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Data tsunami

Information and technology have revolutionized data collection.

Millions of surveillance video cameras and billions of Internet
searches and social media chats and tweets produce massive
data that contain vital information about security, public health,
consumer preference, business sentiments, economic health,
among others.

Billions of prescriptions and enormous amount of genetic and
genomic information provide critical data on health and precision
medicine.
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Big data are ubiquitous

’There were 5 exabytes of information created between the dawn of civilization
through 2003, but that much information is now created every 2 days’ – Eric Schmidt,
Former CEO of Google
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What is Big Data?

Large and Complex data: Structured data (n and p are both
large); Unstructured data (email, text, web, videos)

Biological Sci.: Genomics, Medicine, Genetics, Neuroscience

Engineering: Machine Learning, Computer Vision, Networks

Social Sci.: Economics, Business and Digital Humanities

Natural Sci.: Meteorology, Earth Science, Astronomy

Characterizes contemporary scientific and decision problems
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Examples: Biological Sciences

Bioinformatics: disease classification/predicting clinical outcomes
using microarray data or proteomic data

Association studies between phenotypes and SNPs (eQTL)

Detecting activated voxels after stimuli in Neuroscience
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Example: Machine Learning

Document or text classification: E-mail spam
Computer vision, object classification (images, curves)
Social media and Internet
Online learning and recommendation
Surveillance videos and network security
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Example: Finance, Economics and Business

Data: Stock, currency, derivative, commodity, high-frequency
trades, macroeconomic, unstructured news and texts, consumers’
confidence and business sentiments in social media and Internet

US Unemployment Rate: 1976.1 to 2018.8
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Social media contains useful information on economic health,
consumer confidence and preference, suppliers and demands
Retail sales provide useful information on public health, economic
health, consumer confidence and preference, etc.
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Example: Finance, Economics and Business

Risk and portfolio management: Managing 2K stocks involves 2m
elements in covariance
Credit: Default probability depends on firm specific attributes,
market conditions, macroeconomic variables, feedback effects of
firms, etc.

Predicting Housing prices: 1000 neighborhoods require 1m
parameters using, e.g. VAR(1),

Xt = AXt−1 + εt.
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What can Big Data do?

Hold great promises for understanding

Heterogeneity: personalized medicine or services

Commonality: in presence of large variations (noises)

Dependence: financial data series

from large pools of variables, factors, genes, environments, and their
interactions as well as latent factors.
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Available statistical methods (TS)

1 Focus on sparsity
LASSO: Tibshirani (1996)
Group Lasso: Yuan and Lin (2006)
Elastic net: Zou and Hastie (2005)
SCAD: Fan and Li (2001)
Fused LASSO: Tibshirani et al. (2005)

2 Focus on dimension reduction
PCA: Pearson (1901)
CCA: Box and Tiao (1977)
SCM: Tiao and Tsay (1989)
Factor model: Peña and Box (1987), Bai and Ng (2002), Stock and
Watson (2005), Lam and Yao (2011, 2012) etc.
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Approximate factor model (Econ. & Finance)

The model:
yt = Axt + εt, (1)

where
{y1, ...,yn} with yt = (y1t, ..., ypt)

′ ∈ Rp which are observable
A ∈ Rp×r, xt ∈ Rr are unknown
εt is the idiosyncratic component

The goal
Estimate the loading matrix A

Recover the factor process xt

Estimate the number of common factors r

R. Tsay (U Chicago) Factor-Modeling of Big Dependent Data January 11, 2019 12 / 56



Available methods

1 Principal Component Analysis (PCA): Bai and Ng (2002,
Econometrica), Bai (2003, Econometrica)...

εt is not necessarily white noise

Σ̂y = n−1
n∑

t=1

yty
′
t = P̂D̂P̂′, Â = P̂rD̂

1/2
r , x̂t = D̂−1/2r P̂′ryt

ε̂t = yt − Âx̂t = (Ip − P̂rP̂
′
r)yt

2 Eigen-analysis on Auto-covariances: Lam, Yao and Bathia (2011,
Biometrika), Lam and Yao (2012, AoS)

Assume εt is vector white noise

M̂ =

k0∑
k=1

Γ̂kΓ̂
′
k with Γ̂k = n−1

n∑
t=k+1

yty
′
t−k, k0 is fixed

Â contains the eigenvectors of M̂ corresponding to top r
eigenvalues
x̂t = Â′yt, ε̂t = yt − Âx̂t = (Ip − ÂÂ′)yt

R. Tsay (U Chicago) Factor-Modeling of Big Dependent Data January 11, 2019 13 / 56



Some fundamental issues

PCA may fail if signal-to-noise ratio is low. For the analysis of
high-dimensional financial series, as the market and economic
information accumulates, the noise is often increasing faster than
the signal;
PCA cannot distinguish signal and noises in some sense. For
example, some components in x̂t might be white noises;
x̂t in Lam and Yao (2011) includes the noise components. When
the largest eigenvalues of the noise covariance are diverging, the
resulting estimators would deteriorate.;
The information criterion in Bai and Ng (2002) and the ratio-based
method in Lam and Yao (2011) may also fail if the largest
eigenvalues of the covariance matrix of the noise are diverging.
The sample covariance matrix of the estimated noises is singular
if r > 0.
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Contributions of the proposed method

1 Address the aforementioned issues from a different perspective

2 Provide a new model to understand the mechanism of factor
models

3 Propose a Projected PCA to eliminate the (diverging) effect of the
idiosyncratic terms

4 A new way to identify the number of factors, which is more reliable
than the information criterion and ratio-based method.
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Setting

Assume yt with Eyt = 0 and admits a latent structure:

yt = L

[
ft
εt

]
= [L1,L2]

[
ft
εt

]
= L1ft + L2εt, (2)

L ∈ Rp×p is a full rank loading matrix, implying L−1yt =

[
ft
εt

]
,

ft = (f1t, . . . , frt)
′ is a r-dimensional factor process,

εt = (ε1t, . . . , εvt)
′ is a v-dimensional white noise vector,

r is a small and fixed nonnegative integer. Cov(ft) = Ir,
Cov(εt) = Iv, Cov(ft, εt) = 0, and no linear combination of ft is
serially uncorrelated.
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Where does this come from?

Canonical Correlation Analysis (CCA): Let ηt = (y′t−1, ...,y
′
t−m)′ for

sufficient large m,
Σy = Cov(yt), Ση = Cov(ηt) and Σyη = Cov(yt,ηt)

L−1 contains the eigenvectors of Σ−1y ΣyηΣ
−1
η Σ′yη associated with

its descending eigenvalues,
L−1yt has uncorrelated components and their correlation with the
past lagged variables are in decreasing order
Assume the top r eigenvalues are non-zero
L−1yt = (f ′t , ε

′
t)
′

See Tiao and Tsay (1989, JRSSB): Include all finite-order VARMA
models.

R. Tsay (U Chicago) Factor-Modeling of Big Dependent Data January 11, 2019 17 / 56



Why CCA does not always work in practice?

A natural method is to adopt the CCA at the sample level to recover
the latent structure.

But,
the sample covariance matrix is not consistent to the population
one in high dimension;
the sample precision matrix is not consistent to the population one
in high dimension.

For instance, when the dimension is greater than the sample size.
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Our method

SVD or QR
Let L1 = A1Q1 and L2 = A2Q2 where A′1A1 = Ir and A′2A2 = Iv,

yt = L1ft + L2εt = A1xt + A2et, (3)

where
A1 is not orthogonal to A2 in general
A1 and xt are not uniquely identified since we can replace
(A1,xt) by (A1H,H′xt)

The linear space spanned by the columns of A1,M(A1) is
uniquely defined (all equal toM(L1))
Denote B1 and B2 as orthonormal complements of A1 and A2,
resp.
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Orthonormal projections: SCM(0,0)

Let the past lagged vector ηt = (y′t−1, ...,y
′
t−k0)′, we seek a direction

a ∈ Rp that solves the following

max
a∈Rp

‖Cov(a′yt,ηt)‖22, subject to a′a = 1. (4)

Equivalently, we solve
ΣyηΣ

′
yηa = λa. (5)

Since

M := ΣyηΣ
′
yη =

k0∑
k=1

Σy(k)Σy(k)′ (6)

where Σy(k) = Cov(yt,yt−k), and MB1 = 0. Then A1 consists of r
columns associated with the r nonzero eigenvalues of M.
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Projected PCA

Note that
yt = A1xt + A2et, (7)

and let B1 and B2 be the orthogonal complements of A1 and A2,
respectively. Then

B′1yt = B′1A2et, (8)

B′2yt = B′2A1xt. (9)

Observe that B′1yt and B′2yt are uncorrelated, then

B′2ΣyB1B
′
1ΣyB2 = 0, (10)

which implies that B2 consists the eigenvectors corresponding to the
zero eigenvalues of S := ΣyB

′
1B
′
1Σy. Once A1, B1 and B2 are given,

then
xt = (B′2A1)

−1B′2yt. (11)
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Estimation: r is known

Given the data {yt|t = 1, ..., n}, the first step is to perform an
eigen-analysis on

M̂ =

k0∑
k=1

Σ̂y(k)Σ̂y(k)′, (12)

where Σ̂y(k) is the lag-k sample auto-covariance matrix of yt.

Let Â1 = (â1, ..., âr) and B̂1 = (b̂1, ...b̂v). The second step is a
projected PCA based on

Ŝ = Σ̂yB̂1B̂
′
1Σ̂y. (13)

That is, we project the data yt onto the direction of B̂1, then
perform PCA between the original data yt and its projected
coordinates.
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Selection of B̂2

p is low: B̂2 = (b̂v+1, ..., b̂p), where b̂v+1, ..., b̂p are the
eigenvectors corresponding to the smallest r eigenvalues of Ŝ.
p is large:

Assume the largest K eigenvalues of Σe are diverging, which is a
reasonable condition in the high-dimensional case;
Write A2 = (A21,A22) with A21 ∈ Rp×K and A22 ∈ Rp×(v−K),
consider B∗2 = (A22,B2) ∈ Rp×(p−K) and B∗2 consists of p−K
eigenvectors corresponding to the p−K smallest eigenvalues of
S = ΣyB1B

′
1Σy.

Let B̂∗2 be an estimator of B∗2 consisting of p−K eigenvectors
associated with the p−K smallest eigenvalues of Ŝ. We then
estimate B̂2 by B̂2 = B̂∗2R̂, where R̂ = (r̂1, . . . , r̂r) ∈ R(p−K)×r with
r̂i being the eigenvector associated with the i-th largest
eigenvalues of B̂∗2

′Â1Â
′
1B̂
∗
2.

Recovered factors: x̂t = (B̂′2Â1)
−1B̂′2yt.
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Determination of the number of common factors

Note that
B′1yt = B′1A2et, (14)

which is a vector white noise process. Let Ĝ be the matrix of
eigenvectors (in the decreasing order of eigenvalues) of M̂ and
ût = Ĝ′yt = (û1t, ..., ûpt)

′.
p is small: using Ljung-Box statistic Q(m) to test the null
hypothesis that ûit is a white noise starting with i = p. If the null
hypothesis is rejected, then r̂ = i; otherwise, reduce i by one and
repeat the testing process.
p is large: high-dimensional white noise tests, Chang, Yao and
Zhou (2017) and Tsay (2018+).
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Theoretical properties: p is fixed and n→∞

Some Assumptions:
A1. The process {(yt, ft)} is α-mixing with the mixing coefficient

satisfying the condition
∞∑
k=1

αp(k)1−2/γ <∞ for some γ > 2, where

αp(k) = sup
i

sup
A∈Fi

−∞,B∈F∞i+k

|P (A ∩B)− P (A)P (B)|,

and F ji is the σ-field generated by {(yt, ft) : i ≤ t ≤ j}.
A2. E|fit|2γ < C1 and E|εjt|2γ < C2 for 1 ≤ i ≤ r and 1 ≤ j ≤ v, where
C1, C2 > 0 are some constants and γ is given in Assumption 1.
A3. λ1 > ... > λr > λr+1 = ... = λp = 0, where λi is the i-th largest
eigenvalue of M.
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Theorem 1: p is fixed and n→∞

Theorem
Suppose Assumptions 1-3 hold and r is known and fixed. Then, for
fixed p,

‖Â1−A1‖2 = Op(n
−1/2), ‖B̂1−B1‖2 = Op(n

−1/2), ‖B̂2−B2‖2 = Op(n
−1/2),

as n→∞. Therefore,

‖Â1x̂t −A1xt‖2 = Op(n
−1/2).

The convergence rates of all estimates are standard at
√
n.
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Theorem 2: p is fixed and n→∞
For two p× r half orthogonal matrices H1 and H2, define

D(M(H1),M(H2)) =

√
1− 1

r
tr(H1H′1H2H′2). (15)

Note that D(M(H1),M(H2)) ∈ [0, 1]. It is equal to 0 if and only if
M(H1) =M(H2), and to 1 if and only ifM(H1) ⊥M(H2).
Theorem 2. Suppose Assumptions 1-2 hold and r is known and fixed.
Then, for fixed p,

D(M(Â1),M(A1)) = Op(n
−1/2), D(M(B̂1),M(B1)) = Op(n

−1/2)

and
D(M(B̂2),M(B2)) = Op(n

−1/2),

as n→∞. The convergence rate of the extracted factors Â1x̂t is the
same as that in Theorem 1.
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Theoretical properties: n→∞ and p→∞
A4. (i) L1 = (c1, ..., cr) such that ‖cj‖22 � p1−δ1 , j = 1, ..., r and
δ1 ∈ [0, 1); (ii) For each j = 1, ..., r and δ1 given in (i),

min
θi∈R,i 6=j

‖cj −
∑

1≤i≤r,i 6=j
θici‖22 � p1−δ1 .

A5. (i) L2 admits a singular value decomposition L2 = A2D2V
′
2, where

A2 ∈ Rp×v is given before, D2 = diag(d1, ..., dv) and V2 ∈ Rv×v
satisfying V′2V2 = Iv; (ii) There exists a finite integer 0 < K < v such
that d1 � ... � dK � p(1−δ2)/2 for some δ2 ∈ [0, 1) and
dK+1 � ... � dv � 1.
A6. 0 ≤ κmin ≤ ‖Σfε(k)‖2 ≤ κmax for 1 ≤ k ≤ k0, where κmin and κmax

can be either finite constants or diverging rates in relation to p and n.
A7. (i) For any h ∈ Rv with ‖h‖2 = 1, E|h′εt|2γ <∞; (ii)
σmin(R′B∗2

′A1) ≥ C3 for some constant C3 > 0 and some half
orthogonal matrix R ∈ R(p−K)×r satisfying R′R = Ir, where σmin

denotes the minimum non-zero singular value of a matrix.
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Theorem 3: p→∞ and n→∞

Theorem
Suppose Assumptions 1-7 hold and r is known and fixed. As n→∞, if
pδ1n−1/2 = o(1) or κ−1maxp

δ1/2+δ2/2n−1/2 = o(1), then

‖Â1 −A1‖2 = Op(p
δ1n−1/2) if κmaxp

δ1/2−δ2/2 = o(1),

‖Â1 −A1‖2 = Op(κ
−2
minp

δ2n−1/2 + κ−2minκmaxp
δ1/2+δ2/2n−1/2) if

r ≤ K,κ−1minp
δ2/2−δ1/2 = o(1),

‖Â1 −A1‖2 = Op(κ
−2
minpn

−1/2 + κ−2minκmaxp
1+δ1/2−δ2/2n−1/2) if

r > K, κ−1minp
(1−δ1)/2 = o(1),

and the above results also hold for ‖B̂1 −B1‖2. Furthermore,

‖B̂∗2−B∗2‖2 = Op

(
p2δ2−δ1n−1/2 + pδ2n−1/2 + (1 + p2δ2−2δ1)‖B̂1 −B1‖2

)
.
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Remarks

• If κmax = κmin = 0, i.e., ft and εs are independent for all t and s, we
have

‖Â1 −A1‖2 = Op(p
δ1n−1/2)

‖B̂∗2 −B∗2‖2 = Op(p
2δ2−δ1n−1/2 + pδ2n−1/2 + pδ1n−1/2).

To guarantee they are consistent, we require pδ1n−1/2 = o(1),
pδ2n−1/2 = o(1) and p2δ2−δ1n−1/2 = o(1). When p � n1/2, it implies that
0 ≤ δ1 < 1, 0 ≤ δ2 < 1 and δ2 < (1 + δ1)/2, i.e., the ranges of δ1 and δ2
are pretty wide. On the other hand, if p � n, we see that 0 ≤ δ1 < 1/2,
0 ≤ δ2 < 1/2 and 2δ2 − δ1 < 1/2, these ranges become narrower if p is
large.
• if δ1 = δ2 = δ, we require pδn−1/2 = o(1).
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Improving the rates

A8. For any h ∈ Rv with ‖h‖2 = 1, there exists a constant C4 > 0 such
that

P (|h′εt| > x) ≤ 2 exp(−C4x
2) for any x > 0.

Assumption 8 implies that εt are sub-Gaussian. Examples of
sub-Gaussian distributions include the standard normal distribution in
Rv, the uniform distribution on the cube [−1, 1]v, among others. See,
for example, Vershynin (2018).
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Why Sub-Gaussian?

For general εt with Eεt = 0 and Cov(εt) = Ip,

‖ 1

n

n∑
t=1

εtε
′
t − Ip‖2 = Op(pn

−1/2).

Some famous results in Random Matrix Theory (RMT):
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Random Matrix Theory

Compute the p× p Wishart matrix W = A′A. The eigenvalues of√
W are called the singular values of A. For the largest singular

values, the eigenvectors of W are the principal components.
Bai-Yin law (1993): smin(A) =

√
n−√p+ o(

√
p) and

smax(A) =
√
n+
√
p+ o(

√
p), under the assumptions that the

entries of A are independent copies of a random variable with
zero mean, unit variance, and finite fourth moment.
This easily translates into the statement that the sample

covariance matrix Σn =
1

n
A′A nicely approximates the actual

covariance matrix Ip:

‖Σn − Ip‖2 ≈ 2

√
p

n
+
p

n
.

Sub-Gaussian also holds: Vershynin (2018).
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Improving the rates

Theorem:
Let Assumptions 1-8 hold and r is known and fixed, and
pδ1/2n−1/2 = o(1), pδ2/2n−1/2 = o(1).
(i) Under the condition that δ1 ≤ δ2,

‖Â1 −A1‖2 = Op(↓)
pδ1/2n−1/2, κmaxp

δ1/2−δ2/2 = o(1),

κ−2minp
δ2−δ1/2n−1/2 + κ−2minκmaxp

δ2/2n−1/2, r ≤ K,κ−1minp
δ2/2−δ1/2 = o(1),

κ−2minp
1−δ1/2n−1/2 + κ−2minκmaxp

1−δ2/2n−1/2, r > K, κ−1minp
(1−δ1)/2 = o(1),

and the above results also hold for ‖B̂1 −B1‖2, and

‖B̂∗2 −B∗2‖2 = Op(p
2δ2−3δ1/2n−1/2 + p2δ2−2δ1‖B̂1 −B1‖2).
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Improving the rates

(ii) Under the condition that δ1 > δ2, if κmax = 0 and
pδ1−δ2/2n−1/2 = o(1), then

‖Â1 −A1‖2 = Op(p
δ1−δ2/2n−1/2).

If κmax >> 0, then
‖Â1 −A1‖2 ={

Op(κ
−2
minκmaxp

δ1/2n−1/2), r ≤ K,κ−1minp
δ2/2−δ1/2 = o(1),

Op(κ
−2
minκmaxp

1+δ1/2−δ2n−1/2), r > K, κ−1minp
(1−δ1)/2 = o(1),

and the above results also hold for ‖B̂1 −B1‖2, and

‖B̂∗2 −B∗2‖2 = Op(p
δ2/2n−1/2 + ‖B̂1 −B1‖2).

•When κmin = κmax = 0 and δ1 = δ2 = δ, we require pδ/2n−1/2 = o(1).
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Estimation error: extracted factors

Under the conditions in Theorem 3 or 4, we have

p−1/2‖Â1x̂t−A1xt‖2 = Op(p
−1/2+p−δ1/2‖Â1−A1‖2+p−δ2/2‖B̂∗2−B∗2‖2).

•When δ1 = δ2 = 0, i.e. the factors and the noise terms are all strong,
the convergence rate in Theorem 5 is Op(p−1/2 + n−1/2), which is the
optimal rate specified in Theorem 3 of Bai (2003) when dealing with
the traditional approximate factor models.
• In practice, Let µ̂1 ≥ ... ≥ µ̂p be the sample eigenvalues of Ŝ and
define K̂L as

K̂L = arg min
1≤j≤K̂U

{µ̂j+1/µ̂j}, (16)

we suggest K̂U = min{√p,
√
n, p− r̂, 10}. Then the estimator K̂ for K

can assume some value between K̂L and K̂U .
• The consistency of r̂ follows from the consistencies of the
corresponding tests.
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Numerical results: simulation–small p

Setting: Consider Model (2) with common factors satisfying

ft = Φft−1 + zt,

where zt is a white noise process.
r = 3, p = 5, 10, 15, 20, n = 200, 500, 1000, 1500, 3000

the elements of L are drawn independently from U(−2, 2), and the
elements of L2 are then divided by

√
p to balance the

accumulated variances of fit and εit for each component of yt. Φ
is a diagonal matrix with its diagonal elements being drawn
independently from U(0.5, 0.9),
εt ∼ N(0, Iv) and zt ∼ N(0, Ir)

We use 1000 replications for each (p, n)

RMSE = (
1

n

n∑
t=1

‖Â1x̂t − L1ft‖22)1/2.
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Estimation of r

Table: Empirical probabilities P (r̂ = r) of various (p, n) configurations for the
model of Example 1 with r = 3, where p and n are the dimension and the
sample size, respectively. 1000 iterations are used.

n
p 200 500 1000 1500 3000

r = 3 5 0.861 0.889 0.890 0.912 0.926
10 0.683 0.718 0.723 0.735 0.748
15 0.506 0.555 0.561 0.599 0.601
20 0.395 0.425 0.441 0.447 0.453
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Estimation of loadings and the RMSE
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Figure: (a) Boxplots of D̄(M(Â1),M(L1)) when r = 3 under the scenario
that p is relatively small in Example 1. (b) Boxplots of the RMSE when r = 3
under the scenario that p is relatively small in Example 1. The sample sizes
are 200, 500, 1000, 1500, 3000, respectively.
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Simulation: p is large

In this example, we consider Model (2) with ft being the same as
that in Example 1.
r = 5; K = 3, 7; p = 50, 100, 300, 500;
n = 300, 500, 1000, 1500, 3000;
(δ1, δ2) = (0, 0), (0.4, 0.5) and (0.5, 0.4);
For each setting, the elements of L are drawn independently from
U(−2, 2), and then we divide L1 by pδ1/2, the first K columns of L2

by pδ2/2 and the rest v −K columns by p to satisfy Assumptions
4-5. Φ, εt and ηt are drawn similarly as those of Example 1. We
use 1000 replications in each experiment.
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Estimation of r

Table: Empirical probabilities P (r̂ = r) for Example 2 with r = 5 and K = 3,
where p and n are the dimension and the sample size, respectively. δ1 and δ2
are the strength parameters corresponding to the factors and the errors,
respectively. 1000 iterations are used.

n
(δ1, δ2) p 300 500 1000 1500 3000

(0,0) 50 0.510 0.833 0.906 0.917 0.926
100 0.538 0.799 0.910 0.916 0.922
300 0.582 0.907 0.916 0.924 0.932
500 0.560 0.888 0.918 0.928 0.932

(0.4,0.5) 50 0.717 0.903 0.928 0.929 0.935
100 0.800 0.924 0.938 0.940 0.944
300 0.858 0.904 0.928 0.932 0.952
500 0.834 0.922 0.932 0.933 0.948

(0.5,0.4) 50 0.420 0.890 0.910 0.916 0.920
100 0.508 0.868 0.912 0.928 0.936
300 0.581 0.910 0.926 0.929 0.932
500 0.678 0.928 0.936 0.938 0.934
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Estimation of r

Table: Empirical probabilities P (r̂ = r) of Example 2 with r = 5 and K = 7,
where p and n are the dimension and the sample size, respectively. δ1 and δ2
are the strength parameters corresponding to the factors and the errors,
respectively. 1000 iterations are used.

n
(δ1, δ2) p 300 500 1000 1500 3000

(0,0) 50 0.418 0.688 0.904 0.908 0.910
100 0.426 0.754 0.910 0.916 0.918
300 0.406 0.686 0.914 0.925 0.926
500 0.614 0.778 0.912 0.918 0.920

(0.4,0.5) 50 0.806 0.820 0.892 0.912 0.926
100 0.800 0.914 0.922 0.904 0.922
300 0.939 0.935 0.935 0.929 0.930
500 0.898 0.904 0.926 0.930 0.933

(0.5,0.4) 50 0.332 0.856 0.900 0.928 0.938
100 0.356 0.716 0.920 0.922 0.928
300 0.384 0.688 0.924 0.936 0.945
500 0.421 0.778 0.924 0.930 0.931
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Comparisons

• Bai and Ng (2002):

r̂ = arg min
1≤k≤k̃

{
log(

1

np

n∑
t=1

‖ε̂t‖22) + k

(
p+ n

np
log(

np

p+ n
)

)}
, (17)

where we choose k̃ = 20 and ε̂t is the p-dimensional residuals
obtained by the principal component analysis.

• Lam and Yao (2011):

r̂ = arg min
1≤j≤R

{ λ̂j+1

λ̂j
}, (18)

where λ̂1, ..., λ̂p are the eigenvalues of M̂.
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PCA and ratio
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Figure: (a) Boxplots of r̂ obtained by the information criterion method in (17)
corresponding to BN when r = 5, K = 3 for the upper panel, and K = 7 for
the lower panel of Example 2; (b) Boxplots of r̂ obtained by the ratio-based
method in (18) corresponding to LYB when the true r = 5, K = 3 for the upper
panel, and K = 7 for the lower panel of Example 2.
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Estimation of loadings
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Figure: Boxplots of D̄(M(Â1),M(L1)) when r = 3 and K = 5 under the
scenario that p is relatively large in Examle 2. n = 300, 500, 1000, 1500, 3000,
respectively. 1000 iterations are used.
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RMSE: comparisons

Table: The RMSE defined in when r = 5 and K = 7 in Example 2.
n = 300, 500, 1000, 1500, 3000, respectively. Standard errors are given in the

parentheses and 1000 iterations are used. GT denotes the proposed method, BN
denotes the principal component analysis and LYB is the ratio one.

n
Method p 300 500 1000 1500 3000

GT 1.510(0.233) 1.124(0.235) 0.770(0.235) 0.627(0.224) 0.488(0.273)
LYB 50 3.056(0.085) 3.051(0.081) 3.056(0.075) 3.053(0.122) 2.976(0.400)
BN 3.058(0.086) 3.053(0.082) 3.058(0.075) 3.059(0.077) 3.055(0.074)
GT 1.490(0.179) 1.148(0.188) 0.817(0.141) 0.677(0.126) 0.519(0.191)
LYB 100 3.050(0.074) 3.056(0.065) 3.053(0.055) 3.046(0.159) 3.024(0.257)
BN 3.051(0.075)6 3.057(0.065) 3.054(0.055) 3.057(0.055) 3.052(0.052)
GT 1.729(0.118) 1.463(0.107) 1.149(0.094) 1.107(0.079) 0.769(0.077)
LYB 300 3.052(0.047) 3.055(0.047) 3.053(0.040) 3.056(0.037) 3.056(0.034)
BN 3.053(0.055) 3.056(0.047) 3.054(0.040) 3.056(0.037) 3.057(0.034)
GT 1.753(0.089) 1.547(0.081) 1.285(0.052) 1.044(0.070) 0.861(0.047)
LYB 500 3.057(0.053) 3.050(0.042) 3.054(0.035) 3.055(0.034) 3.055(0.027)
BN 3.058(0.053) 3.050(0.042) 3.054(0.035) 3.056(0.034) 3.055(0.027)
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Real data

• In this example, we consider the daily returns of 49 Industry
Portfolios which can be downloaded from
http://mba.tuck.dartmouth.edu/pages/faculty/ken.
french/data_library.html. There are many missing values in
the data so we only apply the proposed method to the period from July
13, 1988 to November 23, 1990 for a total of 600 observations.
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Figure: Time plots of daily returns of 49 Industry Portfolios with 600
observations from July 13, 1988 to November 23, 1990 of Example 3.
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Eigenvalues of Ŝ

• In the testing, we use k0 = 5 in Equation (12), m = 10 in the test
statistic T (m), and the upper 95%-quantile 2.97 of the Gumbel
distribution as the critical value of the test. We find that r̂ = 6.
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Figure: (a) The first 10 eigenvalues of Ŝ in Example 3; (b) The plots of the
ratios for the eigenvalues µ̂i of Ŝ. In this example, the largest eigenvalue of x̂t

is 10.74, which is almost at the same level as µ̂1 = 7.14 of Ŝ with p = 49. This
empirical phenomenon supports the assumption that the largest eigenvalue
of the covariance matrix of the idiosyncratic terms tends to diverge for large p.
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Recovered factors
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Figure: The spectral densities of 6 estimated common factors using the
proposed methodology with K̂ = 7 of Example 3.
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PCA
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Figure: The spectral densities of the first 9 estimated factors using the
principal component analysis in Bai and Ng (2002) of Example 3.
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Spectrum of 6 transformed series
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û3t

0.0 0.1 0.2 0.3 0.4 0.5

1.
2

1.
4

1.
8

2.
2

frequency

sp
ec

tr
um
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Figure: The spectral densities of first 6 transformed series using the
eigen-analysis in Example 3.
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Forecasting

Finally, we compare the forecasting performance of the proposed
method with those of other methods. For the h-step ahead forecasts,
we compare the actual and predicted values of the model estimated
using data in the time span [1, τ ] for τ = 500, ..., 600− h, and the
associated h-step ahead forecast error is defined as

FEh =
1

100− h+ 1

600−h∑
τ=500

(
1
√
p
‖ŷτ+h − yτ+h‖2

)
, (19)

where p = 49 in this example.

R. Tsay (U Chicago) Factor-Modeling of Big Dependent Data January 11, 2019 52 / 56



Forecasting

Table: The 1-step, 2-step and 3-step ahead forecast errors. Standard errors
are given in the parentheses. GT denotes our method, BN denotes the
principal component analysis in Bai and Ng (2002) and LYB is the one in
Lam, Yao and Bathia (2011).

GT BN LYB
K̂ = 1 K̂ = 2 K̂ = 3 K̂ = 4 K̂ = 5 K̂ = 6 K̂ = 7

1-step AR(1) 1.152 1.161 1.159 1.162 1.158 1.158 1.159 1.142 1.157
(0.469) (0.484) (0.482) (0.489) (0.487) (0.483) (0.487) (0.442) (0.465)

AR(2) 1.164 1.165 1.166 1.168 1.164 1.165 1.164 1.156 1.162
(0.474) (0.480) (0.482) (0.493) (0.486) (0.483) (0.485) (0.446) (0.470)

AR(3) 1.170 1.172 1.172 1.174 1.169 1.170 1.168 1.168 1.162
(0.477) (0.485) (0.489) (0.498) (0.493) (0.493) (0.496) (0.441) (0.470)

2-step AR(1) 1.179 1.180 1.180 1.180 1.179 1.178 1.178 1.182 1.180
(0.512) (0.512) (0.512) (0.513) (0.512) (0.510) (0.510) (0.513) (0.514)

AR(2) 1.190 1.190 1.190 1.188 1.188 1.187 1.185 1.197 1.185
(0.519) (0.514) (0.514) (0.513) (0.514) (0.512) (0.512) (0.520) (0.519)

AR(3) 1.194 1.193 1.194 1.191 1.191 1.191 1.189 1.204 1.185
(0.520) (0.519) (0.520) (0.519) (0.520) (0.520) (0.523) (0.510) (0.520)

3-step AR(1) 1.181 1.180 1.180 1.180 1.180 1.180 1.180 1.184 1.184
(0.511) (0.511) (0.511) (0.510) (0.511) (0.510) (0.510) (0.514) (0.513)

AR(2) 1.185 1.183 1.183 1.183 1.183 1.182 1.182 1.190 1.187
(0.510) (0.510) (0.508) (0.508) (0.508) (0.507) (0.508) (0.514) (0.512)

AR(3) 1.187 1.184 1.184 1.184 1.184 1.184 1.184 1.198 1.188
(0.517) (0.513) (0.513) (0.512) (0.514) (0.518) (0.520) (0.510) (0.514)
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1-step ahead
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Figure: Time plots of the 1-step ahead point-wise forecast errors using AR(1)
and VAR(1) models with K̂ = 1 for various methods used in Example 3.
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Conclusion

This article introduced a new structured factor model for
high-dimensional time series analysis.
We allow the largest eigenvalues of the covariance matrix of the
idiosyncratic components to diverge to infinity by imposing some
structure on the noise terms.
We propose a Project PCA to mitigate the diverging effect of the
noises.
A new way to identify the number of common factors based on
white noise tests.
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