Asymptotic Theory for Statistics of Geometric Structures

Joe Yukich

Universidad Carlos III, October 11, 2019

- $\cdot \mathcal{X} \subset \mathbb{R}^d$ random finite point set.
- · Convex geometry. How many vertices in convex hull of \mathcal{X} ?

- $\cdot \mathcal{X} \subset \mathbb{R}^d$ random finite point set.
- · Convex geometry. How many vertices in convex hull of \mathcal{X} ?
- · Stochastic geometry. Fix $\rho > 0$. At each point of $\mathcal X$ place a ball of radius ρ . What is volume of the union of such balls? Number of components?

- $\cdot \mathcal{X} \subset \mathbb{R}^d$ random finite point set.
- · Convex geometry. How many vertices in convex hull of \mathcal{X} ?
- · Stochastic geometry. Fix $\rho > 0$. At each point of $\mathcal X$ place a ball of radius ρ . What is volume of the union of such balls? Number of components?
- · Statistical physics. RSA packing.

- $\cdot \mathcal{X} \subset \mathbb{R}^d$ random finite point set.
- · Convex geometry. How many vertices in convex hull of \mathcal{X} ?
- · Stochastic geometry. Fix $\rho > 0$. At each point of $\mathcal X$ place a ball of radius ρ . What is volume of the union of such balls? Number of components?
- · Statistical physics. RSA packing.
- · Graph and networks. $L_G(\mathcal{X}):=$ length of graph G on \mathcal{X} . What is the behavior of $L_G(\mathcal{X})$ for large \mathcal{X} ?

· The random variable X has density $\kappa(x)$ if

$$P(X \in A) = \int_A \kappa(x) dx.$$

· Theorem (Beardwood, Halton, Hammersley (1959)): $X_i, 1 \le i \le n$, i.i.d. with density $\kappa(x)$ on $[0,1]^d$. Then

$$\lim_{n \to \infty} \frac{L_{MST}(\{X_1, ..., X_n\})}{n^{(d-1)/d}} \stackrel{P}{=} \gamma_{MST}(d) \int_{[0,1]^d} \kappa(x)^{(d-1)/d} dx.$$

Questions pertaining to statistics of geometric structures on random input $\mathcal{X} \subset \mathbb{R}^d$ often involve analyzing sums of spatially correlated terms

$$\sum_{x \in \mathcal{X}} \xi(x, \mathcal{X}),$$

where the \mathbb{R} -valued score function ξ , defined on pairs (x, \mathcal{X}) , represents the interaction of x with respect to \mathcal{X} .

Questions pertaining to statistics of geometric structures on random input $\mathcal{X} \subset \mathbb{R}^d$ often involve analyzing sums of spatially correlated terms

$$\sum_{x \in \mathcal{X}} \xi(x, \mathcal{X}),$$

where the \mathbb{R} -valued score function ξ , defined on pairs (x, \mathcal{X}) , represents the interaction of x with respect to \mathcal{X} .

The sums describe some global feature of the random structure in terms of local contributions $\xi(x,\mathcal{X}),\ x\in\mathcal{X}.$

Questions pertaining to statistics of geometric structures on random input $\mathcal{X} \subset \mathbb{R}^d$ often involve analyzing sums of spatially correlated terms

$$\sum_{x \in \mathcal{X}} \xi(x, \mathcal{X}),$$

where the \mathbb{R} -valued score function ξ , defined on pairs (x, \mathcal{X}) , represents the interaction of x with respect to \mathcal{X} .

The sums describe some global feature of the random structure in terms of local contributions $\xi(x,\mathcal{X}),\ x\in\mathcal{X}.$

We give some examples.

Random graphs

 $\mathcal{X} \subset \mathbb{R}^d$ finite; let $G(\mathcal{X})$ be a graph on \mathcal{X} .

(a) For $x \in \mathcal{X}$, put

$$\xi(x,\mathcal{X}):=rac{1}{2}(ext{sum of lengths of edges in graph incident to x}).$$

Then $\sum_{x \in \mathcal{X}} \xi(x, \mathcal{X})$ gives the total edge length of $G(\mathcal{X})$.

Random graphs

 $\mathcal{X} \subset \mathbb{R}^d$ finite; let $G(\mathcal{X})$ be a graph on \mathcal{X} .

(a) For $x \in \mathcal{X}$, put

$$\xi(x,\mathcal{X}):=rac{1}{2}(ext{sum of lengths of edges in graph incident to x}).$$

Then $\sum_{x \in \mathcal{X}} \xi(x, \mathcal{X})$ gives the total edge length of $G(\mathcal{X})$.

(b)
$$k \in \mathbb{N}$$
; $\xi_k(x, \mathcal{X}) = \frac{1}{k+1}$ (number of k-simplices containing x).

Then

$$\sum_{x \in \mathcal{X}} \xi_k(x, \mathcal{X})$$

gives the number of k-simplices in $G(\mathcal{X})$.

Random convex hulls

- \cdot $\mathcal{X} \subset \mathbb{R}^d$ finite. Let $\mathrm{co}(\mathcal{X})$ denote the convex hull of \mathcal{X} .
- \cdot For $x \in \mathcal{X}$, $k \in \{0, 1, ..., d-1\}$, we put

$$f_k(x,\mathcal{X}) := \frac{1}{k+1}$$
 (number of k – dimensional faces containing x).

Random convex hulls

- $\cdot \mathcal{X} \subset \mathbb{R}^d$ finite. Let $\mathrm{co}(\mathcal{X})$ denote the convex hull of \mathcal{X} .
- \cdot For $x \in \mathcal{X}$, $k \in \{0,1,...,d-1\}$, we put

$$f_k(x,\mathcal{X}) := \frac{1}{k+1}$$
 (number of k – dimensional faces containing x).

- · Total number of k-dimensional faces of $co(\mathcal{X})$: $\sum_{x \in \mathcal{X}} f_k(x, \mathcal{X})$.
- · Rényi, Sulanke

Continuum percolation

 $\mathcal{X} \subset \mathbb{R}^d$; join two points with an edge iff they are distant at most one.

 $\xi_{\text{comp}}(x, \mathcal{X}) := (\text{size of component containing } \mathbf{x})^{-1}.$

Continuum percolation

 $\mathcal{X} \subset \mathbb{R}^d$; join two points with an edge iff they are distant at most one.

$$\xi_{\text{comp}}(x, \mathcal{X}) := (\text{size of component containing } \mathbf{x})^{-1}.$$

Component count in continuum percolation model on \mathcal{X} :

$$\sum_{x \in \mathcal{X}} \xi_{\text{comp}}(x, \mathcal{X}).$$

· Unit volume balls $B_{1,n}, B_{2,n}...$, arrive sequentially and uniformly at random on the cube $[-\frac{n^{1/d}}{2}, \frac{n^{1/d}}{2}]^d$.

- · Unit volume balls $B_{1,n}, B_{2,n}, \ldots$, arrive sequentially and uniformly at random on the cube $[-\frac{n^{1/d}}{2}, \frac{n^{1/d}}{2}]^d$.
- · The first ball $B_{1,n}$ is packed, and recursively for $i=2,3,\ldots$, the i-th ball $B_{i,n}$ is packed iff $B_{i,n}$ does not overlap any ball in $B_{1,n},\ldots,B_{i-1,n}$ which has already been packed. If not packed, the i-th ball is discarded.

- · Unit volume balls $B_{1,n}, B_{2,n}...$, arrive sequentially and uniformly at random on the cube $[-\frac{n^{1/d}}{2}, \frac{n^{1/d}}{2}]^d$.
- · The first ball $B_{1,n}$ is packed, and recursively for $i=2,3,\ldots$, the i-th ball $B_{i,n}$ is packed iff $B_{i,n}$ does not overlap any ball in $B_{1,n},\ldots,B_{i-1,n}$ which has already been packed. If not packed, the i-th ball is discarded.
- $\cdot \mathcal{X} \subset \mathbb{R}^d$ a temporally marked point set. Define the 'score' at $(x, \tau_x) \in \mathcal{X}$:

$$\xi((x,\tau_x),\mathcal{X}):=\left\{\begin{array}{ll} 1 & \text{if ball centered at x with arrival time } \tau_x \text{ is accepted} \\ 0 & \text{otherwise}. \end{array}\right.$$

- · Unit volume balls $B_{1,n}, B_{2,n}...$, arrive sequentially and uniformly at random on the cube $[-\frac{n^{1/d}}{2}, \frac{n^{1/d}}{2}]^d$.
- · The first ball $B_{1,n}$ is packed, and recursively for $i=2,3,\ldots$, the i-th ball $B_{i,n}$ is packed iff $B_{i,n}$ does not overlap any ball in $B_{1,n},\ldots,B_{i-1,n}$ which has already been packed. If not packed, the i-th ball is discarded.
- \cdot $\mathcal{X}\subset\mathbb{R}^d$ a temporally marked point set. Define the 'score' at $(x, au_x)\in\mathcal{X}$:

$$\xi((x,\tau_x),\mathcal{X}) := \left\{ \begin{array}{l} 1 \ \ \text{if ball centered at x with arrival time τ_x is accepted} \\ 0 \ \ \text{otherwise}. \end{array} \right.$$

Total number of balls accepted: $\sum_{x \in \mathcal{X}} \xi((x, \tau_x), \mathcal{X})$.

Poisson input

- \cdot For purposes of exposition, we consider Poisson input on \mathbb{R}^d .
- \cdot By Poisson input, we mean a Poisson point process in \mathbb{R}^d . The Poisson point process (PPP) on \mathbb{R}^d is the probabilist's way of placing points more or less uniformly at random in space. The PPP with rate (intensity) τ is denoted by \mathcal{P}_{τ} and has these properties:
- (i) the number of points that $\mathcal{P}_{ au}$ puts in disjoint sets are independent r.v.

Poisson input

- \cdot For purposes of exposition, we consider Poisson input on \mathbb{R}^d .
- \cdot By Poisson input, we mean a Poisson point process in \mathbb{R}^d . The Poisson point process (PPP) on \mathbb{R}^d is the probabilist's way of placing points more or less uniformly at random in space. The PPP with rate (intensity) τ is denoted by \mathcal{P}_{τ} and has these properties:
- (i) the number of points that $\mathcal{P}_{ au}$ puts in disjoint sets are independent r.v.
- (ii) the number of points of \mathcal{P}_{τ} in the set B is a Poisson r.v. with parameter equal to the product of τ and Lebesque measure of B.

Dimension estimators

 $\mathcal{P}:=$ homogeneous rate one Poisson pt process on \mathbb{R}^d , $x\in\mathbb{R}^d$, $k\geq 3$.

 $D_j := D_j(x, \mathcal{P}) := \text{dist.}$ between x and its jth nearest neighbor in \mathcal{P} .

Dimension estimators

 $\mathcal{P}:=$ homogeneous rate one Poisson pt process on \mathbb{R}^d , $x\in\mathbb{R}^d$, $k\geq 3$.

 $D_j:=D_j(x,\mathcal{P}){:=}\text{ dist. between }x\text{ and its }jth\text{ nearest neighbor in }\mathcal{P}.$

We have:

$$(k-2)\left(\sum_{j=1}^{k-1}\log\frac{D_k}{D_j}\right)^{-1} \stackrel{\mathcal{D}}{=} d(k-2)(\Gamma_{k-1,1})^{-1}.$$

Expectation of LHS is d.

In other words the LHS is an unbiased estimator of dimension for any $k \geq 3$ (Bickel + Levina).

$$\mathbb{E}\left[(k-2) \left(\sum_{j=1}^{k-1} \log \frac{D_k}{D_j} \right)^{-1} \right] = d.$$

$$\mathbb{E}\left[(k-2)\left(\sum_{j=1}^{k-1}\log\frac{D_k}{D_j}\right)^{-1}\right] = d.$$

Let $\{X_i\}_{i=1}^n$ be i.i.d. on manifold $\mathcal{M} \subset \mathbb{R}^m$; $d := \dim(\mathcal{M}) \leq m$ unknown.

Problem. Estimate intrinsic dimension d.

$$\mathbb{E}\left[(k-2)\left(\sum_{j=1}^{k-1}\log\frac{D_k}{D_j}\right)^{-1}\right] = d.$$

Let $\{X_i\}_{i=1}^n$ be i.i.d. on manifold $\mathcal{M} \subset \mathbb{R}^m$; $d := \dim(\mathcal{M}) \leq m$ unknown.

Problem. Estimate intrinsic dimension d. Fix $k \geq 3$. Put $\mathcal{X}_n := \{X_i\}_{i=1}^n$. Define (spatially correlated) 'score' at X_1 wrt \mathcal{X}_n , by

$$\xi_k(X_1, \mathcal{X}_n) := (k-2) \left(\sum_{j=1}^{k-1} \log \frac{D_k(X_1, \mathcal{X}_n)}{D_j(X_1, \mathcal{X}_n)} \right)^{-1}.$$

$$\mathbb{E}\left[(k-2)\left(\sum_{j=1}^{k-1}\log\frac{D_k}{D_j}\right)^{-1}\right] = d.$$

Let $\{X_i\}_{i=1}^n$ be i.i.d. on manifold $\mathcal{M} \subset \mathbb{R}^m$; $d := \dim(\mathcal{M}) \leq m$ unknown.

Problem. Estimate intrinsic dimension d. Fix $k \geq 3$. Put $\mathcal{X}_n := \{X_i\}_{i=1}^n$. Define (spatially correlated) 'score' at X_1 wrt \mathcal{X}_n , by

$$\xi_k(X_1, \mathcal{X}_n) := (k-2) \left(\sum_{j=1}^{k-1} \log \frac{D_k(X_1, \mathcal{X}_n)}{D_j(X_1, \mathcal{X}_n)} \right)^{-1}.$$

Questions (i) Fix $k \geq 3$. What conditions on \mathcal{M} insure

$$\lim_{n\to\infty} \mathbb{E}\left[\xi_k(X_1,\mathcal{X}_n)\right] = \dim \mathcal{M}?$$

(ii) Are the sums $\sum_{i \leq n} \xi_k(X_i, \mathcal{X}_n)$ asymptotically normal?

General questions

 \cdot When $\mathcal{X}\subset\mathbb{R}^d$ is a random pt configuration, we have seen that the sums

$$\sum_{x \in \mathcal{X}} \xi(x, \mathcal{X})$$

describe a global feature of some random structure.

General questions

 \cdot When $\mathcal{X}\subset\mathbb{R}^d$ is a random pt configuration, we have seen that the sums

$$\sum_{x \in \mathcal{X}} \xi(x, \mathcal{X})$$

describe a global feature of some random structure.

- · What is the distribution of these sums for large random pt configurations \mathcal{X} ?
- · Laws of large numbers?
- · Central limit theorems?

Goals

 \mathcal{P} : a rate one Poisson point process on \mathbb{R}^d .

Restrict $\mathcal P$ to windows: $W_n:=[-\frac{n^{1/d}}{2},\frac{n^{1/d}}{2}]^d.$

Goals

 \mathcal{P} : a rate one Poisson point process on \mathbb{R}^d .

Restrict $\mathcal P$ to windows: $W_n:=[-\frac{n^{1/d}}{2},\frac{n^{1/d}}{2}]^d.$

Goal. Given a score function $\xi(\cdot,\cdot)$ defined on pairs (x,\mathcal{X}) , given a pt process \mathcal{P} , we seek the limit theory (LLN, CLT, variance asymptotics) for the total score

$$H_n^{\xi} := \sum_{x \in \mathcal{P} \cap W_n} \xi(x, \mathcal{P} \cap W_n)$$

and total measure

$$\mu_n^{\xi} := \sum_{x \in \mathcal{P} \cap W_n} \xi(x, \mathcal{P} \cap W_n) \delta_{n^{-1/d}x}.$$

Goals

 \mathcal{P} : a rate one Poisson point process on \mathbb{R}^d .

Restrict $\mathcal P$ to windows: $W_n:=[-\frac{n^{1/d}}{2},\frac{n^{1/d}}{2}]^d.$

Goal. Given a score function $\xi(\cdot,\cdot)$ defined on pairs (x,\mathcal{X}) , given a pt process \mathcal{P} , we seek the limit theory (LLN, CLT, variance asymptotics) for the total score

$$H_n^{\xi} := \sum_{x \in \mathcal{P} \cap W_n} \xi(x, \mathcal{P} \cap W_n)$$

and total measure

$$\mu_n^{\xi} := \sum_{x \in \mathcal{P} \cap W_n} \xi(x, \mathcal{P} \cap W_n) \delta_{n^{-1/d}x}.$$

Tractable problems must be *local* in the sense that points far away from x should not play a role in the evaluation of the score $\xi(x, \mathcal{P} \cap W_n)$.

We assume translation invariant scores: $\xi(x, \mathcal{X}) = \xi(\mathbf{0}, \mathcal{X} - x)$.

We assume translation invariant scores: $\xi(x, \mathcal{X}) = \xi(\mathbf{0}, \mathcal{X} - x)$.

Key Definition. ξ is *stabilizing* wrt Poisson pt process $\mathcal P$ on $\mathbb R^d$ if there is $R:=R^\xi(\mathcal P)<\infty$ a.s. (a 'radius of stabilization') such that

$$\xi(\mathbf{0}, \mathcal{P} \cap B_R(\mathbf{0})) = \xi(\mathbf{0}, (\mathcal{P} \cap B_R(\mathbf{0})) \cup \mathcal{A}).$$

for any locally finite $\mathcal{A} \subset B_R^c(\mathbf{0})$.

We assume translation invariant scores: $\xi(x, \mathcal{X}) = \xi(\mathbf{0}, \mathcal{X} - x)$.

Key Definition. ξ is *stabilizing* wrt Poisson pt process $\mathcal P$ on $\mathbb R^d$ if there is $R:=R^\xi(\mathcal P)<\infty$ a.s. (a 'radius of stabilization') such that

$$\xi(\mathbf{0}, \mathcal{P} \cap B_R(\mathbf{0})) = \xi(\mathbf{0}, (\mathcal{P} \cap B_R(\mathbf{0})) \cup \mathcal{A}).$$

for any locally finite $\mathcal{A} \subset B_R^c(\mathbf{0})$.

 ξ is exponentially stabilizing wrt $\mathcal P$ if there is a constant $c\in(0,\infty)$ such that

$$\mathbb{P}[R^{\xi}(\mathbf{0}, \mathcal{P}) \ge r] \le c \exp(-\frac{r}{c}), \quad r \in [1, \infty).$$

Main idea: under stabilization conditions on ξ , the sums

$$\sum_{x \in \mathcal{P} \cap W_n} \xi(x, \mathcal{P} \cap W_n)$$

should behave like a sum of weakly dependent random variables

Stabilization

 \mathcal{P} : rate one Poisson pt process on \mathbb{R}^d ; consider total edge length of the nearest neighbor graph on \mathcal{P} .

For $x \in \mathcal{P}$, put

$$\xi(x,\mathcal{P}) := \left\{ \begin{array}{l} \frac{1}{2}|x-x_{NN}| \ \ \text{if} \ \ x \text{and} \ x_{NN} \text{are mutual nearest neighbors} \\ |x-x_{NN}| \ \ \text{otherwise}. \end{array} \right.$$

Stabilization

 \mathcal{P} : rate one Poisson pt process on \mathbb{R}^d ; consider total edge length of the nearest neighbor graph on \mathcal{P} .

For $x \in \mathcal{P}$, put

$$\xi(x,\mathcal{P}) := \left\{ \begin{array}{l} \frac{1}{2}|x-x_{NN}| \quad \text{if} \quad x \text{and} \ x_{NN} \text{are mutual nearest neighbors} \\ |x-x_{NN}| \quad \text{otherwise}. \end{array} \right.$$

Then $\sum_{x \in \mathcal{P} \cap W_n} \xi(x, \mathcal{P} \cap W_n)$ gives the total edge length of nearest neighbors graph on the window W_n .

The radius of stabilization is

$$R^{\xi}(x,\mathcal{P}) := 2|x - x_{NN}|.$$

Moment condition

 \mathcal{P} : Poisson pt process on \mathbb{R}^d .

Definition. ξ satisfies the p moment condition wrt $\mathcal P$ if

$$\sup_n \sup_{x,y \in \mathbb{R}^d} \mathbb{E} |\xi(x, \mathcal{P} \cup \{y\})|^p < \infty.$$

Let $\mathcal P$ be a rate 1 Poisson pt process on $\mathbb R^d$; $W_n:=[\frac{-n^{1/d}}{2},\frac{n^{1/d}}{2}]^d$.

$$H_n^{\xi} := \sum_{x \in \mathcal{P} \cap W_n} \xi(x, \mathcal{P} \cap W_n).$$

Let $\mathcal P$ be a rate 1 Poisson pt process on $\mathbb R^d$; $W_n:=[\frac{-n^{1/d}}{2},\frac{n^{1/d}}{2}]^d$.

$$H_n^{\xi} := \sum_{x \in \mathcal{P} \cap W_n} \xi(x, \mathcal{P} \cap W_n).$$

Thm (WLLN): If ξ is stabilizing wrt \mathcal{P} and satisfies the p moment condition for some $p \in (1, \infty)$, then

$$|n^{-1}\mathbb{E} H_n^{\xi} - \mathbb{E} \xi(\mathbf{0}, \mathcal{P} \cup \{\mathbf{0}\})| \le \epsilon_n.$$

Let $\mathcal P$ be a rate 1 Poisson pt process on $\mathbb R^d$; $W_n:=[\frac{-n^{1/d}}{2},\frac{n^{1/d}}{2}]^d$.

$$H_n^{\xi} := \sum_{x \in \mathcal{P} \cap W_n} \xi(x, \mathcal{P} \cap W_n).$$

Thm (WLLN): If ξ is stabilizing wrt \mathcal{P} and satisfies the p moment condition for some $p \in (1, \infty)$, then

$$|n^{-1}\mathbb{E} H_n^{\xi} - \mathbb{E} \xi(\mathbf{0}, \mathcal{P} \cup \{\mathbf{0}\})| \le \epsilon_n.$$

 $\epsilon_n = O(n^{-1/d})$ if ξ is exponentially stabilizing wrt \mathcal{P} .

Let $\mathcal P$ be a rate 1 Poisson pt process on $\mathbb R^d$; $W_n:=[\frac{-n^{1/d}}{2},\frac{n^{1/d}}{2}]^d$.

$$H_n^{\xi} := \sum_{x \in \mathcal{P} \cap W_n} \xi(x, \mathcal{P} \cap W_n).$$

Thm (WLLN): If ξ is stabilizing wrt \mathcal{P} and satisfies the p moment condition for some $p \in (1, \infty)$, then

$$\left|\frac{1}{n}\mathbb{E} H_n^{\xi} - \mathbb{E} \xi(\mathbf{0}, \mathcal{P} \cup \{\mathbf{0}\})\right| \le \epsilon_n.$$

· We may replace \mathcal{P}_n with n i.i.d. uniform r.v. $\{X_i\}_{i=1}^n$ on $[-\frac{n^{1/d}}{2},\frac{n^{1/d}}{2}]^d$:

$$\lim_{n \to \infty} n^{-1} \mathbb{E} \sum_{i=1}^{n} \xi(X_i, \{X_i\}_{i=1}^n) = \mathbb{E} \xi(\mathbf{0}, \mathcal{P} \cup \{\mathbf{0}\}).$$

Weak law of large numbers

What about laws of large numbers on non-uniform input?

Again, we first consider Poisson input with a non-uniform intensity.

Weak law of large numbers

What about laws of large numbers on non-uniform input?

Again, we first consider Poisson input with a non-uniform intensity.

Let \mathcal{P}_{ng} be a Poisson pt process with intensity ng, i.e. the number of points of \mathcal{P}_{ng} in a Borel set B is Poisson r.v. with parameter $n\int_B g(x)dx$ and the number of points in disjoint sets are independent r.v.

It is the case that for stabilizing, trans. invariant ξ we have as $n \to \infty$

$$\xi(n^{1/d}x, n^{1/d}\mathcal{P}_{ng}) = \xi(\mathbf{0}, n^{1/d}(\mathcal{P}_{ng} - x)) \xrightarrow{\mathcal{D}} \xi(\mathbf{0}, \mathcal{P}_{g(x)}).$$

Stabilization is a surrogate for continuity.

Weak law of large numbers for binomial input

Let $\{X_i\}_{i=1}^n$ be i.i.d. r.v. with density g on $[-\frac{1}{2},\frac{1}{2}]^d$.

Thm (WLLN): If ξ is stabilizing wrt \mathcal{P} and satisfies the p moment condition for some $p \in (1, \infty)$, then

$$\lim_{n \to \infty} n^{-1} \mathbb{E} \sum_{i=1}^{n} \xi(n^{1/d} X_i, n^{1/d} \{X_i\}_{i=1}^n)$$

$$= \int_{[-\frac{1}{2},\frac{1}{2}]^d} \mathbb{E}\left[\xi(\mathbf{0},\mathcal{P}_{g(x)} \cup \{\mathbf{0}\})\right] g(x) dx.$$

It is possible to simplify the right-hand side....

Weak law of large numbers for binomial input

For any Poisson point process \mathcal{P}_{τ} of intensity τ we have $\mathcal{P}_{\tau} \stackrel{\mathcal{D}}{=} \tau^{-1/d} \mathcal{P}_{1}$.

If the score function ξ measures edge length, then $\xi(ax, a\mathcal{X}) = a\xi(x, \mathcal{X})$.

Thus $\xi(\mathbf{0}, \mathcal{P}_{\tau}) \stackrel{\mathcal{D}}{=} \xi(0, \tau^{-1/d} \mathcal{P}_1) = \tau^{-1/d} \xi(\mathbf{0}, \mathcal{P}_1)$. Thus

Weak law of large numbers for binomial input

For any Poisson point process \mathcal{P}_{τ} of intensity τ we have $\mathcal{P}_{\tau} \stackrel{\mathcal{D}}{=} \tau^{-1/d} \mathcal{P}_{1}$.

If the score function ξ measures edge length, then $\xi(ax, a\mathcal{X}) = a\xi(x, \mathcal{X})$.

Thus
$$\xi(\mathbf{0}, \mathcal{P}_{\tau}) \stackrel{\mathcal{D}}{=} \xi(0, \tau^{-1/d}\mathcal{P}_1) = \tau^{-1/d}\xi(\mathbf{0}, \mathcal{P}_1)$$
. Thus

Thm (WLLN): If ξ is stabilizing wrt \mathcal{P}_1 and satisfies the p moment condition for some $p \in (1, \infty)$, then

$$\mathbb{E} \sum_{i=1}^{n} \xi(n^{1/d}X_{i}, n^{1/d}\{X_{i}\}_{i=1}^{n}) \to \int_{\left[-\frac{1}{2}, \frac{1}{2}\right]^{d}} \mathbb{E} \left[\xi(\mathbf{0}, \mathcal{P}_{g(x)} \cup \{\mathbf{0}\})\right] g(x) dx$$

$$= \int_{\left[-\frac{1}{2}, \frac{1}{2}\right]^{d}} \mathbb{E} \left[\xi(\mathbf{0}, \mathcal{P}_{1} \cup \{\mathbf{0}\})\right] g(x)^{(d-1)/d} dx$$

$$= \mathbb{E} \left[\xi(\mathbf{0}, \mathcal{P}_{1} \cup \{\mathbf{0}\})\right] \int_{\left[-\frac{1}{2}, \frac{1}{2}\right]^{d}} g(x)^{(d-1)/d} dx$$

Gaussian fluctuations for Poisson input $\mathcal P$ on $\mathbb R^d$

Recall $H_n^{\xi} := \sum_{x \in \mathcal{P} \cap W_n} \xi(x, \mathcal{P} \cap W_n).$

Thm (CLT): Assume ξ is exponentially stabilizing wrt \mathcal{P} and satisfies the p moment condition for some $p \in (5, \infty)$. Then

$$\sup_{t \in \mathbb{R}} \left| \mathbb{P} \left[\frac{H_n^{\xi} - \mathbb{E} H_n^{\xi}}{\sqrt{\operatorname{Var} H_n^{\xi}}} \le t \right] - \mathbb{P}[N(0, 1) \le t] \right| \le \epsilon_n.$$

Gaussian fluctuations for Poisson input $\mathcal P$ on $\mathbb R^d$

Recall $H_n^{\xi} := \sum_{x \in \mathcal{P} \cap W_n} \xi(x, \mathcal{P} \cap W_n).$

Thm (CLT): Assume ξ is exponentially stabilizing wrt \mathcal{P} and satisfies the p moment condition for some $p \in (5, \infty)$. Then

$$\sup_{t \in \mathbb{R}} \left| \mathbb{P} \left[\frac{H_n^{\xi} - \mathbb{E} H_n^{\xi}}{\sqrt{\operatorname{Var} H_n^{\xi}}} \le t \right] - \mathbb{P}[N(0, 1) \le t] \right| \le \epsilon_n.$$

Penrose + Y (2005), Penrose (2007): $\epsilon_n = O(\frac{(\log n)^{3d}}{\sqrt{n}})$.

Lachièze-Rey, Schulte, + Y (2019): $\epsilon_n = O(\frac{1}{\sqrt{\operatorname{Var} H_n^{\xi}}})$.

Variance asymptotics for Poisson input; volume order fluctuations

Given homogenous rate 1 Poisson input \mathcal{P} on \mathbb{R}^d , and a score ξ , put

$$\sigma^{2}(\xi) := \mathbb{E} \xi^{2}(\mathbf{0}, \mathcal{P}) + \int_{\mathbb{R}^{d}} [\mathbb{E} \xi(\mathbf{0}, \mathcal{P} \cup \{x\}) \xi(x, \mathcal{P} \cup \{\mathbf{0}\}) - \mathbb{E} \xi(\mathbf{0}, \mathcal{P}) \mathbb{E} \xi(x, \mathcal{P})] dx.$$

Variance asymptotics for Poisson input; volume order fluctuations

Given homogenous rate 1 Poisson input $\mathcal P$ on $\mathbb R^d$, and a score ξ , put

$$\sigma^{2}(\xi) := \mathbb{E} \xi^{2}(\mathbf{0}, \mathcal{P}) + \int_{\mathbb{R}^{d}} [\mathbb{E} \xi(\mathbf{0}, \mathcal{P} \cup \{x\}) \xi(x, \mathcal{P} \cup \{\mathbf{0}\}) - \mathbb{E} \xi(\mathbf{0}, \mathcal{P}) \mathbb{E} \xi(x, \mathcal{P})] dx.$$

Thm (variance asymptotics): If ξ is exponentially stabilizing wrt $\mathcal P$ and satisfies the p moment condition for some $p\in(2,\infty)$, then

$$\lim_{n \to \infty} n^{-1} \operatorname{Var} H_n^{\xi} = \sigma^2(\xi) \in [0, \infty).$$

Extensions:

(i) Input can have fast decay of correlations

Extensions:

- (i) Input can have fast decay of correlations
- (ii) Multivariate CLT with rates of convergence

Extensions:

- (i) Input can have fast decay of correlations
- (ii) Multivariate CLT with rates of convergence
- (iii) Input on manifolds
- (iv) Our approach gives limit theory for the measures:

$$\mu_n^{\xi} := \sum_{x \in \mathcal{P}_n} \xi(x, \mathcal{P}_n) \delta_{n^{-1/d}x}.$$

THANK YOU