7)(pnsBIC( j))R−n/2
j

and

pFBF(Mj|D) = (KL5)(pnsFBF( j))−(n−d−2)/2
j ,

where L7 = ∑d
j=0 pnBIC( j) and L5 = ∑d

j=0 pnFBF( j), so that
the standardized penalty constants are grouped with the stan-
dardized constants.

[Received May 2002. Revised June 2004.]
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