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In this paper we propose two new descriptive measures for Multivariate Data: The
Effective Variance and the Effective Dependence. These measures have a direct geometric
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illustrated by several examples.

Key Words: correlation, principal components, variability.

1. INTRODUCTION

The trace and the determinant of the covariance matrix of a sample of mul-
tivariate data are often used as descriptive measures of multivariate variability.
However, these measures cannot be used to compare the variability of sets of vari-
ables with different dimensions. The linear dependence between two variablesis
usually measured by the correlation coef cient, introduced by Galton and Pear-
son a century ago (see Rodgers and Nicewanders [14] for a brief history of this
coef cient and 13 interpretations of its value). However, we do not have a sim-
ple measure of linear dependence among a set of variables that can be used as a
standard descriptive measure in any dimension.

This paper proposes two new descriptive measures for multivariate data: The
Effective Variance and the Effective Dependence. These measures have a direct
geometric and statistical interpretation and can be used to compare groups with
different numbers of variables. The paper is organized as follows. In the next
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section we present some conditionsthat auseful measure of multivariate variability
must satisfy. Itisshown that neither thetrace nor the determinant of the covariance
matrix satisfy these conditions and the Effective Variance is proposed. In Section
3 we extend these conditions to a multivariate measure of linear relationship and
the Effective Dependenceisintroduced. It isshown that the Effective Dependence
can be used to estimate the number of principal components required to explain
90% of the data variability. Section 4 discusses the sample distributions of these
measures. Section 5 illustrates their use in two examples.

2. AMEASURE OF MULTIVARIATE VARIABILITY

Let X be ap dimensional random variable with "nite covariance matrix X x.
We are interested in building a scalar measure of scatter V(X)) that summarizes
in some optimal way the multivariate variability of the random variable. This
measure should be useful for comparing the scatter of random variables of different
dimension when they are measured on the same units. With this objectivein mind,
we want rst that this measure of variability depends on the covariance matrix.
Thuswe are only taking into account linear relationshi ps between the components
of the X. Second, given two vectors X and Y with covariance matrices Xx
and Xy we de ne the additional linear variability introduced by Y in the vector
Z’ = [X'Y'] over the variability of X by

Syix =By — SyxEx ' Oxy. 1)

Note that v x is the covariance of the random variable Y — E(Y) — B(X —
E(X)),whereB = Xx ' Zxy andwill beequal to the covariance of the random
variable Y|X only if E(Y|X) islinear on X. If the linear variability introduced
by Y exceedsthe variability already present in X, the variability of Z should also
be greater than the variability in X.

Thus, we establish that a useful scalar measure must satisfy the following prop-
erties:

(@ V(X) = g(¥x). That is, the measure depends only of the covariance
matrix.

(b) If X isscdar then V(X)) = var(X).

(¢) If Y = QX where Q is an orthogonal matrix, then V(Y ) = V(X).

(d) If Y = BX + C where B isanon singular diagonal matrix and C avector,
then V(Y) = f2(B)V(X).

(e) V(X) =0ifandonly if [Xx| = 0.

(f) Let Z’ = [X’ Y’] be arandom vector of dimension p + ¢ where X and
Y are random variables of dimension p and ¢ respectively. Let us de ne the
additional variability introduced by Y with respect to the one of X, by V(Y :
X) = g(Zy|x), Where Xy x isgiven by (1). Then V(Z) > V(X)) if and only if
VY :X)>V(X)and V(Z) < V(X)ifandonly if V(Y : X) < V(X).
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The two most often used measures to describe scatter about the mean in mul-
tivariate data are the total variation, Seber [15], given by tr (Xx) = A1 + A2 +
...+ \p, and the generalized variance, Wilks[18], givenby |3x| = A A2 -+ Ay,
where \; > Ay > --- > A, > 0 arethe eigenvalues of the covariance matrix Xx.
The former is often used as a measure of variation in principal components anal-
ysis and the latter plays an important role in maximum likelihood estimation and
in model selection. It is straightforward to check that the total dispersion satis es
properties (a) to (c) and the generalized variance properties (a) to (). Neither of
them satis es property (f): including an additional variable Y in adata set cannot
decrease the trace, whereas it is well known that the determinant in dimension
p—1,|X,_1], and the determinant in dimension p, |X,| arerelated by

‘Ep| = |2p71| 02 (1 - R;%.l-upfl) (2
where o2 isthe variance of the pth variableand R? ; ., , isthe squared multiple
correlation coef cient between thevariable p and thevariables1,...,p— 1. Thus,
if we choosethe determinant of the covariance matrix asascalar measure of scatter,
we can make |X, | greater or smaller than |X,_1| by choosing a variable Y such
that V(Y |X) =02 (1— R2,.,_,) isgreater or smaller than one.

Thegeneralized varianceisameasure of the hypervolumethat the di stribution of
therandom variablesoccupiesinthespace. Evenif westandardizeall thevariables,
we cannot compare generalized variances in set of different dimensions because,
according to (2), this measure cannot increase by introducing new standardized
variables. It isclear that with this hypervolume interpretation we cannot compare
sets of different dimensions. An intuitive aternative is to use the average scatter
in any direction. We propose the name Effective Variance, for the measure given
by

Ve(X) = [2x["7 = Mda - Ap) 7 €)

that is, the geometrical mean of the univariate variances of the principal compo-
nentsof thedata. It canalso beinterpreted asthelength of the side of the hypercube
whose volumeisequal to the determinant of 33,,. Also, we can de nethe Effective
Sandard Deviation by

SDe(X) = {Ve(X)}'/? = [mx |/

It is straightforward to check that the Effective Variance satis es properties (a) to
(e). In order to check property (f) note that,

‘Ez‘l/(zﬂrq) — |2X|1/(p+q) |2Y‘X‘1/(p+q) 4)

and, for instance, theconditi0n|EY‘X]1/q > \Ex|l/pisequivalentto\zly‘x]”(“(” >
12| PPTD) \which implies, by using (4), that [Sz|/P? > |5« |7
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From the properties of the geometric mean we have that

where ), is the minimum eigenvalue of Xx.

Remark 1. Condition (f) impliesthat if we havetwo independent vectors, X and
Y, with the same measure of scatter, V. (X) = V,(Y), then V.(Z) = V(X) =
Ve(Y).

Remark 2. Notethat an alternativede nitionfor multivariate scatter isthe Aver-
age Total Variation, ATV (X) = (1/p)tr(Xx), which does not satisfy properties
(d) to (f). This measure does not take into account the covariance structure.

3. AMEASURE OF MULTIVARIATE LINEAR DEPENDENCE

The analysisin the previous section suggests away to build a scalar measure of
multivariate linear dependence that summarizes the linear relationships between
the variables and can be applied in sets of different dimensions. We are interested
in measures that are functions of the correlation matrix of the variables and, as
before, wewant to takeinto account linear relationships. We haveto specify which
propertiesameasure of dependence, D(X), of arandom vector X, must havewhen
the dimension of the vector is changed. Suppose that we increase its dimension
by adding a new set of random variablesY, to form the new vector Z' = [X’ Y].
Then the change of the dependence must depend on (i) the correlation matrix of the
Y vector and (i) the correlation between X and Y as measured by the matrix of
crosscorrelations Rxv . The additional correlation introduced by the'Y variables
can be measured by

Ryx = Ry(I- Ry 'RyxRx 'Rxy), ©)

which isthe product of the correlation matrix of the Y variables and a correction
term that depends on the canonical correlations between the vectors Y and X.

Thus, we establish that the dependence measure, D(X) must satisfy thefollow-
ing properties:

(@ D(X) = g(Rx). That is, the measure depends only of the correlation
matrix.

(b) If X isscdar then D(X) = 0.

(c) If Y = QX where Q isan orthogona matrix then D(Y) = D(X).

(d) If Y = BX + C where B isanon singular diagonal matrix and C avector
then D(Y) = D(X).

() 0 < D(X) <1,and D(X) = 1if and only if we can nd avector a # 0
and b suchthat a’X + b = 0. Also D(X) = 0if and only if £x isdiagonal.
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(f) Let Z’ = [X'Y’] bearandom vector of dimensionp+ ¢ whereX and Y are
random variables of dimension p and ¢ respectively. We de ne the additional de-
pendence as the additional correlation introduceby Y by D(Y : X) = g(Ry|x),
where Ry |x isgiven by (5). Then D(Z) > D(X) if and only if D(Y : X) >
D(X),and D(Z) < D(X) if and only if D(Y : X) < D(X).

A standard measure of dependence in the bivariate case is p?, the squared of
the correlation coef cient. In the multivariate case, a possible generalization is
1 — |Rx|, where Rx isthe correlation matrix. This measure setis es properties
(a) to (e), but again it is not appropriate for comparing the dependence structure
between datasets with different numbers of variables. An alternative measure is
(1 — |Rx|)'/? which has the advantage that for p = 2 it is equal to p, the linear
correlation coef cient. However, this de nition does not satisfy property (f).

By analogy to the Effective Variance we de ne the Effective Dependence by

De(X) =1- Rx/|'/” (6)

and it is easy to check that it satis es properties (a) to (€). Property (f) isobtained
by noting that asin (4)

1/(p+a)
|RZ‘1/(p+q) = |Rx| P |RY‘X|1/(p+q)

and the proof is the same as for the Effective Variance.

Remark 3. Condition (d) implies that the measures will be invariant if we
change the sign of any elements of the vector X. This is in agreement with
condition (e) which impliesthat D(X) is always positive.

Remark 4. The Effective Dependence for a bivariate random variable is 1 —
/1 — p? which isauseful measure of linear relationship. Let (y, z) be the com-
ponents of the bivariate random vector, and o7, | = o (1~ p?). Thenthe Effective
Dependence is (o, — 0,/,)/0y, and it directly provides the proportion of reduc-
tion in the standard deviation of the random variable due to the use of the linear
information provided by the regressor. In the next section we will extend thisidea
for any dimension.

Remark 5. Analternativede nitionfor adependencemeasureis1—|R. |/~
that in the bivariate case is equal to the squared correlation coef cient. For large
p this measure will be very close to the Effective Dependence but we prefer the
exponent 1/p for symmetry with respect to the Effective Variance.

3.1. Some propertiesof the Effective Dependence

Firstly, the Effective Dependence representsthe average proportion of explained
variability among the variables. To see this, note that by repeated use of (4), we
can write

|RX| = (1 - R?}.l---p—l) (1 - R§—1.1<~-p—2) (1 - R%.l) . (7)
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wheretheithterm representsthe proportion of unexplained variationinaregression
between the p — i 4 1 variable and the variablesp — i, p —i — 1,...,1. Asthe
squared correlation can always be interpreted as R?> = 1 — RSS/TSS, where
RS S istheresidual sum of squaresand 7'S'S the total sum of squares and calling
RSS(i|]1---i—1)totheresidual sum of squaresintheregression of theith variable
onthei —1,...,1and T'SS(:) to the total variahility in this regression, we can
write:

Ry V7 — {BSSWlp =1, 1)+ RSSEIURSS(1) | " _ BSS
o TSS(p)---TSS(2)TSS(1) - TSS’

where RSS(1) = T'SS(1) and RSS and T'SS are the geometric means of the
residual sum of squaresand thetotal sum of squaresof all theregressions. Notethat
this measure is invariant to any permutation of the variables. Thus, the Effective
Dependence can be written as

RSS

De(X) == 1 —_— =
TSS

This interpretation also holds when the set of variables can be partitioned as Z’ =
[X"Y'], where X hasdimension p and Y has dimension ¢ and supposethat p > q.
We have

DeZ) =1 {(1= B 1p) - (1= R220)} 70
(= Bapg) - R0 {1 =)}

wherel = min(p, q) = ¢ and r? arethe canonical correlation coef cients between
thetwo setsof variables. Thisexpression showsthat if thetwo setsareuncorrel ated,
then D.(Z) isjust the average of the internal dependence. When the two sets are
correlated the Effective Dependence is an average of the internal dependence and
the cross dependence as measured by the canonical correlation coef cients.

Note that the Effective Dependence satis es the following inequality

1 p
- ZRlQl(zfl) S De(X) S 17
pi—l

obtained by noting that from (7),

(1/p)
L - |RX|1/p =1- [H(l - Rzz.l--~(i1))‘|
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and by using the properties of the geometric mean. Thisinequality is satis ed for
al permutations of the variables, since if Y = PX, where P is a permutation
matrix, then D.(Y) = D.(X). Note that if P is a permutation matrix then
|P|=+1land [Ey| = |P|* |Ex| = [Ex|impliesthat [Ry| = [Rx|.

Secondly, the Effective Dependence isameasure of the lack of sphericity of the
standardized variables. Anderson (1984, p. 427) de nes sphericity as

1
|,['/7

Y = W (5,

and he uses this measure for testing the hypothesis Hy : ¥ = o2 If ¢ = 1,
then the geometric mean of the eigenvalues is equal to the arithmetic mean and
al the variables are uncorrelated, and the shape of the data is a sphere. When
1) tends to zero, the data moves away from sphericity and when ¢ = 0, we are
in alower dimension, and the ellipsoid is degenerate. For standardized variables

Y(R,) = [R,|"? , and

Thirdly, when all the off diagonal values of the correlation matrix are equal and
the number of variables is large, the Effective Dependence will converge to this
common correlation value.

To illustrate this property, suppose that the correlation matrix of a vector of p
random variables has the simple structure

1 p...p
p 1 p
Rp: . .
pp ... 1

Then the coef cient of determination in the regression of any variable with respect
totherest R2, | — pasp — oo. Thisresult, shown by Mustonen [13], isa
consequence of

Jim (1= Rp o) = (1= p) lim {m} =(1-p).

Then, it is easy to show that, for the generalized variance,

lim (1-Ry[)= lim 1-(-p) {1+ (-1p}] =1 VYpe(0,1),

p—0oo
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whereas for the Effective Dependence,

lim D, (X) = lim (1 _ |Rp|1/(p—1)) _ ©)
p—o0 p—00
= Jim [1 - (1= p) {1+ (- 1)p)" "] =

=p Vp € (0,1),

which provides an interesting interpretation of the correlation coef cient as the
limiting average proportion of explain variability in this situation.

Finally, the Effective Dependence can be used to predict the number of principal
components required to explained a given proportion of the variability of the data.

[FIGURE 1 ABOUT HERE]

Onewould expect that the larger the global correlation structure the smaller the
number of principal components or factors needed to describe thelinear properties
of the observed data. A useful measure of linear dependence should inherit this
property and we will show that the Effective Dependenceis strongly related to the
proportion of components needed to summarize the data (see Figure 1). Suppose
that we have a sample of p standardized variablesand let \;, i = 1, ..., p bethe
eigenvalues of the correlation matrix of thedata. We want to study the relationship
between the D, of the sample and the proportion of components, //p, needed to
explain90% of thetotal variability. Wecarried out asimulation study by generating
random correlation matrices of dimension p asfollows: (1) the eigenvalues of the
correlation matrix are drawn from a Beta(a, 3) distribution, with o and 5 chosen
from agrid in theinterval (0, 3)?, obtaining 900 pairs of parameters (a;, 3:). (2)
The values are normalized so that their sum is p. For each "xed value p, we
generated 900 matrices. This process was performed for p = 40,80, ..., 440,
so that 9900 correlation matrices were generated in total. For each one of these

matrices, we caculate (%) € [0,1] and the D,. We observed that the relation

between (%) and D.(X) isasigmoid, but in theinterval D.(X) € [0.1,0.9] we
can approximate it by the linear relation

h
5 = 0.8230 — 0.492D.(X)

with R? = 0.97 (see Figure 1). This relationship can be approximated by
h =p(0.8 —0.5D.(X)). (9)

Toillustrate thisresult, we present the analysis of Jeffers’ [9] pine pitpropsdata,
taken from Mardia et a. ([11] pp. 176 — 178, 225 — 227). This data set has
180 observations of pitprops cut from the Corsican pine tree. The data have 13
variables (X') measured on each prop. The Effective Dependence of these datais
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D.(X) = 0.563. From equation (9) we obtain that & = 0.519p and the estimated
number of principal components explaining 90% of the total variability is 6.74.
Thuswe need 6 or 7 components. The eigenvalues of the correlation matrices are:
4.22,2.38,1.88,1.11, 0.91, .82, .58, .44, .35, .19, .05, .04 and .04. For the st

6 components, the cumulative variability is 87.1% and if the seventh component
is added, it is 91.5%. Therefore more than 90% of the cumulated variability is
obtained considering the "rst 7 components. Jeffers took the rst 6 components

in hisanalysis, because of their clear physical interpretation.

4. SAMPLE DISTRIBUTIONS

The sample distribution of the Effective Variance can be obtained from existing
results on the generalized variance (see [2, 12]). The generalized variance is
usually estimated by the sample generalized variance, det(S,), where S, is the
sample covariance matrix with dimension p x p. Inthe case of Effective Variance
it is estimated by the pth root of the generalized sample variability. Thefollowing
two lemmas derive the distribution of (det(S,))'/? when S,, is computed with a
sampleof size N = n+1, fromthe N, (u, 3,,) distribution. InthiscaseS,, follows
aWishart distribution with n degrees of freedom and covariance matrix (1/n)3,,
W,(n, (1/n)X,). The two lemmas characterize the asymptotic distribution and
an approximation of the exact distribution by the sample Effective Variance.

LEMMA 4.1. LetS, beap x p sample covariance matrix fromthe N, (u, 3,,)
with n degrees of freedom. Then

Vi (18,77 /12,177 = 1)

is asymptotically normally distributed with mean 0 and variance 2/p.

Proof. The asymptotic distribution of the Effective Variance can be obtained
from the asymptotic normality of the generalized variance. Anderson [2], shows
that \/n (|S,| /|32, — 1) isasymptotically normal with mean 0 and variance 2p.
Then, applying the §—method (see Ser©ing [16] p. 118)), for g(x) = /7, it fol-
lows, that V,, isalso asymptotically normally distributed, with mean 0 and variance

2/p- 1
LeEMMA 4.2. Theexact distribution for the pth root of |S,| / |X,] is

1p 1p p(n—p) p(n—1) P-Dp-2\""
sp|//zp|/~r< . (1-=pe=2) )

2 2n
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Proof. Using theresults of Hoel [8] related to the exact distribution for the pth
root of |A,| / |%,], we have

A7 3,7~ (D) P LY
2 2
where

Cc =
2 2n

and |A,| is (n — 1)?|S,|. Applying the property that, X ~ I'(«, 3) — dX ~
I'(«a, 3/d), then

P P p(n—p) p(n—1) (p—1)(p—2)\"?
Spp//zpp/w( UL (1 ) )

1 <1 (- 1><p2>)””

The exact distribution of D, (X) can be easily obtained from the exact distri-
bution of |Rx| given in Gupta and Rathie [7]. The asymptotic distribution of
—nlog |R x|, under the hypothesisthat Rx = I,isax? withp (p — 1) /2 degrees
of freedom (see Box [3]). Thus, the asymptotic distribution of npD, (X) isa x?
with the same degrees of freedom.

5. EXAMPLES

To illustrate the information provided by for the Effective Variance and the
Effective Dependencein adescriptive analysis of multivariate data, we apply them
to two well known sets of data. The rst is the Fisher Iris data, originally due to
Anderson [1] and analyzed by Fisher [6] in his seminal paper on discriminant
analysis. These data correspond to measures of three species of ©owers called,
Iris Setosa, Iris Versicolor and Iris Virginica. There are 50 specimens of each
species and four variables: Y;=sepal length, Y>=sepal width, Ys=petal length and
Y,=petal width, all measured in cm.

[FIGURE 2 ABOUT HERE]

Figure 2 shows the scatterplot of the Iris data in the variables Y; and Y. The
specimensfor Setosaare squares, for Versicolor circlesand for Virginicatriangles.
In “gure 2 two concentric circles centred in the mean of each group are plotted.
The circlein solid line shows the observed scatter in the projected data and it has
radius 2 x SDS(EQ), where 2&) is the covariance matrix of variables Y; and
Y, in the group 7. The second circle, in dotted line, shows the real multivariate
scatter and it has radius 2 x SD,. (X)), where (%) is the covariance matrix in
the group i, for al variables. The similarity of the two circles indicates that the
dispersionin the projected datais similar to the dispersion in the multivariate data.



MULTIVARIATE SCATTER AND LINEAR DEPENDENCE 11

Figure 2 shows that the circles are similar in the species Setosa, whereas in the
two other groups, the multivariate dispersion is slightly inferior than the projected
dispersion. If we compare the multivariate dispersion between the three groups,
using the dotted circles, small differences in the dispersion between groups are
observed.

[TABLE 1 ABOUT HERE]

In Table 1, some scatter measures for each group in the Iris data are shown.
The "rst group of measures correspond to al variables and the second group to
the projected data shown in the scatterplot in Figure 2. The total variability and
the generalized variance do not provide a descriptive information to understand
the data, and are not appropriate for comparing the variance in sets of different
dimensions. The ATV and the new measure V., provideinformation over the scatter
in each group in unitswhich are comparablein dimensions 4 and 2, corresponding
to the multivariate dispersion and in the dispersion in the projected data. The ATV
for each group is similar to the ATV for each group in the projected data, but this
mesasure does not take into account the covariance structure of thevariablesin each
group. Thefourthrow in Table 1 showsthe V. in each groupfor all variables. If we
comparethisV, with the V, for the groupsin the projected data, we can seeaclear
resemblance in the species Setosa and small differences in the two other species.
In the last row of each set of measures, the ratio between V, and ATV is shown,
which isthe sphericity. Based on this measure for each group, we can observe that
the sphericity ishigher in the projected datathan in the original data. Moreover, in
the species Versicolor, the sphericity is smaller than in the rest of the groups. This
descriptive analysis of Irisdata showsdifferences, in form and scatter, between the
covariance matrix in the groups. This conclusion coincides with the result shown
by Krzanowski and Radley [10], over the difference in scatter in each species.

[FIGURE 3 ABOUT HERE]

To illustrate theinformation provided by the Effective Dependence we consider
the data on air quality measurementsin the New York metropolitan areafrom May
1, 1973 to September 30, 1973 from Cleveland et a. [4]. Only then = 111
complete cases are considered here. This data set is obtained for studying the
relationship between the variable Ozone concentration in parts per billion, X7,
with the variables Solar Radiation in Langleys (X>), Wind Speed in miles/hour
(X3) and TemperatureindegreesF (X, ). Asthevariablesaremeasuredindifferent
units, we will study the standardized data. Figure 3 shows a scatterplot matrix of
the standardized Ozone data. In each scatterplot we present three vectors with
equal length. The angle between X; and Z; shows the Effective Dependence
between the variables X; and X, in such away that cos?() = D.((X;, X)),
whereas the angle between X; and Z shows the Effective Dependence among all
variables, (X1, ..., X4). If theanglebetween Z; and Z issmall D.((X;, X;)) for
the projected dataissimilar to D.((X7, . .., X4)) for the four variables. Figure 3
showsthat intheprojections (X1, X3) and (X1, X4) theanglebetween Z and Z;is
small and we conclude that the linear relationship observed between the projected
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pairs of variablesis similar to the average multivariate relationship. On the other
hand, variables (X1, X5), (X2, X3), (X2, X4) and (X3, X4) show aweaker linear
relationship than the average dependence in the data set.

[TABLE 2 ABOUT HERE]

The Effective Dependence for this data set is 0.27. The plot shows that this
moderate value is due to the fact that only X is strongly associated with the other
variables, although thisrelationship is dightly nonlinear, (see Cook and Weisberg
[5] and Velilla [17]). Table 2 illustrates the average position of the Effective
Dependence with respect to the maximum and the minimum of the correlation and
the determination coef cients.

Given the value of the Effective Dependence and applying the proposed rule (9),
the number of principal components required to explain 90% of the variability for
thisdatais, h = 4(0.8 — 0.5%0.27) = 2.65. Computing the principal components
we obtain that the rst two principal components explain 81.3%, whereasthe rst
three explain 93.2%. Thisisin agreement with the proposed rule.
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FIG. 1. Relationship between the proportion of the Principal Components which explain 90% of
the total variability and the Effective Dependencein [0.1, 0.9].
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FIG. 2. Plot with the 3-groups for Fisher Iris data. The circle in solid line has radius S D, (3*)
for each group, k = 1,2, 3, and the circle in dotted line has radius SD.(X14), where X4 is the

covariance matrix between the variables X'; and X4 in the group 4.

TABLE 1L

Descriptive measures of variance for each group in the Fisher Iris data.

Setosa

Versicolor

Virginica

Measures of variability in all variables

TV (=) 0.309
GV(Z®)  21x10°°
ATV (@) 0.077
Ve (2) 0.038
(D) 0.493

0.624

1.9 x 10—°

0.156
0.066
0.423

0.888
1.3 x 104
0.222
0.107
0.482

Measures of variability in projected data (Y1, Ya)

vy 0135
Gv(=l]) 0001
ATV(S()) 0068
Vo= 0.036
H(=4)) 0.529

0.305
0.007
0.153
0.085
0.556

0.480
0.028
0.240
0.168
0.7
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FIG. 3. Scatterplot matrix for the Ozone data. The angle between vectors Z; and X; show the
D¢ ([X;, X;]) and the angle between Z and X; show the D ([X71, ..., X4]).

TABLE 2.

Relative position of Effective Dependence in Ozone data
Dataset minr? minR? D.(X) maxr? max R2

Ozone  0.121 0.140 0.270 0.475 0.605




