▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Bayesian inference for mixture models

M. Concepción Ausín Universidad Carlos III de Madrid

Master in Business Administration and Quantitative Methods Master in Mathematical Engineering

2.1 Bayesian inference for infinite mixtures

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- 1. Finite mixtures
- 1.1 Bayesian inference for finite mixtures
- 2. Infinite mixtures
- 2.1 Bayesian inference for infinite mixtures

Finite mixtures

A finite mixture of k densities of the same distribution is a convex combination,

$$f(\mathbf{x} \mid \mathbf{k}, \boldsymbol{\rho}, \boldsymbol{\theta}) = \sum_{i=1}^{k} \rho_i f(\mathbf{x} \mid \boldsymbol{\theta}_i),$$

of densities $f(x | \theta_i)$, where $\rho = (\rho_1, ..., \rho_k)$ such that $\sum_{i=1}^k \rho_i = 1$.

Remarks

- Mixture models are frequently referred as semi-parametric models as their flexibility allow to approximate non-parametric problems.
- Mixture component do not always have a physical meaning, they can describe complex behaviour of data in different research areas: biology, astronomy, engineering...

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Finite mixtures

• Note that
$$E[X^r] = \sum_{i=1}^k \rho_i E[X^r \mid \boldsymbol{\theta}_i]$$

- Computationally intensive methods must be considered for inference in mixture models: MCMC methods, EM algorithm,...
- The Bayesian approach using MCMC methods allows us to transform the complex structure of a mixture model in a set of simple structures using latent variables.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Finite mixtures

Example (Gaussian mixtures)

A finite Gaussian mixture of size k has the following density:

$$f(\mathbf{x} \mid \mathbf{k}, \boldsymbol{\rho}, \boldsymbol{\theta}) = \sum_{i=1}^{k} \rho_i f_N(\mathbf{x} \mid \mu_i, \phi_i),$$

where $\theta = (\mu_1, \phi_1, ..., \mu_k, \phi_k)$ and $f_N(x \mid \mu_i, \phi_i)$ is the density of a Gaussian distribution with mean μ_i and precision ϕ_i .

Finite mixtures

The following figure shows various density functions of Gaussian mixtures with k = 2 components (first row), k = 5 components (second row), k = 25 components (third row) and k = 50 components (fourth row):

Bayesian inference for finite mixtures

Assume we have *n* observations $\mathbf{x} = (x_1, ..., x_n)$ sampled i.i.d. from a finite mixture distribution with density,

$$f(\mathbf{x} \mid \boldsymbol{\rho}, \boldsymbol{\theta}) = \sum_{i=1}^{k} \rho_i f(\mathbf{x} \mid \boldsymbol{\theta}_i),$$

where k is finite and known.

We wish to make Bayesian inference for the model parameters (
ho, heta). The likelihood is,

$$I(\boldsymbol{\rho}, \boldsymbol{\theta} \mid \mathbf{x}) = \prod_{j=1}^{n} \sum_{i=1}^{k} \rho_{i} f(x_{j} \mid \boldsymbol{\theta}_{i}),$$

which is given by k^n terms, which implies a large computational cost for a not very large sample size, n.

Bayesian inference for finite mixtures

In order to simplify the likelihood, we can introduce latent variables Z_j such that:

$$X_j \mid Z_j = i \sim f(x \mid \boldsymbol{\theta}_i)$$
 and $P(Z_j = i) = \rho_i.$

These auxiliary variables allows us to identify the mixture component each observation has been generated from.

Therefore, for each sample of data $\mathbf{x} = (x_1, ..., x_n)$, we assume a missing data set $\mathbf{z} = (z_1, ..., z_n)$, which provide the labels indicating the mixture components from which the observations have been generated.

Bayesian inference for finite mixtures

Using this missing data set, the likelihod simplifies to:

$$\begin{split} I(\boldsymbol{\rho}, \boldsymbol{\theta} \mid \mathbf{x}, \mathbf{z}) &= \prod_{j=1}^{n} \rho_{z_j} f\left(x_j \mid \boldsymbol{\theta}_{z_j}\right) \\ &= \prod_{i=1}^{k} \rho_i^{n_i} \left[\prod_{j: z_j = i} f\left(x_j \mid \boldsymbol{\theta}_i\right) \right], \end{split}$$

where $n_i = \#\{z_j = i\}$ and $\Sigma n_i = n$.

Then, the posterior probability that the observation x_j has been generated from the *i*-th component is:

$$P(z_j = i \mid x_j, \boldsymbol{\rho}, \boldsymbol{\theta}) = \frac{\rho_i f(x_j \mid \boldsymbol{\theta}_i)}{\sum_{i=1}^k \rho_i f(x_j \mid \boldsymbol{\theta}_i)}.$$

Bayesian inference for finite mixtures

Example (Bayesian inference for Gaussian mixtures)

Using the missing data, $\mathbf{z} = (z_1, ..., z_n)$ the likelihood simplifies to:

$$I(\boldsymbol{
ho}, \boldsymbol{\mu}, \boldsymbol{\phi} \mid \mathbf{x}, \mathbf{z}) \propto \prod_{i=1}^{k} (\rho_i \phi_i)^{n_i} \exp\left(-\frac{\phi_i}{2} \sum_{j: z_j=i} (x_j - \mu_i)^2\right),$$

where $n_i = \#\{z_j = i\}$.

And we have that:

$$P(z_j = i \mid x_j, \boldsymbol{\rho}, \boldsymbol{\mu}, \boldsymbol{\phi}) = \frac{\rho_i \phi_i \exp\{-\frac{\phi_i}{2} (x_j - \mu_i)^2\}}{\sum\limits_{i=1}^k \rho_i \phi_i \exp\{-\frac{\phi_i}{2} (x_j - \mu_i)^2\}}$$

・ロト・(中下・(中下・(中下・))

Bayesian inference for finite mixtures

For the model parameters, ρ , μ and ϕ , we assume conjugate priors:

Prior	Posterior
$oldsymbol{ ho}\sim D\left(\delta_{1},,\delta_{k} ight)$	$oldsymbol{ ho} \mid {\sf x}, {\sf z} \sim D\left(\delta_1^*,, \delta_k^* ight)$
$\phi_i \sim {\it G}\left(a/2,b/2 ight)$	$\phi_i \mid \mathbf{x}, \mathbf{z} \sim G\left(a_i^*/2, b_i^*/2 ight)$
$\mu_i \mid \phi_i \sim N\left(m_i, \frac{1}{\alpha_i \phi_i}\right)$	$\mu_i \mid \mathbf{x}, \mathbf{z}, \phi_i \sim \mathcal{N}\left(\pmb{m}_i^*, rac{1}{lpha_i^* \phi_i} ight)$

where

$$\delta_i^* = \delta_i + n_i, \qquad a_i^* = a + n_i,$$

$$b_i^* = b + \sum_{j:z_j=i} (x_j - \mu_i)^2, \qquad \alpha_i^* = \alpha_i + n_i,$$

$$m_i^* = \frac{\alpha_i m_i + n_i \bar{x}_i}{\alpha_i + n_i},$$
 where $\bar{x}_i = \frac{1}{n_i} \sum_{j: z_j = i} x_j.$

For identifiability reasons, we assume that $\mu_1 < \dots < \mu_k$

Bayesian inference for finite mixtures

Note that $D(\delta_1, \ldots, \delta_k)$ a Dirichlet distribution with density:

$$f(\rho_1,\ldots,\rho_k)\propto\prod_{i=1}^k\rho_i^{\delta_i-1}.$$

The usual prior choice is to take $(\delta_1, \ldots, \delta_k) = (1, \ldots, 1)$ to impose a uniform prior over the mixture weights.

Note that this prior choice is equivalent to use the following reparameterization:

$$\rho_1 = \eta_1,$$

 $\rho_i = (1 - \eta_1) \dots (1 - \eta_{i-1}) \eta_i$

assuming that $\eta_i \sim \mathcal{B}(1, k - i + 1)$.

Bayesian inference for finite mixtures

MCMC algorithm

- 1. Set initial values $\eta^{(0)}, \mu^{(0)}$ and $\phi^{(0)}$.
- 2. Update z sampling from $\mathsf{z}^{(j+1)} \sim \mathsf{z}|\mathsf{x}, \pmb{
 ho}^{(j)}, \pmb{\mu}^{(j)}, \pmb{\phi}^{(j)}.$
- 3. Update $oldsymbol{\eta}$ sampling from $oldsymbol{\eta}^{(j+1)} \sim oldsymbol{\eta} | \mathbf{x}, \mathbf{z}^{(j+1)}.$
- 4. Update ϕ_i sampling from $\phi_i^{(j+1)} \sim \phi_i | \mathbf{x}, \mathbf{z}^{(j+1)}$.
- 5. Update μ_i sampling from $\mu_i^{(j+1)} \sim \mu_i | \mathbf{x}, \mathbf{z}^{(j+1)}, \phi_i^{(j+1)}.$
- 6. Order $\mu^{(j+1)}$ and arrange $\rho^{(j+1)}$ y $\phi^{(j+1)}$ with this order. 7. j=j+1. Go to 2.

Infinite mixtures

Now, consider an infinite mixture of densities of the same distribution,

$$f(x \mid \boldsymbol{\rho}, \boldsymbol{\theta}) = \sum_{i=1}^{\infty} \rho_i f(x \mid \boldsymbol{\theta}_i),$$

of densities $f(x \mid \theta_i)$, where $\rho = (\rho_1, \rho_2, ...)$ such that $\sum_{i=1}^{\infty} \rho_i = 1$.

Suppose that we reparametrize the weights such that:

$$egin{aligned} &
ho_1 = \eta_1, \ &
ho_i = (1 - \eta_1) \dots (1 - \eta_{i-1}) \, \eta_i \end{aligned}$$

and assume a priori that:

$$\eta_i \sim \mathcal{B}(1, \alpha),$$

 $\theta_i \sim P_0,$

for i = 1, 2, ...

Infinite mixtures

Note that this infinite mixture model with the considered prior choice corresponds to a Dirichlet process mixture model (DPM model) given by,

 $\begin{aligned} X_i \mid \boldsymbol{\theta}_i \sim f(x \mid \boldsymbol{\theta}_i), \\ \boldsymbol{\theta}_i \mid P \sim P(\boldsymbol{\theta}) \\ P \sim DP(\alpha, P_0) \end{aligned}$

or equivalently, using the stick-breaking representation,

$$\begin{aligned} x_{j}|z_{j} \sim f(x \mid \theta_{z_{j}}) \\ \mathsf{Pr}\left(z_{j}=i\right) &= \rho_{i}, \\ \theta \sim P_{0} \\ \rho_{1} &= \eta_{1}, \qquad \rho_{i} = (1-\eta_{1}) \dots (1-\eta_{i-1}) \eta_{s} \\ \eta_{i} \sim \mathcal{B}\left(1,\alpha\right) \end{aligned}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ● ●

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Bayesian inference for infinite mixtures

Observe that even using the latent variables, z_j , the likelihood is complicated:

$$I(\boldsymbol{\rho}, \boldsymbol{\theta} \mid \mathbf{x}, \mathbf{z}) = \prod_{i=1}^{\infty} \rho_i^{n_i} \left[\prod_{j: z_j = i} f(x_j \mid \boldsymbol{\theta}_i) \right],$$

where $n_i = \#\{z_j = i\}$ and $\Sigma n_i = n$.

And the posterior probability that the observation x_j has been generated from the *i*-th component is difficult to evaluate:

$$P(z_j = i \mid x_j, \boldsymbol{\rho}, \boldsymbol{\theta}) = \frac{\rho_i f(x_j \mid \boldsymbol{\theta}_i)}{\sum_{i=1}^{\infty} \rho_i f(x_j \mid \boldsymbol{\theta}_i)}.$$

Bayesian inference for infinite mixtures

To solve this problem, Walker (2007) proposes to introduce a new set of latent variables, $\mathbf{u} = (u_1, \ldots, u_n)$ such that,

$$f(x_j, u_j | \boldsymbol{\rho}, \boldsymbol{\theta}) = \sum_{i=1}^{\infty} I(u_j < \rho_i) f(x_j | \theta_i),$$

where *I* is the indicator function. Observe that integrating over u_j the marginal density is $f(x \mid \rho, \theta)$. Also note that we can write,

$$f(x_j, u_j | \boldsymbol{\rho}, \boldsymbol{\theta}) = \sum_{i=1}^{\infty} \rho_i f_U(u_j \mid 0, \rho_i) f(x_j \mid \theta_i),$$

where f_U is the density of a uniform $U(0, \rho_i)$. Then, with probability ρ_i , the auxiliary variable u_j follows a uniform distribution in $(0, \rho_i)$ and the variable x_j follows the density $f(x_j | \theta_i)$.

・ロト ・ 日本・ 小田 ト ・ 田 ・ うらぐ

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Bayesian inference for infinite mixtures

With this new set of latent variables, the complete likelihood function is,

$$I(\boldsymbol{\rho}, \boldsymbol{\theta} \mid \mathbf{x}, \mathbf{u}, \mathbf{z}) \propto \prod_{j=1}^{n} I(u_j < \rho_{z_j}) f(x_j \mid \theta_{z_j}).$$

And the posterior probability that the observation x_j has been generated from the *i*-th component is:

$$P(z_j = i \mid x_j, u_j, \boldsymbol{\rho}, \boldsymbol{\theta}) = \frac{f(x_j \mid \boldsymbol{\theta}_i)}{\sum_{i:\rho_i > u_j} f(x_j \mid \boldsymbol{\theta}_i)}.$$

Bayesian inference for infinite mixtures

Given ρ , the posterior distribution of u_j is:

 $u_j \sim U(0, \rho_{z_j}),$

for $j = 1, \ldots, n$, where $\rho_{z_j} = (1 - \eta_1) \ldots (1 - \eta_{z_j-1}) \eta_{z_j}$.

Given **z**, the posterior distribution of η is:

$$\eta_j | \mathbf{z} \sim Beta\left(n_s + 1, n - \sum_{l=1}^s n_l + \alpha\right)$$

where $n_i = \sum_{j=1}^n I(z_j = i)$.

Clearly, assuming a conjugate prior, P_0 , for all θ_i , the conditional posterior distribution of θ_i given z is straightforward to obtain.

Bayesian inference for infinite mixtures MCMC algorithm

- 1. Set an initial allocation $\mathbf{z} = \{z_1, \dots, z_n\}.$
- 2. Update η_i by simulating from the beta distribution for $i = 1, \ldots, z^*$, where $z^* = \max\{z_j\}_{j=1}^n$.
- 3. Update u_j by simulating from $u_j \sim U\left(0, \rho_{z_j}\right)$ for $j = 1, \ldots, n.$
- 4. Update η_i by simulating from $\eta_i \sim Beta(1, \alpha)$ for $i = z^* + 1, \dots, s^*$, where s^* is the smallest value such that: $\sum_{i=1}^{s^*} \rho_i > 1 u^*$ where $u^* = \min\{u_1, \dots, u_n\}$.
- 5. Update θ_i by simulating from its conditional posterior distribution for $i = 1, \ldots, s^*$.
- 6. Update z_j by simulating from $Z_j \mid x_j, u_j, \rho, \theta$ for $j = 1, \dots, n$.