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Finite mixtures

A finite mixture of k densities of the same distribution is a convex
combination,

f (x | k ,ρ,θ) =
k∑

i=1

ρi f (x | θi ) ,

of densities f (x | θi ), where ρ = (ρ1, ..., ρk) such that
∑k

i=1ρi = 1.

Remarks

• Mixture models are frequently referred as semi-parametric models as
their flexibility allow to approximate non-parametric problems.

• Mixture component do not always have a physical meaning, they
can describe complex behaviour of data in different research areas:
biology, astronomy, engineering. . .
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Finite mixtures

• Note that E [X r ] =
k∑

i=1

ρiE [X r | θi ]

• Computationally intensive methods must be considered for inference
in mixture models: MCMC methods, EM algorithm,. . .

• The Bayesian approach using MCMC methods allows us to
transform the complex structure of a mixture model in a set of
simple structures using latent variables.



1. Finite mixtures 1.1 Bayesian inference for finite mixtures 2. Infinite mixtures 2.1 Bayesian inference for infinite mixtures

Finite mixtures

Example (Gaussian mixtures)

A finite Gaussian mixture of size k has the following density:

f (x | k ,ρ, θ) =
k∑

i=1

ρi fN(x | µi , φi ),

where θ = (µ1, φ1, ..., µk , φk) and fN(x | µi , φi ) is the density of a
Gaussian distribution with mean µi and precision φi .
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Finite mixtures
The following figure shows various density functions of Gaussian mixtures
with k = 2 components (first row), k = 5 components (second row),
k = 25 components (third row) and k = 50 components (fourth row):

Algunas funciones de densidad de varias mixturas de normales con k = 2

componentes (primera fila), k = 5 componentes (segunda fila), k = 25

componentes (tercera fila) y k = 50 componentes (tercera fila)
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Bayesian inference for finite mixtures

Assume we have n observations x = (x1, ..., xn) sampled i.i.d. from a
finite mixture distribution with density,

f (x | ρ,θ) =
k∑

i=1

ρi f (x | θi ) ,

where k is finite and known.

We wish to make Bayesian inference for the model parameters (ρ,θ).
The likelihood is,

l (ρ,θ | x) =
n∏

j=1

k∑
i=1

ρi f (xj | θi ) ,

which is given by kn terms, which implies a large computational cost for
a not very large sample size, n.
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Bayesian inference for finite mixtures

In order to simplify the likelihood, we can introduce latent variables Zj

such that:

Xj | Zj = i ∼ f (x | θi ) and P (Zj = i) = ρi .

These auxiliary variables allows us to identify the mixture component
each observation has been generated from.

Therefore, for each sample of data x = (x1, ..., xn), we assume a missing
data set z = (z1, ..., zn), which provide the labels indicating the mixture
components from which the observations have been generated.
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Bayesian inference for finite mixtures

Using this missing data set, the likelihod simplifies to:

l (ρ,θ | x, z) =
n∏

j=1

ρzj f
(
xj | θzj

)

=
k∏

i=1

ρnii

∏
j :zj=i

f (xj | θi )

 ,
where ni = #{zj = i} and Σni = n.

Then, the posterior probability that the observation xj has been
generated from the i-th component is:

P (zj = i | xj ,ρ,θ) =
ρi f (xj | θi )∑k
i=1 ρi f (xj | θi )

.
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Bayesian inference for finite mixtures

Example (Bayesian inference for Gaussian mixtures)

Using the missing data, z = (z1, ..., zn) the likelihood simplifies to:

l (ρ,µ,φ | x, z) ∝
k∏

i=1

(ρiφi )
ni exp

−φi
2

∑
j :zj=i

(xj − µi )
2

 ,

where ni = #{zj = i}.

And we have that:

P (zj = i | xj ,ρ,µ,φ) =
ρiφi exp{−φi

2 (xj − µi )
2}

k∑
i=1

ρiφi exp{−φi

2 (xj − µi )
2}
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Bayesian inference for finite mixtures
For the model parameters, ρ, µ and φ, we assume conjugate priors:

Prior Posterior

ρ ∼ D (δ1, ..., δk) ρ | x, z ∼ D (δ∗1 , ..., δ
∗
k )

φi ∼ G (a/2, b/2) φi | x, z ∼ G (a∗i /2, b∗i /2)

µi | φi ∼ N
(
mi ,

1
αiφi

)
µi | x, z, φi ∼ N

(
m∗i ,

1
α∗

i φi

)
where

δ∗i = δi + ni , a∗i = a + ni ,

b∗i = b +
∑

j :zj=i

(xj − µi )
2
, α∗i = αi + ni ,

m∗i = αimi+ni x̄i
αi+ni

, where x̄i = 1
ni

∑
j :zj=i

xj .

For identifiability reasons, we assume that µ1 < ... < µk .
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Bayesian inference for finite mixtures

Note that D(δ1, . . . , δk) a Dirichlet distribution with density:

f (ρ1, . . . , ρk) ∝
k∏

i=1

ρδi−1
i .

The usual prior choice is to take (δ1, . . . , δk) = (1, . . . , 1) to impose a
uniform prior over the mixture weights.

Note that this prior choice is equivalent to use the following
reparameterization:

ρ1 = η1,

ρi = (1− η1) . . . (1− ηi−1) ηi

assuming that ηi ∼ B(1, k − i + 1).
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Bayesian inference for finite mixtures

MCMC algorithm

1. Set initial values η(0),µ(0) and φ(0).

2. Update z sampling from z(j+1) ∼ z|x,ρ(j),µ(j),φ(j).

3. Update η sampling from η(j+1) ∼ η|x, z(j+1).

4. Update φi sampling from φ
(j+1)
i ∼ φi | x, z(j+1).

5. Update µi sampling from µ
(j+1)
i ∼ µi |x, z(j+1), φ

(j+1)
i .

6. Order µ(j+1) and arrange ρ(j+1) y φ(j+1) with this order.

7. j = j + 1. Go to 2.
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Infinite mixtures

Now, consider an infinite mixture of densities of the same distribution,

f (x | ρ,θ) =
∞∑
i=1

ρi f (x | θi ) ,

of densities f (x | θi ), where ρ = (ρ1, ρ2, ...) such that
∑∞

i=1ρi = 1.

Suppose that we reparametrize the weights such that:

ρ1 = η1,

ρi = (1− η1) . . . (1− ηi−1) ηi

and assume a priori that:

ηi ∼ B(1, α),

θi ∼ P0,

for i = 1, 2, . . ..
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Infinite mixtures

Note that this infinite mixture model with the considered prior choice
corresponds to a Dirichlet process mixture model (DPM model) given by,

Xi | θi ∼ f (x | θi ),
θi | P ∼ P(θ)

P ∼ DP(α,P0)

or equivalently, using the stick-breaking representation,

xj |zj ∼ f (x | θzj )
Pr (zj = i) = ρi ,

θ ∼ P0

ρ1 = η1, ρi = (1− η1) . . . (1− ηi−1) ηs

ηi ∼ B (1, α)
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Bayesian inference for infinite mixtures

Observe that even using the latent variables, zj , the likelihood is
complicated:

l (ρ,θ | x, z) =
∞∏
i=1

ρnii

∏
j :zj=i

f (xj | θi )

 ,
where ni = #{zj = i} and Σni = n.

And the posterior probability that the observation xj has been generated
from the i-th component is difficult to evaluate:

P (zj = i | xj ,ρ,θ) =
ρi f (xj | θi )∑∞
i=1 ρi f (xj | θi )

.
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Bayesian inference for infinite mixtures

To solve this problem, Walker (2007) proposes to introduce a new set of
latent variables, u = (u1, . . . , un) such that,

f (xj , uj |ρ,θ) =
∞∑
i=1

I (uj < ρi ) f (xj | θi ) ,

where I is the indicator function. Observe that integrating over uj the
marginal density is f (x | ρ,θ). Also note that we can write,

f (xj , uj |ρ,θ) =
∞∑
i=1

ρi fU (uj | 0, ρi ) f (xj | θi ) ,

where fU is the density of a uniform U(0, ρi ). Then, with probability ρi ,
the auxiliary variable uj follows a uniform distribution in (0, ρi ) and the
variable xj follows the density f (xj | θi ).
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Bayesian inference for infinite mixtures

With this new set of latent variables, the complete likelihood function is,

l (ρ,θ | x,u, z) ∝
n∏

j=1

I
(
uj < ρzj

)
f
(
xj | θzj

)
.

And the posterior probability that the observation xj has been generated
from the i-th component is:

P (zj = i | xj , uj ,ρ,θ) =
f (xj | θi )∑

i :ρi>uj
f (xj | θi )

.



1. Finite mixtures 1.1 Bayesian inference for finite mixtures 2. Infinite mixtures 2.1 Bayesian inference for infinite mixtures

Bayesian inference for infinite mixtures

Given ρ, the posterior distribution of uj is:

uj ∼ U(0, ρzj ),

for j = 1, . . . , n, where ρzj = (1− η1) . . .
(
1− ηzj−1

)
ηzj .

Given z, the posterior distribution of η is:

ηj |z ∼ Beta

(
ns + 1, n −

s∑
l=1

nl + α

)

where ni =
n∑

j=1

I (zj = i).

Clearly, assuming a conjugate prior, P0, for all θi , the conditional
posterior distribution of θi given z is straightforward to obtain.
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Bayesian inference for infinite mixtures
MCMC algorithm

1. Set an initial allocation z = {z1, . . . , zn}.

2. Update ηi by simulating from the beta distribution for

i = 1, . . . , z∗, where z∗ = max{zj}nj=1.

3. Update uj by simulating from uj ∼ U
(
0, ρzj

)
for

j = 1, . . . , n.

4. Update ηi by simulating from ηi ∼ Beta (1, α) for

i = z∗ + 1, . . . , s∗, where s∗ is the smallest value such

that:
s∗∑
i=1

ρi > 1− u∗ where u∗ = min{u1, . . . , un}.

5. Update θi by simulating from its conditional posterior

distribution for i = 1, . . . , s∗.

6. Update zj by simulating from Zj | xj , uj ,ρ,θ for

j = 1, . . . , n.
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