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Introduction

· X ⊂ Rd random finite point set.

· Convex geometry. How many vertices in convex hull of X ?

· Stochastic geometry. Fix ρ > 0. At each point of X place a ball of radius
ρ. What is volume of the union of such balls? Number of components?

· Statistical physics. RSA packing.

· Graph and networks. LG(X ):= length of graph G on X . What is the
behavior of LG(X ) for large X ?
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· The random variable X has density κ(x) if

P (X ∈ A) =

∫
A
κ(x)dx.

· Theorem (Beardwood, Halton, Hammersley (1959)): Xi, 1 ≤ i ≤ n, i.i.d.
with density κ(x) on [0, 1]d. Then

lim
n→∞

LMST ({X1, ..., Xn})
n(d−1)/d

P
= γMST (d)

∫
[0,1]d

κ(x)(d−1)/ddx.
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Introduction

Questions pertaining to statistics of geometric structures on random input
X ⊂ Rd often involve analyzing sums of spatially correlated terms∑

x∈X
ξ(x,X ),

where the R-valued score function ξ, defined on pairs (x,X ), represents
the interaction of x with respect to X .

The sums describe some global feature of the random structure in terms of
local contributions ξ(x,X ), x ∈ X .

We give some examples.
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Random graphs

X ⊂ Rd finite; let G(X ) be a graph on X .

(a) For x ∈ X , put

ξ(x,X ) :=
1

2
(sum of lengths of edges in graph incident to x).

Then
∑

x∈X ξ(x,X ) gives the total edge length of G(X ).

(b) k ∈ N; ξk(x,X ) = 1
k+1(number of k-simplices containing x).

Then ∑
x∈X

ξk(x,X )

gives the number of k-simplices in G(X ).
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Random convex hulls

· X ⊂ Rd finite. Let co(X ) denote the convex hull of X .

· For x ∈ X , k ∈ {0, 1, ..., d− 1}, we put

fk(x,X ) := 1
k+1(number of k− dimensional faces containing x).

· Total number of k-dimensional faces of co(X ):
∑

x∈X fk(x,X ).

· Rényi, Sulanke
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Continuum percolation

X ⊂ Rd; join two points with an edge iff they are distant at most one.

ξcomp(x,X ) := (size of component containing x)−1.

Component count in continuum percolation model on X :∑
x∈X

ξcomp(x,X ).
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Random sequential adsorption

· Unit volume balls B1,n, B2,n..., arrive sequentially and uniformly at

random on the cube [−n1/d

2 , n
1/d

2 ]d.

· The first ball B1,n is packed, and recursively for i = 2, 3, . . ., the i-th ball
Bi,n is packed iff Bi,n does not overlap any ball in B1,n, ..., Bi−1,n which
has already been packed. If not packed, the i-th ball is discarded.

· X ⊂ Rd a temporally marked point set. Define the ‘score’ at (x, τx) ∈ X :

ξ((x, τx),X ) :=

{
1 if ball centered at x with arrival time τx is accepted
0 otherwise.

Total number of balls accepted:
∑

x∈X ξ((x, τx),X ).
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Poisson input

· For purposes of exposition, we consider Poisson input on Rd.

· By Poisson input, we mean a Poisson point process in Rd. The Poisson
point process (PPP) on Rd is the probabilist’s way of placing points more
or less uniformly at random in space. The PPP with rate (intensity) τ is
denoted by Pτ and has these properties:

(i) the number of points that Pτ puts in disjoint sets are independent r.v.

(ii) the number of points of Pτ in the set B is a Poisson r.v. with
parameter equal to the product of τ and Lebesque measure of B.
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Dimension estimators

P := homogeneous rate one Poisson pt process on Rd, x ∈ Rd, k ≥ 3.

Dj := Dj(x,P):= dist. between x and its jth nearest neighbor in P.

We have:

(k − 2)

k−1∑
j=1

log
Dk

Dj

−1 D= d(k − 2)(Γk−1,1)
−1.

Expectation of LHS is d.

In other words the LHS is an unbiased estimator of dimension for any
k ≥ 3 (Bickel + Levina).
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Dj := Dj(x,P):= dist. between x and its jth nearest neighbor in P. We
have

E

(k − 2)

k−1∑
j=1

log
Dk

Dj

−1 = d.

Let {Xi}ni=1 be i.i.d. on manifoldM⊂ Rm; d := dim(M) ≤ m unknown.

Problem. Estimate intrinsic dimension d. Fix k ≥ 3. Put Xn := {Xi}ni=1.
Define (spatially correlated) ‘score’ at X1 wrt Xn, by

ξk(X1,Xn) := (k − 2)

k−1∑
j=1

log
Dk(X1,Xn)

Dj(X1,Xn)

−1 .
Questions (i) Fix k ≥ 3. What conditions on M insure

lim
n→∞

E [ξk(X1,Xn)] = dimM?

(ii) Are the sums
∑

i≤n ξk(Xi,Xn) asymptotically normal?
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General questions

· When X ⊂ Rd is a random pt configuration, we have seen that the sums∑
x∈X

ξ(x,X )

describe a global feature of some random structure.

· What is the distribution of these sums for large random pt
configurations X ?

· Laws of large numbers?

· Central limit theorems?
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Goals

P: a rate one Poisson point process on Rd.

Restrict P to windows: Wn := [−n1/d

2 , n
1/d

2 ]d.

Goal. Given a score function ξ(·, ·) defined on pairs (x,X ), given a pt
process P, we seek the limit theory (LLN, CLT, variance asymptotics) for
the total score

Hξ
n :=

∑
x∈P∩Wn

ξ(x,P ∩Wn)

and total measure

µξn :=
∑

x∈P∩Wn

ξ(x,P ∩Wn)δn−1/dx.

Tractable problems must be local in the sense that points far away from x
should not play a role in the evaluation of the score ξ(x,P ∩Wn).
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Stabilization

We assume translation invariant scores: ξ(x,X ) = ξ(0,X − x).

Key Definition. ξ is stabilizing wrt Poisson pt process P on Rd if there is
R := Rξ(P) <∞ a.s. (a ‘radius of stabilization’) such that

ξ(0,P ∩BR(0)) = ξ(0, (P ∩BR(0)) ∪ A).

for any locally finite A ⊂ Bc
R(0).

ξ is exponentially stabilizing wrt P if there is a constant c ∈ (0,∞) such
that

P[Rξ(0,P) ≥ r] ≤ c exp(−r
c

), r ∈ [1,∞).
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Stabilization

Main idea: under stabilization conditions on ξ, the sums∑
x∈P∩Wn

ξ(x,P ∩Wn)

should behave like a sum of weakly dependent random variables
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Stabilization

P: rate one Poisson pt process on Rd; consider total edge length of the
nearest neighbor graph on P.

For x ∈ P, put

ξ(x,P) :=

{
1
2 |x− xNN | if xand xNNare mutual nearest neighbors
|x− xNN | otherwise.

Then
∑

x∈P∩Wn
ξ(x,P ∩Wn) gives the total edge length of nearest

neighbors graph on the window Wn.

The radius of stabilization is

Rξ(x,P) := 2|x− xNN |.
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Moment condition

P: Poisson pt process on Rd.

Definition. ξ satisfies the p moment condition wrt P if

sup
n

sup
x,y∈Rd

E |ξ(x,P ∪ {y})|p <∞.
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Weak law of large numbers for Poisson input P

Let P be a rate 1 Poisson pt process on Rd; Wn := [−n
1/d

2 , n
1/d

2 ]d.

Hξ
n :=

∑
x∈P∩Wn

ξ(x,P ∩Wn).

Thm (WLLN): If ξ is stabilizing wrt P and satisfies the p moment
condition for some p ∈ (1,∞), then

|n−1EHξ
n − E ξ(0,P ∪ {0})| ≤ εn.

εn = O(n−1/d) if ξ is exponentially stabilizing wrt P.
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| 1
n
EHξ

n − E ξ(0,P ∪ {0})| ≤ εn.

· We may replace Pn with n i.i.d. uniform r.v. {Xi}ni=1 on [−n1/d

2 , n
1/d

2 ]d:

lim
n→∞

n−1E
n∑
i=1

ξ(Xi, {Xi}ni=1) = E ξ(0,P ∪ {0}).
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Weak law of large numbers

What about laws of large numbers on non-uniform input?

Again, we first consider Poisson input with a non-uniform intensity.

Let Png be a Poisson pt process with intensity ng, i.e. the number of
points of Png in a Borel set B is Poisson r.v. with parameter n

∫
B g(x)dx

and the number of points in disjoint sets are independent r.v.

It is the case that for stabilizing, trans. invariant ξ we have as n→∞

ξ(n1/dx, n1/dPng) = ξ(0, n1/d(Png − x))
D−→ ξ(0,Pg(x)).

Stabilization is a surrogate for continuity.
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Weak law of large numbers for binomial input

Let {Xi}ni=1 be i.i.d. r.v. with density g on [−1
2 ,

1
2 ]d.

Thm (WLLN): If ξ is stabilizing wrt P and satisfies the p moment
condition for some p ∈ (1,∞), then

lim
n→∞

n−1E
n∑
i=1

ξ(n1/dXi, n
1/d{Xi}ni=1)

=

∫
[− 1

2
, 1
2
]d
E [ξ(0,Pg(x) ∪ {0})]g(x)dx.

It is possible to simplify the right-hand side....
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Weak law of large numbers for binomial input

For any Poisson point process Pτ of intensity τ we have Pτ
D
= τ−1/dP1.

If the score function ξ measures edge length, then ξ(ax, aX ) = aξ(x,X ).

Thus ξ(0,Pτ )
D
= ξ(0, τ−1/dP1) = τ−1/dξ(0,P1). Thus

Thm (WLLN): If ξ is stabilizing wrt P1 and satisfies the p moment
condition for some p ∈ (1,∞), then

E
n∑
i=1

ξ(n1/dXi, n
1/d{Xi}ni=1)→

∫
[− 1

2
, 1
2
]d
E [ξ(0,Pg(x) ∪ {0})]g(x)dx

=

∫
[− 1

2
, 1
2
]d
E [ξ(0,P1 ∪ {0})]g(x)(d−1)/ddx

= E [ξ(0,P1 ∪ {0})]
∫
[− 1

2
, 1
2
]d
g(x)(d−1)/ddx
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Gaussian fluctuations for Poisson input P on Rd

Recall Hξ
n :=

∑
x∈P∩Wn

ξ(x,P ∩Wn).

Thm (CLT): Assume ξ is exponentially stabilizing wrt P and satisfies the
p moment condition for some p ∈ (5,∞). Then

sup
t∈R

∣∣∣∣∣∣P
Hξ

n − EHξ
n√

VarHξ
n

≤ t

− P[N(0, 1) ≤ t]

∣∣∣∣∣∣ ≤ εn.

Penrose + Y (2005), Penrose (2007): εn = O( (logn)
3d

√
n

).

Lachièze-Rey, Schulte, + Y (2019): εn = O( 1√
VarHξ

n

).
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Variance asymptotics for Poisson input; volume order
fluctuations

Given homogenous rate 1 Poisson input P on Rd, and a score ξ, put

σ2(ξ) :=E ξ2(0,P)+

+

∫
Rd

[E ξ(0,P ∪ {x})ξ(x,P ∪ {0})− E ξ(0,P)E ξ(x,P)]dx.

Thm (variance asymptotics): If ξ is exponentially stabilizing wrt P and
satisfies the p moment condition for some p ∈ (2,∞), then

lim
n→∞

n−1VarHξ
n = σ2(ξ) ∈ [0,∞).
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Extensions:

(i) Input can have fast decay of correlations

(ii) Multivariate CLT with rates of convergence

(iii) Input on manifolds

(iv) Our approach gives limit theory for the measures:

µξn :=
∑
x∈Pn

ξ(x,Pn)δn−1/dx.
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THANK YOU
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