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In this paper we propose two new descriptive measures for Multivariate Data: The
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and statistical interpretation and can be used to compare groups with different number
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1. INTRODUCTION

The trace and the determinant of the covariance matrix of a sample of mul-
tivariate data are often used as descriptive measures of multivariate variability.
However, these measures cannot be used to compare the variability of sets of vari-
ables with different dimensions. The linear dependence between two variables is
usually measured by the correlation coef¯cient, introduced by Galton and Pear-
son a century ago (see Rodgers and Nicewanders [14] for a brief history of this
coef¯cient and 13 interpretations of its value). However, we do not have a sim-
ple measure of linear dependence among a set of variables that can be used as a
standard descriptive measure in any dimension.

This paper proposes two new descriptive measures for multivariate data: The
Effective Variance and the Effective Dependence. These measures have a direct
geometric and statistical interpretation and can be used to compare groups with
different numbers of variables. The paper is organized as follows. In the next
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section we present some conditions that a useful measure of multivariate variability
must satisfy. It is shown that neither the trace nor the determinant of the covariance
matrix satisfy these conditions and the Effective Variance is proposed. In Section
3 we extend these conditions to a multivariate measure of linear relationship and
the Effective Dependence is introduced. It is shown that the Effective Dependence
can be used to estimate the number of principal components required to explain
90% of the data variability. Section 4 discusses the sample distributions of these
measures. Section 5 illustrates their use in two examples.

2. A MEASURE OF MULTIVARIATE VARIABILITY

Let X be a p dimensional random variable with ¯nite covariance matrix Σ X.
We are interested in building a scalar measure of scatter V (X) that summarizes
in some optimal way the multivariate variability of the random variable. This
measure should be useful for comparing the scatter of random variables of different
dimension when they are measured on the same units. With this objective in mind,
we want ¯rst that this measure of variability depends on the covariance matrix.
Thus we are only taking into account linear relationships between the components
of the X. Second, given two vectors X and Y with covariance matrices ΣX

and ΣY we de¯ne the additional linear variability introduced by Y in the vector
Z′ = [X′Y′] over the variability of X by

ΣY|X = ΣY − ΣYXΣX
−1ΣXY. (1)

Note that ΣY|X is the covariance of the random variable Y − E(Y) − B(X −
E(X)), where B = ΣX

−1ΣXY and will be equal to the covariance of the random
variable Y|X only if E(Y|X) is linear on X. If the linear variability introduced
by Y exceeds the variability already present in X, the variability of Z should also
be greater than the variability in X.

Thus, we establish that a useful scalar measure must satisfy the following prop-
erties:

(a) V (X) = g(ΣX). That is, the measure depends only of the covariance
matrix.

(b) If X is scalar then V (X) = var(X).
(c) If Y = QX where Q is an orthogonal matrix, then V (Y) = V (X).
(d) If Y = BX+C where B is a non singular diagonal matrix and C a vector,

then V (Y) = f2(B)V (X).
(e) V (X) = 0 if and only if |ΣX| = 0.
(f) Let Z′ = [X′ Y′] be a random vector of dimension p + q where X and

Y are random variables of dimension p and q respectively. Let us de¯ne the
additional variability introduced by Y with respect to the one of X, by V (Y :
X) = g(ΣY|X), where ΣY|X is given by (1). Then V (Z) ≥ V (X) if and only if
V (Y : X) ≥ V (X) and V (Z) ≤ V (X) if and only if V (Y : X) ≤ V (X).
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The two most often used measures to describe scatter about the mean in mul-
tivariate data are the total variation, Seber [15], given by tr (ΣX) = λ1 + λ2 +
. . .+λp, and the generalized variance, Wilks [18], given by |ΣX| = λ1λ2 · · ·λp,
where λ1 ≥ λ2 ≥ · · · ≥ λp > 0 are the eigenvalues of the covariance matrix ΣX.
The former is often used as a measure of variation in principal components anal-
ysis and the latter plays an important role in maximum likelihood estimation and
in model selection. It is straightforward to check that the total dispersion satis¯es
properties (a) to (c) and the generalized variance properties (a) to (e). Neither of
them satis¯es property (f): including an additional variable Y in a data set cannot
decrease the trace, whereas it is well known that the determinant in dimension
p− 1, |Σp−1| , and the determinant in dimension p, |Σp| are related by

|Σp| = |Σp−1|σ2
p

(
1 −R2

p.1···p−1

)
(2)

where σ2
p is the variance of the pth variable and R2

p.1···p−1 is the squared multiple
correlation coef¯cient between the variable p and the variables 1, . . . , p−1. Thus,
if we choose the determinant of the covariance matrix as a scalar measure of scatter,
we can make |Σp| greater or smaller than |Σp−1| by choosing a variable Y such
that V (Y |X) = σ2

p

(
1 −R2

p.1···p−1

)
is greater or smaller than one.

The generalized variance is a measure of the hypervolume that the distribution of
the random variables occupies in the space. Even if we standardize all the variables,
we cannot compare generalized variances in set of different dimensions because,
according to (2), this measure cannot increase by introducing new standardized
variables. It is clear that with this hypervolume interpretation we cannot compare
sets of different dimensions. An intuitive alternative is to use the average scatter
in any direction. We propose the name Effective Variance, for the measure given
by

Ve(X) = |ΣX|1/p = (λ1λ2 · · ·λp)
1/p (3)

that is, the geometrical mean of the univariate variances of the principal compo-
nents of the data. It can also be interpreted as the length of the side of the hypercube
whose volume is equal to the determinant of Σp. Also, we can de¯ne the Effective
Standard Deviation by

SDe(X) = {Ve(X)}1/2 = |ΣX|1/(2p)
.

It is straightforward to check that the Effective Variance satis¯es properties (a) to
(e). In order to check property (f) note that,

|ΣZ|1/(p+q) = |ΣX|1/(p+q) ∣∣ΣY|X
∣∣1/(p+q)

(4)

and, for instance, the condition
∣∣ΣY|X

∣∣1/q ≥ |ΣX|1/p is equivalent to
∣∣ΣY|X

∣∣1/(p+q) ≥
|ΣX|q/(p(p+q)) which implies, by using (4), that |ΣZ|1/(p+q) ≥ |ΣX|1/p

.
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From the properties of the geometric mean we have that

λp ≤ Ve(X) ≤ 1
p

p∑
i=1

λi

where λp is the minimum eigenvalue of ΣX.
Remark 1. Condition (f) implies that if we have two independent vectors, X and

Y, with the same measure of scatter, Ve(X) = Ve(Y), then Ve(Z) = Ve(X) =
Ve(Y).

Remark 2. Note that an alternative de¯nition for multivariate scatter is the Aver-
age Total Variation, ATV (X) = (1/p)tr(ΣX), which does not satisfy properties
(d) to (f). This measure does not take into account the covariance structure.

3. A MEASURE OF MULTIVARIATE LINEAR DEPENDENCE

The analysis in the previous section suggests a way to build a scalar measure of
multivariate linear dependence that summarizes the linear relationships between
the variables and can be applied in sets of different dimensions. We are interested
in measures that are functions of the correlation matrix of the variables and, as
before, we want to take into account linear relationships. We have to specify which
properties a measure of dependence,D(X), of a random vector X, must have when
the dimension of the vector is changed. Suppose that we increase its dimension
by adding a new set of random variables Y, to form the new vector Z′ = [X′ Y′].
Then the change of the dependence must depend on (i) the correlation matrix of the
Y vector and (ii) the correlation between X and Y as measured by the matrix of
cross correlations RXY. The additional correlation introduced by the Y variables
can be measured by

RY|X = RY(I − RY
−1RYXRX

−1RXY), (5)

which is the product of the correlation matrix of the Y variables and a correction
term that depends on the canonical correlations between the vectors Y and X.

Thus, we establish that the dependence measure,D(X) must satisfy the follow-
ing properties:

(a) D(X) = g(RX). That is, the measure depends only of the correlation
matrix.

(b) If X is scalar then D(X) = 0.
(c) If Y = QX where Q is an orthogonal matrix then D(Y) = D(X).
(d) If Y = BX+C where B is a non singular diagonal matrix and C a vector

then D(Y) = D(X).
(e) 0 ≤ D(X) ≤ 1, and D(X) = 1 if and only if we can ¯nd a vector a �= 0

and b such that a′X + b = 0. Also D(X) = 0 if and only if ΣX is diagonal.
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(f) Let Z′ = [X′ Y′] be a random vector of dimension p+q where X and Y are
random variables of dimension p and q respectively. We de¯ne the additional de-
pendence as the additional correlation introduce by Y byD(Y : X) = g(RY|X),
where RY|X is given by (5). Then D(Z) ≥ D(X) if and only if D(Y : X) ≥
D(X), and D(Z) ≤ D(X) if and only if D(Y : X) ≤ D(X).

A standard measure of dependence in the bivariate case is ρ2, the squared of
the correlation coef¯cient. In the multivariate case, a possible generalization is
1 − |RX|, where RX is the correlation matrix. This measure satis¯es properties
(a) to (e), but again it is not appropriate for comparing the dependence structure
between datasets with different numbers of variables. An alternative measure is
(1 − |RX|)1/p which has the advantage that for p = 2 it is equal to ρ, the linear
correlation coef¯cient. However, this de¯nition does not satisfy property (f).

By analogy to the Effective Variance we de¯ne the Effective Dependence by

De(X) = 1 − |RX|1/p (6)

and it is easy to check that it satis¯es properties (a) to (e). Property (f) is obtained
by noting that as in (4)

|RZ|1/(p+q) = |RX|1/(p+q) ∣∣RY|X
∣∣1/(p+q)

and the proof is the same as for the Effective Variance.
Remark 3. Condition (d) implies that the measures will be invariant if we

change the sign of any elements of the vector X. This is in agreement with
condition (e) which implies that D(X) is always positive.

Remark 4. The Effective Dependence for a bivariate random variable is 1 −√
1 − ρ2 which is a useful measure of linear relationship. Let (y, x) be the com-

ponents of the bivariate random vector, and σ2
y|x = σ2

y(1−ρ2). Then the Effective
Dependence is (σy − σy/x)/σy and it directly provides the proportion of reduc-
tion in the standard deviation of the random variable due to the use of the linear
information provided by the regressor. In the next section we will extend this idea
for any dimension.

Remark 5. An alternative de¯nition for a dependence measure is1−|R p|1/(p−1)

that in the bivariate case is equal to the squared correlation coef¯cient. For large
p this measure will be very close to the Effective Dependence but we prefer the
exponent 1/p for symmetry with respect to the Effective Variance.

3.1. Some properties of the Effective Dependence
Firstly, the Effective Dependence represents the average proportion of explained

variability among the variables. To see this, note that by repeated use of (4), we
can write

|RX| =
(
1 −R2

p.1···p−1

) (
1 −R2

p−1.1···p−2

)
...

(
1 −R2

2.1

)
. (7)
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where the ith term represents the proportion of unexplained variation in a regression
between the p − i + 1 variable and the variables p − i, p − i − 1, . . . , 1. As the
squared correlation can always be interpreted as R2 = 1 − RSS/TSS, where
RSS is the residual sum of squares and TSS the total sum of squares and calling
RSS(i|1 · · · i−1) to the residual sum of squares in the regression of the ith variable
on the i − 1, . . . , 1 and TSS(i) to the total variability in this regression, we can
write:

|RX|1/p =
{
RSS(p|p− 1, · · · , 1) · · ·RSS(2|1)RSS(1)

TSS(p) · · ·TSS(2)TSS(1)

} 1
p

=
RSS

TSS
,

where RSS(1) = TSS(1) and RSS and TSS are the geometric means of the
residual sum of squares and the total sum of squares of all the regressions. Note that
this measure is invariant to any permutation of the variables. Thus, the Effective
Dependence can be written as

De(X) = 1 − RSS

TSS
.

This interpretation also holds when the set of variables can be partitioned as Z′ =
[X′Y′],where X has dimension p and Y has dimension q and suppose that p ≥ q.
We have

De(Z) = 1 − {(
1 −R2

xp.1···p−1

) · · · (1 −R2
x2.1

)} 1
p+q

{(
1 −R2

yq.1···q−1

) · · · (1 −R2
y2.1

)} 1
p+q

{∏l

i=1

(
1 − r2i

)} 1
p+q

,

where l = min(p, q) = q and r2i are the canonical correlation coef¯cients between
the two sets of variables. This expression shows that if the two sets are uncorrelated,
then De(Z) is just the average of the internal dependence. When the two sets are
correlated the Effective Dependence is an average of the internal dependence and
the cross dependence as measured by the canonical correlation coef¯cients.

Note that the Effective Dependence satis¯es the following inequality

1
p

p∑
i=1

R2
i.1···(i−1) ≤ De(X) ≤ 1,

obtained by noting that from (7),

1 − |RX|1/p = 1 −
[

p∏
i=1

(1 −R2
i.1···(i−1))

](1/p)
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and by using the properties of the geometric mean. This inequality is satis¯ed for
all permutations of the variables, since if Y = PX, where P is a permutation
matrix, then De(Y) = De(X). Note that if P is a permutation matrix then
|P| = ±1 and |ΣY| = |P|2 |ΣX| = |ΣX| implies that |RY| = |RX|.

Secondly, the Effective Dependence is a measure of the lack of sphericity of the
standardized variables. Anderson (1984, p. 427) de¯nes sphericity as

ψ(Σp) =
|Σp|1/p

(1/p)tr (Σp)
,

and he uses this measure for testing the hypothesis H0 : Σ = σ2I. If ψ = 1,
then the geometric mean of the eigenvalues is equal to the arithmetic mean and
all the variables are uncorrelated, and the shape of the data is a sphere. When
ψ tends to zero, the data moves away from sphericity and when ψ = 0, we are
in a lower dimension, and the ellipsoid is degenerate. For standardized variables
ψ(Rp) = |Rp|1/p , and

De(X) = 1 − ψ(Rp).

Thirdly, when all the off diagonal values of the correlation matrix are equal and
the number of variables is large, the Effective Dependence will converge to this
common correlation value.

To illustrate this property, suppose that the correlation matrix of a vector of p
random variables has the simple structure

Rp =




1 ρ . . . ρ
ρ 1 ρ
...

. . .
...

ρ ρ . . . 1


 .

Then the coef¯cient of determination in the regression of any variable with respect
to the rest R2

p.1···p−1 → ρ as p → ∞. This result, shown by Mustonen [13], is a
consequence of

lim
p→∞

(
1 −R2

p.1···p−1

)
= (1 − ρ) lim

p→∞

{
1 + (p− 1)ρ
1 + (p− 2)ρ

}
= (1 − ρ) .

Then, it is easy to show that, for the generalized variance,

lim
p→∞ (1 − |Rp|) = lim

p→∞
[
1 − (1 − ρ)p−1{1 + (p− 1)ρ}] = 1 ∀ρ ∈ (0, 1) ,
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whereas for the Effective Dependence,

lim
p→∞De (X) = lim

p→∞

(
1 − |Rp|1/(p−1)

)
= (8)

= lim
p→∞[1 − (1 − ρ) {1 + (p− 1) ρ)1/(p−1)] =

= ρ ∀ρ ∈ (0, 1) ,

which provides an interesting interpretation of the correlation coef¯cient as the
limiting average proportion of explain variability in this situation.

Finally, the Effective Dependence can be used to predict the number of principal
components required to explained a given proportion of the variability of the data.

[FIGURE 1 ABOUT HERE]
One would expect that the larger the global correlation structure the smaller the

number of principal components or factors needed to describe the linear properties
of the observed data. A useful measure of linear dependence should inherit this
property and we will show that the Effective Dependence is strongly related to the
proportion of components needed to summarize the data (see Figure 1). Suppose
that we have a sample of p standardized variables and let λi, i = 1, ..., p be the
eigenvalues of the correlation matrix of the data. We want to study the relationship
between the De of the sample and the proportion of components, h/p, needed to
explain 90% of the total variability. We carried out a simulation study by generating
random correlation matrices of dimension p as follows: (1) the eigenvalues of the
correlation matrix are drawn from aBeta(α, β) distribution, with α and β chosen
from a grid in the interval (0, 3)2, obtaining 900 pairs of parameters (αi, βi). (2)
The values are normalized so that their sum is p. For each ¯xed value p, we
generated 900 matrices. This process was performed for p = 40, 80, . . . , 440,
so that 9900 correlation matrices were generated in total. For each one of these

matrices, we calculate
(

h
p

)
∈ [0, 1] and the De. We observed that the relation

between
(

h
p

)
and De(X) is a sigmoid, but in the interval De(X) ∈ [0.1, 0.9] we

can approximate it by the linear relation

h

p
= 0.8230 − 0.492De(X)

with R2 = 0.97 (see Figure 1). This relationship can be approximated by

h = p(0.8 − 0.5De(X)). (9)

To illustrate this result, we present the analysis of Jeffers’ [9] pine pitprops data,
taken from Mardia et al. ([11] pp. 176 − 178, 225 − 227). This data set has
180 observations of pitprops cut from the Corsican pine tree. The data have 13
variables (X) measured on each prop. The Effective Dependence of these data is
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De(X) = 0.563. From equation (9) we obtain that h = 0.519p and the estimated
number of principal components explaining 90% of the total variability is 6.74.
Thus we need 6 or 7 components. The eigenvalues of the correlation matrices are:
4.22, 2.38, 1.88, 1.11, 0.91, .82, .58, .44, .35, .19, .05, .04 and .04. For the ¯rst
6 components, the cumulative variability is 87.1% and if the seventh component
is added, it is 91.5%. Therefore more than 90% of the cumulated variability is
obtained considering the ¯rst 7 components. Jeffers took the ¯rst 6 components
in his analysis, because of their clear physical interpretation.

4. SAMPLE DISTRIBUTIONS

The sample distribution of the Effective Variance can be obtained from existing
results on the generalized variance (see [2, 12]). The generalized variance is
usually estimated by the sample generalized variance, det(Sp), where Sp is the
sample covariance matrix with dimension p× p. In the case of Effective Variance
it is estimated by the pth root of the generalized sample variability. The following
two lemmas derive the distribution of (det(Sp))1/p when Sp is computed with a
sample of sizeN = n+1, from theNp(µ,Σp) distribution. In this case Sp follows
a Wishart distribution with n degrees of freedom and covariance matrix (1/n)Σp,
Wp(n, (1/n)Σp). The two lemmas characterize the asymptotic distribution and
an approximation of the exact distribution by the sample Effective Variance.

Lemma 4.1. Let Sp be a p×p sample covariance matrix from theNp(µ,Σp)
with n degrees of freedom. Then

√
n

(
|Sp|1/p

/ |Σp|1/p − 1
)

is asymptotically normally distributed with mean 0 and variance 2/p.

Proof. The asymptotic distribution of the Effective Variance can be obtained
from the asymptotic normality of the generalized variance. Anderson [2], shows
that

√
n (|Sp| / |Σp| − 1) is asymptotically normal with mean 0 and variance 2p.

Then, applying the δ−method (see Ser©ing [16] p. 118)), for g(x) = x1/p, it fol-
lows, that Ve is also asymptotically normally distributed, with mean 0 and variance

2/p.

Lemma 4.2. The exact distribution for the pth root of |Sp| / |Σp| is

|Sp|1/p
/ |Σp|1/p

∼ Γ

(
p(n− p)

2
,
p(n− 1)

2

(
1 − (p− 1)(p− 2)

2n

)1/p
)
.
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Proof. Using the results of Hoel [8] related to the exact distribution for the pth
root of |Ap| / |Σp|, we have

|Ap|1/p
/ |Σp|1/p

∼ Γ
(
p(n− p)

2
,
p

2
c

)
,

where

c =
1
2

(
1 − (p− 1)(p− 2)

2n

)1/p

and |Ap| is (n − 1)p |Sp| . Applying the property that, X ∼ Γ(α, β) → dX ∼

Γ(α, β/d), then

|Sp|1/p
/ |Σp|1/p

∼ Γ

(
p(n− p)

2
,
p(n− 1)

2

(
1 − (p− 1)(p− 2)

2n

)1/p
)
.

The exact distribution of De (X) can be easily obtained from the exact distri-
bution of |RX| given in Gupta and Rathie [7]. The asymptotic distribution of
−n log |RX |, under the hypothesis that RX = I, is a χ2 with p (p− 1) /2 degrees
of freedom (see Box [3]). Thus, the asymptotic distribution of npDe (X) is a χ2

with the same degrees of freedom.

5. EXAMPLES

To illustrate the information provided by for the Effective Variance and the
Effective Dependence in a descriptive analysis of multivariate data, we apply them
to two well known sets of data. The ¯rst is the Fisher Iris data, originally due to
Anderson [1] and analyzed by Fisher [6] in his seminal paper on discriminant
analysis. These data correspond to measures of three species of ©owers called,
Iris Setosa, Iris Versicolor and Iris Virginica. There are 50 specimens of each
species and four variables: Y1=sepal length, Y2=sepal width, Y3=petal length and
Y4=petal width, all measured in cm.

[FIGURE 2 ABOUT HERE]
Figure 2 shows the scatterplot of the Iris data in the variables Y1 and Y4. The

specimens for Setosa are squares, for Versicolor circles and for Virginica triangles.
In ¯gure 2 two concentric circles centred in the mean of each group are plotted.
The circle in solid line shows the observed scatter in the projected data and it has
radius 2 × SDe(Σ

(i)
14 ), where Σ(i)

14 is the covariance matrix of variables Y1 and
Y4 in the group i. The second circle, in dotted line, shows the real multivariate
scatter and it has radius 2 × SDe(Σ(i)), where Σ(i) is the covariance matrix in
the group i, for all variables. The similarity of the two circles indicates that the
dispersion in the projected data is similar to the dispersion in the multivariate data.
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Figure 2 shows that the circles are similar in the species Setosa, whereas in the
two other groups, the multivariate dispersion is slightly inferior than the projected
dispersion. If we compare the multivariate dispersion between the three groups,
using the dotted circles, small differences in the dispersion between groups are
observed.

[TABLE 1 ABOUT HERE]
In Table 1, some scatter measures for each group in the Iris data are shown.

The ¯rst group of measures correspond to all variables and the second group to
the projected data shown in the scatterplot in Figure 2. The total variability and
the generalized variance do not provide a descriptive information to understand
the data, and are not appropriate for comparing the variance in sets of different
dimensions. The ATV and the new measureVe provide information over the scatter
in each group in units which are comparable in dimensions 4 and 2, corresponding
to the multivariate dispersion and in the dispersion in the projected data. The ATV
for each group is similar to the ATV for each group in the projected data, but this
measure does not take into account the covariance structure of the variables in each
group. The fourth row in Table 1 shows the Ve in each group for all variables. If we
compare this Ve with the Ve for the groups in the projected data, we can see a clear
resemblance in the species Setosa and small differences in the two other species.
In the last row of each set of measures, the ratio between Ve and ATV is shown,
which is the sphericity. Based on this measure for each group, we can observe that
the sphericity is higher in the projected data than in the original data. Moreover, in
the species Versicolor, the sphericity is smaller than in the rest of the groups. This
descriptive analysis of Iris data shows differences, in form and scatter, between the
covariance matrix in the groups. This conclusion coincides with the result shown
by Krzanowski and Radley [10], over the difference in scatter in each species.

[FIGURE 3 ABOUT HERE]
To illustrate the information provided by the Effective Dependence we consider

the data on air quality measurements in the New York metropolitan area from May
1, 1973 to September 30, 1973 from Cleveland et al. [4]. Only the n = 111
complete cases are considered here. This data set is obtained for studying the
relationship between the variable Ozone concentration in parts per billion, X1,
with the variables Solar Radiation in Langleys (X2), Wind Speed in miles/hour
(X3) and Temperature in degrees F (X4). As the variables are measured in different
units, we will study the standardized data. Figure 3 shows a scatterplot matrix of
the standardized Ozone data. In each scatterplot we present three vectors with
equal length. The angle between Xi and Z1 shows the Effective Dependence
between the variables Xi and Xj , in such a way that cos2(θ) = De((Xi,Xj)),
whereas the angle between Xi and Z shows the Effective Dependence among all
variables, (X1, . . . , X4). If the angle betweenZ1 andZ is smallDe((Xi,Xj)) for
the projected data is similar toDe((X1, . . . , X4)) for the four variables. Figure 3
shows that in the projections (X1,X3) and (X1,X4) the angle betweenZ andZ1is
small and we conclude that the linear relationship observed between the projected
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pairs of variables is similar to the average multivariate relationship. On the other
hand, variables (X1,X2), (X2,X3), (X2,X4) and (X3,X4) show a weaker linear
relationship than the average dependence in the data set.

[TABLE 2 ABOUT HERE]
The Effective Dependence for this data set is 0.27. The plot shows that this

moderate value is due to the fact that onlyX1 is strongly associated with the other
variables, although this relationship is slightly nonlinear, (see Cook and Weisberg
[5] and Velilla [17]). Table 2 illustrates the average position of the Effective
Dependence with respect to the maximum and the minimum of the correlation and
the determination coef¯cients.

Given the value of the Effective Dependence and applying the proposed rule (9),
the number of principal components required to explain 90% of the variability for
this data is, h = 4(0.8−0.5∗0.27) = 2.65. Computing the principal components
we obtain that the ¯rst two principal components explain 81.3%, whereas the ¯rst
three explain 93.2%. This is in agreement with the proposed rule.
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FIG. 1. Relationship between the proportion of the Principal Components which explain 90% of
the total variability and the Effective Dependence in [0.1, 0.9].
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FIG. 2. Plot with the 3-groups for Fisher Iris data. The circle in solid line has radius SDe(Σk)
for each group, k = 1, 2, 3, and the circle in dotted line has radius SDe(Σ14), where Σ14 is the
covariance matrix between the variables X1 and X4 in the group i.

TABLE 1.

Descriptive measures of variance for each group in the Fisher Iris data.

Setosa V ersicolor V irginica
Measures of variability in all variables

TV (Σ(i)) 0.309 0.624 0.888

GV (Σ(i)) 2.1 × 10−6 1.9 × 10−5 1.3 × 10−4

ATV (Σ(i)) 0.077 0.156 0.222

Ve(Σ(i)) 0.038 0.066 0.107

ψ(Σ(i)) 0.493 0.423 0.482

Measures of variability in projected data (Y1, Y4)

TV (Σ
(i)
14 ) 0.135 0.305 0.480

GV (Σ
(i)
14 ) 0.001 0.007 0.028

ATV (Σ
(i)
14 ) 0.068 0.153 0.240

Ve(Σ
(i)
14 ) 0.036 0.085 0.168

ψ(Σ
(i)
14 ) 0.529 0.556 0.7
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FIG. 3. Scatterplot matrix for the Ozone data. The angle between vectors Z1 and Xi show the
De([Xi, Xj ]) and the angle between Z and Xi show the De([X1, . . . , X4]).

TABLE 2.

Relative position of Effective Dependence in Ozone data

Dataset min r2 min R2 De(X) max r2 max R2

Ozone 0.121 0.140 0.270 0.475 0.605


