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Abstract

This article proposes a new approach to modeling high-dimensional time series data

by providing a simple and natural way to understand the mechanism of factor models. We

treat a p-dimensional time series as a nonsingular linear transformation of certain common

factors and structured idiosyncratic components. Unlike the approximate factor models,

we allow the largest eigenvalues of the covariance matrix of the idiosyncratic components

to diverge as the dimension p increases, which is reasonable in the high-dimensional

setting. A white noise testing procedure for high-dimensional random vectors is proposed

to determine the number of common factors under the assumption that the idiosyncratic

term is a vector white noise. We also introduce a projected Principal Component Analysis

(PCA) to eliminate the diverging effect of the noises. Asymptotic properties of the

proposed method are established for both fixed p and diverging p as the sample size n

tends to infinity. Both simulated and real examples are used to assess the performance of

the proposed method. We also compare our method with two commonly used methods in

the literature and find that the proposed approach not only provides interpretable results,

but also performs well in out-of-sample forecasting.

Keywords: High dimension, Structured factor model, Eigen-analysis, Projected principal

component analysis, Diverging eigenvalues, White noise test.
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1 Introduction

Advances in information technology make large data sets widely accessible. In many appli-

cations, the data consist naturally of high-dimensional time series. For example, the returns

of a large number of assets form a high-dimensional time series and play an important role

in asset pricing, portfolio allocation, and risk management. Large panel time series data

are commonplace in economics and biological studies. Environmental studies often employ

high-dimensional time series consisting of a large number of pollution indexes collected at

many monitoring stations and over periods of time. However, modeling high-dimensional

time series is always challenging because the commonly used Vector Autoregressive (VAR)

or Vector-Autoregressive Moving-Average (VARMA) models are not practically applicable

when the dimension is high. In particular, unregularized VARMA models often suffer the

difficulties of over-parameterization and lack of identifiability as discussed in Tiao and Tsay

(1989), Lütkepohl (2006) and Tsay (2014). Therefore, dimension reduction or structural

specification becomes a necessity in applications of high-dimensional time series. Indeed,

various methods have been developed in the literature for multivariate time series analysis,

including the scalar component models of Tiao and Tsay (1989), the LASSO regularization

in VAR models by Shojaie and Michailidis (2010) and Song and Bickel (2011), the sparse

VAR model based on partial spectral coherence by Davis et al. (2012), the factor modeling

in Stock and Watson (2005), Bai and Ng (2002), Forni et al. (2005), Lam et al. (2011) and

Lam and Yao (2012), among others. However, the complexity of the dynamical dependence

in high-dimensional time series requires further investigation.

This paper marks a further development in factor modeling of high-dimensional time

series. Factor models are commonly used in finance, economics, and statistics. For example,

asset returns are often modeled as functions of a small number of factors, see Stock and

Watson (1989) and Stock and Watson (1998). Macroeconomic variables of multiple countries

are often found to have common movements, see Gregory and Head (1999) and Forni et al.

(2000). From the statistical perspective, a modeling approach that can reveal the common

structure of the series and provide accurate estimation of a specified model is highly valuable

in understanding the dynamic relationships of the data. To the best of our knowledge, there

are two main statistical procedures to estimate the common factors and the associated loading

matrix. The first procedure is based on the principal component analysis (PCA), see Bai and

Ng (2002) and Bai (2003). The other procedure is based on the eigen-analysis of the auto-

covariance matrices, see Lam et al. (2011) and Lam and Yao (2012), among others. The
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resulting model forms of the two procedures are similar, but the specified structure is slightly

different. We briefly introduce the two procedures below.

Let yt = (y1,t, ..., yp,t)
′ be a p-dimensional zero-mean time series, where A′ denotes the

transpose of the vector or matrix A. The approximate factor model for yt assumes the form

yt = Axt + εt, (1.1)

where xt is a r-dimensional latent factor process, A ∈ Rp×r is an associated factor loading

matrix, εt is the idiosyncratic component, and xt and εt are independent. In the econometric

literature, εt is not necessarily a white noise series and the model is only asymptotically

identifiable. See, for instance, Bai and Ng (2002) and Forni et al. (2005). On the other hand,

statisticians often require εt being serially uncorrelated. See, for instance, Lam et al. (2011).

Let Σ̂y be the sample covariance matrix of yt, then Σ̂y = P̂D̂P̂′, where P̂ is an orthonormal

matrix and D̂ is a diagonal matrix with decreasing eigenvalues. The PCA estimators of A

and xt in Bai and Ng (2002) are denoted respectively as P̂rD̂
1/2
r and D̂

−1/2
r P̂′ryt, where P̂r

consists of the first r columns of P̂ and D̂r contains the corresponding r largest eigenvalues

in D̂. The number of factors r is determined by some information criterion. For details,

see Bai and Ng (2002) and Bai (2003). In the time series literature, Lam et al. (2011)

proposed a different approach. Let Γ̂k be the sample auto-covariance matrix between yt and

yt−k and M̂ =
∑k0

k=1 Γ̂kΓ̂
′
k for some fixed positive integer k0. Under the assumption that

εt is a vector white noise, the authors estimate A by Â, which contains the eigenvectors of

M̂ associated with the r largest eigenvalues. The estimated common factors are x̂t = Â′yt

and the associated noises are ε̂t = (Ip − ÂÂ′)yt, where Ip is the p× p identity matrix. The

number of common factors r is estimated by a method based on the ratios of the eigenvalues

of M̂. Asymptotic properties of the estimators of the two procedures have been derived

by the proponents under certain regularity conditions. However, some fundamental issues

remain unsolved:

• The PCA method may fail if the signal-to-noise ratio is low, which occurs often in

applications. Consider, for instance, analysis of high-dimensional financial series. As

the market and economic information accumulates, the noise is often increasing faster

than the signal. See, for example, Black (1986).

• The estimated factor process x̂t in Lam et al. (2011) includes the noise components.

When the largest eigenvalues of the noise covariance are diverging, the resulting esti-
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mators would deteriorate.

• The information criterion in Bai and Ng (2002) and the ratio-based method in Lam

et al. (2011) may also fail if the largest eigenvalues of the covariance matrix of the

noise are diverging. See the illustrations of the Assumptions on the approximate factor

models in Bai and Ng (2002) (pp. 197).

• The sample covariance matrix of the estimated noises is singular if r > 0. This can

easily be seen as the right side of Equation (1.1) consists of r + p innovations whereas

the data yt is p-dimensional. Specifically, the common factors ft have r innovations and

the noise term has p innovations.

The first goal of this paper is to address the aforementioned issues from a different per-

spective. We propose a new factor model under which the observed high-dimensional time

series yt is a nonsingular linear transformation of a r-dimensional common factor process,

which is dynamically dependent, and a (p − r)-dimensional idiosyncratic component, which

is a white noise series. The new factor model is in line with that of Tiao and Tsay (1989)

and Gao and Tsay (2018) and assumes that the idiosyncratic component is white noise in

the sense that yt has (p − r) scalar components of order (0, 0). See Tiao and Tsay (1989)

and Section 2 for details. However, the proposed modeling approach of this paper is different

from those of Tiao and Tsay (1989)) and Gao and Tsay (2018), which employ canonical

correlation analysis (CCA). To use CCA, Tiao and Tsay (1989) assumes p is fixed and Gao

and Tsay (2018) considers p = o(n1/2), where n is the sample size. On the other hand, we

do not employ CCA in this paper and, hence, relax the constraints on p as n increases.

Similar to that of Lam et al. (2011) and Lam and Yao (2012), we first apply the eigen-

analysis on certain auto-covariance matrices to obtain the loading matrix associated with

common factors. But we propose a projected PCA method to estimate the loading matrix

associated with the idiosyncratic component; see Section 2 for details. In addition, we propose

a new method to estimate the common factors so that the resulting estimated common

factors are not affected by the idiosyncratic component εt. Specifically, in the presence of

diverging noise components, we project the observed data into the orthogonal direction of

those diverging noise components to mitigate the effect of the idiosyncratic component in

estimating the common factors. Furthermore, to overcome the difficulties associated with

the behavior of eigenvalues of a large random matrix, we consider a white noise testing

procedure to determine the number of common factors. This testing procedure is found to
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be more reliable than the information criterion and the ratio-based method currently used in

the literature. Details of the testing procedure is given in Section 2.3.

Simulation studies are used to assess the performance of the proposed modeling procedure

in finite samples and to compare it with the methods in Bai and Ng (2002) and Lam et al.

(2011). The results show that the proposed method works well whereas the latter methods

may encounter prominent estimation errors if the largest eigenvalues of the covariance matrix

of the idiosyncratic component are diverging. We further apply the proposed method to two

real data examples, and the numerical results suggest that the factors recovered by our

approach not only have reasonable interpretations but also fare well in predictions. On the

other hand, the factors recovered by the PCA method of Bai and Ng (2002) may contain

white noise since PCA only deals with the covariance matrix without considering the dynamic

dependence of the data, and the ratio-based method of Lam et al. (2011) often finds a single

factor in practice, because the largest eigenvalue of M̂ tends to be extremely large in the

high dimensional case.

The contributions of this paper are multi-fold. First, the proposed new model is more

flexible compared with the existing ones. In fact, it allows a variety of structures for the

common factors and the idiosyncratic term. Second, the proposed estimation method can

eliminate the effect of the idiosyncratic term in estimating the common factors. This is

achieved by using the projected PCA method if the dimension p is low. When the dimension

is high, we assume that a few largest eigenvalues of the covariance matrix of the idiosyncratic

term are diverging, which is a reasonable assumption in the high-dimensional setting. The

projected PCA then helps to mitigate the effect of the diverging part of the noise covariance

matrix. Third, we propose a procedure based on a white noise test for multiple time series

to determine the number of common factors r. Under the assumption that the idiosyncratic

term is a vector white noise, the limiting distribution of the test statistic used is available in

close form. This testing procedure is shown to be more reliable than the information criterion

and the ratio-based method available in the literature.

The rest of the paper is organized as follows. We introduce the proposed model and

estimation methodology in Section 2. In Section 3, we study the theoretical properties of the

proposed model and its associated estimates. Numerical illustrations with both simulated and

real data sets are reported in Section 4. Section 5 provides some discussions and concluding

remarks. All technical proofs and an additional real example are relegated to an online

supplement. Throughout the article, we use the following notation. ||u||2 = (
∑p

i=1 u
2
i )

1/2
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is the Euclidean norm of a p-dimensional vector u = (u1, ..., up)
′ and Ik denotes the k × k

identity matrix. For a matrix H = (hij), |H|∞ = maxi,j |hij |, ‖H‖2 =
√
λmax(H′H) is the

operator norm, where λmax(·) denotes for the largest eigenvalue of a matrix, and ‖H‖min is

the square root of the minimum non-zero eigenvalue of H′H. The superscript ′ denotes the

transpose of a vector or matrix. Finally, we use the notation a � b to denote a = O(b) and

b = O(a).

2 The Model and Methodology

2.1 Setting

Let yt = (y1t, ..., ypt)
′ be a p-dimensional time series. We assume yt is observable with

E(yt) = 0 and admits a latent structure:

yt = L

 ft

εt

 = [L1,L2]

 ft

εt

 = L1ft + L2εt, (2.1)

where L ∈ Rp×p is a full rank loading matrix, ft = (f1t, . . . , frt)
′ is a r-dimensional factor

process, εt = (ε1t, . . . , εvt)
′ is a v-dimensional white noise vector, and r + v = p. For mean-

ingful dimension reduction, we assume r is a small fixed nonnegative integer. In addition,

we also assume Cov(ft) = Ir, Cov(εt) = Iv, Cov(ft, εt) = 0, and no linear combination of ft

is serially uncorrelated.

The decomposition of model (2.1) is general in the sense that any finite-order VARMA

time series yt can always be written in Equation (2.1) via canonical correlation analysis

between two constructed random vectors of yt and its lagged variables. Details can be found

in Tiao and Tsay (1989) and Gao and Tsay (2018). Under Equation (2.1), the dynamic

dependence of yt is driven by ft if r > 0. Thus, ft indeed consists of the common factors of

yt. In the terminology of Tiao and Tsay (1989), (a) εt is a v-dimensional scalar component

process of order (0,0) if v > 0, that is, Cov(εt,yt−j) = 0 for j > 0, and (b) no linear

combination of ft is a scalar component of order (0,0) if r > 0. Condition (b) is trivial

because existence of any such linear combinations implies r can be reduced. Readers are

referred to Tiao and Tsay (1989) for a formal definition of a scalar component of order (0,0).

Condition (a) is equivalent to εt being a white noise under the traditional factor models,

where ft and εt are assumed to be independent.
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We mention that Model (2.1) has been studied by Gao and Tsay (2018) if yt follows a

structural model consisting of trend, seasonal component, and irregular series. The irregular

component of yt is modeled by (2.1) using CCA. However, the method of CCA only works

when p < n or p = o(n1/2), where n is the sample size. This restricts the applicability of the

model . We relax such restrictions in this paper.

To study Model (2.1) in a more general setting and to provide sufficient statistical in-

sights on the factor models, let L1 = A1Q1 and L2 = A2Q2, where A1 and A2 are two half

orthonormal matrices, i.e. A′1A1 = Ir and A′2A2 = Iv. This can be done via QR decomposi-

tion or singular value decomposition. Furthermore, let xt = Q1ft and et = Q2εt, then Model

(2.1) can be written as

yt = A1xt + A2et, (2.2)

which is close to the traditional factor model in Equation (1.1). Some remarks are in order.

First, even though L is of full rank, A1 is not orthogonal to A2 in general. Second, A1 and

xt are still not uniquely identified because we can replace (A1,xt) by (A1H,H′xt) for any

orthonormal matrix H ∈ Rr×r. The same issue applies to A2 and et. Nevertheless the linear

space spanned by the columns of A1, denoted by M(A1), is uniquely defined. M(A1) is

called the factor loading space. The linear space M(A2) can be defined similarly for the

idiosyncratic component.

2.2 Estimation

To begin, we provide some rationale for the proposed estimation method. Let B1 and B2

be the orthonormal complement of A1 and A2, respectively, i.e. B1 ∈ Rp×v and B2 ∈ Rp×r

are two half orthonormal matrices satisfying B′1A1 = 0 and B′2A2 = 0. Denote (A1,B1) =

(a1, ...,ar,b1, ...,bv) and (A2,B2) = (ar+1, ...,ap,bv+1, ...,bp), which are p × p matrices. It

follows from Model (2.2) that

B′1yt = B′1A2et, (2.3)

and, hence, B′1yt is a v-dimensional white noise process. Thus, for any column bj of B1 with

1 ≤ j ≤ v, {b′jyt, t = 0,±1, . . .} is a white noise process.

Unlike the traditional factor models, which assume xt and es are uncorrelated for any t

and s, we only require Cov(xt, et+j) = 0 for j ≥ 0 in this paper. For k ≥ 0, let

Σy(k) = Cov(yt,yt−k), Σx(k) = Cov(xt,xt−k), Σxe(k) = Cov(xt, et−k),
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be the covariance matrices of interest. It follows from (2.2) that

Σy(k) = A1Σx(k)A′1 + A1Σxe(k)A′2, k ≥ 1, (2.4)

and

Σy ≡ Σk(0) = A1ΣxA
′
1 + A2ΣeA

′
2. (2.5)

For a pre-specified integer k0 > 0, define

M =

k0∑
k=1

Σy(k)Σy(k)′, (2.6)

which is a p × p semi-positive definite matrix. By B′1A1 = 0, we have MB1 = 0, that is,

the columns of B1 are the eigenvectors associated with the zero eigenvalues of M, and the

factor loading space M(A1) is spanned by the eigenvectors associated with the r non-zero

eigenvalues of M. For k0 > 1, the summation in the definition of M enables us to pool

information over different lags, which is particularly helpful when the sample size is small.

In practice, with a given sample size, the estimation accuracy of auto-covariance matrices

of yt deteriorates as the lag k increases. Thus, some compromise in selecting k0 is needed

in a real application. Limited experience suggests that a relatively small k0 is sufficient in

providing useful information concerning the model structure of yt, because, for a stationary

time series, cross-correlation matrices decay to zero exponentially as k increases. Also, the

choice of k0 seems to be not sensitive. See, for instance, the simulation results in Section 4.

Note that the form of M in Equation (2.6) is a special case of the Orthonormalized Partial

Least Squares of time series data. See the discussion in Section 5.

Turn to the estimation of the common factors. We observe that, from Equation (2.2),

B′2yt = B′2A1xt, (2.7)

which is uncorrelated with B′1yt defined in (2.3). Therefore,

B′2ΣyB1B
′
1ΣyB2 = 0, (2.8)

which implies that B2 consists of the last r eigenvectors corresponding to the zero eigenvalues

of S := ΣyB1B
′
1Σy. From the relationship in (2.7) and the discussion of Remark 1 in Section

3 below, B′2A1 is a r × r invertible matrix and hence xt = (B′2A1)−1B′2yt. From Equation
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(2.2), xt does not include the white noise terms. Moreover, the columns in A2 can be treated

as the eigenvectors associated with the non-zero eigenvalues of S. Finally, even though B2

(also A2) is not unique and B2H is also a solution to (2.8) for any orthonormal matrix

H ∈ Rr×r, this non-uniqueness does not alter the representation of xt = (B′2A1)−1B′2yt.

Given the data {yt|t = 1, ..., n}, the first step in estimation is to estimate A1 or its

column space M(A1), to recover the factor process xt, and to determine the number of

common factors r. To begin, we assume for now that r is known. The estimation of r will

be discussed later. Let Σ̂y(k) be the lag-k sample auto-covariance matrix of yt. To estimate

M(A1), we perform an eigen-analysis of

M̂ =

k0∑
k=1

Σ̂y(k)Σ̂y(k)′. (2.9)

Let Â1 = (â1, ..., âr) and B̂1 = (b̂1, ...b̂v) be two half orthonormal matrices consisting of the

eigenvectors of M̂ corresponding to the non-zero and zero eigenvalues, respectively. In view

of Equation (2.8), we next perform another eigen-analysis of

Ŝ = Σ̂yB̂1B̂
′
1Σ̂y, (2.10)

which is a projected PCA. That is, we project the data yt onto the direction of B̂1, then per-

form the PCA between the original data yt and its projected coordinates. If the dimension p

is small, we employ B̂2 = (b̂v+1, ..., b̂p), where b̂v+1, ..., b̂p are the eigenvectors corresponding

to the smallest r eigenvalues of Ŝ. On the other hand, if p is relatively large and the largest K

eigenvalues of Σe are diverging, which is a reasonable condition in the high-dimensional case,

we write A2 = (A21,A22) with A21 ∈ Rp×K and A22 ∈ Rp×(v−K) and consider the linear

space M(B∗2), where B∗2 = (A22,B2) ∈ Rp×(p−K). Note that B∗2 consists of p−K eigenvec-

tors corresponding to the p−K smallest eigenvalues of S = ΣyB1B
′
1Σy defined before. Let

B̂∗2 be an estimator of B∗2 consisting of p−K eigenvectors associated with the p−K smallest

eigenvalues of Ŝ. We then estimate B̂2 by B̂2 = B̂∗2R̂, where R̂ = (r̂1, . . . , r̂r) ∈ R(p−K)×r

with r̂i being the eigenvector associated with the i-th largest eigenvalues of B̂∗2
′Â1Â

′
1B̂
∗
2.

This choice of estimator guarantees that the matrix (B̂′2Â1)−1 behaves well in recovering the

common factor x̂t. Detailed properties of the estimators are given in Section 3. Finally, we

recover the factor process as x̂t = (B̂′2Â1)−1B̂′2yt.

With Â1 and the estimated factor process x̂t, we compute the h-step ahead prediction of
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the yt series using the formula ŷn+h = Â1x̂n+h, where x̂t+h is an h-step ahead forecast for

xt based on the estimated past values x̂1, . . . , x̂n. This can be done, for example, by fitting

a VAR model to {x̂1, . . . , x̂n}.

2.3 Determination of the number of common factors

The estimation of A1 and xt in the prior sections is based on a given r, which is unknown in

practice. There are some methods available in the literature to determine r for the traditional

factor model in Equation (1.1). See, for example, the information criterion in Bai and Ng

(2002) and Bai (2003), the random matrix theory method in Onatski (2010), and the ratio-

based method in Lam and Yao (2012), among others. However, none of these methods is

applicable to Model (2.1) directly. The most relevant method is the one based on testing the

number of zero canonical correlations between yt and vectors of its lagged values employed in

Gao and Tsay (2018). But this testing method only works when the dimension p is relatively

small with respect to the sample size n.

In this section, we propose a new approach to estimate the number of common factors

based on Equation (2.3), i.e. we perform white noise tests to determine the number of

white noise components v and use r = p − v. Let Ĝ be the matrix of eigenvectors (in the

decreasing order of eigenvalues) of the sample matrix M̂ of Equation (2.9) and ût = Ĝtyt

= (û1t, . . . , ûpt)
′ be the transformed series. We propose to test sequentially the number of

white noises in ût, which is an estimate of v. To this end, we consider two cases depending

on the dimension p.

If the dimension p is small, we recommend using a bottom-up procedure to determine

the number of white noise components. Specifically, we use the conventional test statistics,

such as the well-known Ljung-Box statistic Q(m) or its rank-based variant, to test the null

hypothesis that ûit is a white noise series starting with i = p. If the null hypothesis is rejected,

then r̂ = i; otherwise, reduce i by one and repeat the testing process. Clearly, this testing

process can only last until i = 1. If all transformed series ûit are white noise, then r̂ = 0 and

v̂ = p. In general, if ûit is not a white noise series but ûjt are for j = i+ 1, . . . , p, then r̂ = i

and v̂ = p− i, and we have Ĝ = [Â1, B̂1], where Â1 ∈ Rp×r̂ and B̂1 ∈ Rp×v̂.

For large p, the conventional white-noise test statistics are no longer adequate. But

some methods have been developed in recent years to test high-dimensional white noise. We

consider two such methods in this paper. The first method is introduced by Chang et al.
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(2017) and makes use of the maximum absolute auto-correlations and cross-correlations of

the component series. Specifically, let wt = (w1t, . . . , wdt)
′ be a d-dimensional real-valued

time series. In this paper, 1 ≤ d ≤ p. Define the lag-k sample covariance matrix as Σ̂w(k) =

(n − k)−1
∑n

t=k+1(wt − w̄)(wt−k − w̄)′, where w̄ = n−1
∑n

t=1 wt is the sample mean. The

test statistic Tn of Chang et al. (2017) is

Tn = max
1≤k≤k̄

Tn,k, (2.11)

where k̄ ≥ 1 is a pre-specified positive integer and Tn,k = max1≤j,l≤d n
1/2|ρ̂jl(k)| with

Γ̂w(k) ≡ [ρ̂jl(k)]1≤j,l≤d = diag{Σ̂w(0)}−1/2Σ̂w(k)diag{Σ̂w(0)}−1/2.

The limiting distribution of Tn can be approximated by that of the L∞-norm of a normal

random vector, i.e., there exists a random variable Zd ∼ N(0,Θd,n) such that

sup
s≥0
|P (Tn > s)− P (|Zd|∞ > s)| = o(1),

where Θd,n is the asymptotic covariance of the vector containing the columns of Γ̂w(1) to

Γ̂w(k̄), and it can be estimated from {wt|t = 1, ..., n}. Therefore, the critical values of Tn

can be obtained by bootstrapping from a multivariate normal distribution.

The second method of high-dimensional white noise test is introduced by Tsay (2018)

using the extreme value theory. The test is simple with a close-form limiting distribution

under some weak assumptions and is easy to use in practice. The basic idea of the test

is as follows. Consider a d-dimensional time series wt with a realization of n observations

{wt|t = 1, . . . , n}. Assume, for now, that d < n. Let w̃t = Σ
−1/2
w wt be a standardized

series, where Σ
1/2
w is a square-root matrix of the covariance matrix Σw. With d < n, this

standardization can be done by PCA. For simplicity, we denote the standardized realization

as w̃t = Σ̂
−1/2

w wt. If d ≥ n, Σ̂w is singular and we discuss a modification later. Note that the

components of w̃t = (w̃1t, . . . , w̃dt)
′ are mutually uncorrelated. Next, let %̂t = (%̂1t, . . . , %̂dt)

′

be the rank series of w̃t, where %̂jt is the rank of w̃jt in {w̃j,1, ...w̃j,n} for 1 ≤ j ≤ d. The

lag-` rank cross-correlation matrix is then defined as

Γ̂w,` =
12

n(n2 − 1)

n∑
t=`+1

(%̂t − %̄)(%̂t−` − %̄)′,
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where %̄ = n+1
2 1d and 1d is a d-dimensional vector of ones. The test statistic of Tsay (2018)

for testing that there is no serial or cross-sectional correlation in the first m lags of wt is

T (m) = max{
√
n|Γ̂w,`(j, k)| : 1 ≤ j, k ≤ d, 1 ≤ ` ≤ m}, (2.12)

where Γ̂w,`(j, k) is the (j, k)-th element of Γ̂w,`. By the extreme-value theory, the limiting

distribution of T (m) under the white noise hypothesis is a Gumbel distribution provided that

the component series of wt follow a continuous distribution. Therefore, we reject the null

hypothesis

H0 : wt is a vector white noise,

at the α-level if

T (m) ≥ cd,m × x1−α/2 + sd,m,

where x1−α/2 = − log(− log(1 − α/2)) is the (1 − α/2)-th quantile of the standard Gumbel

distribution and

cd,m = [2 log(d2m)]−1/2, and sd,m =
√

2 log(d2m)− log(4π) + log(log(d2m))

2(2 log(d2m))1/2
.

When d ≥ n, the sample covariance matrix of wt is singular and some alternative methods

must be sought to create mutually uncorrelated series. Tsay (2018) provided a method by

selecting a subset series of wt to perform testing, and the method works reasonably well in

simulations and some applications. In this paper, we consider a simpler method by using

the relations in (2.2) and (2.8). Note that in our testing, wt is a subset of the transformed

series ût = Ĝ′yt. Since M̂ is based on the covariance matrices of yt and its lagged values

the components of ût associated with small eigenvalues contain little information on the

dynamical dependence of yt. Therefore, we can drop the latter (p − εn) components from

the transformed series without affecting the white-noise test, where ε ∈ (0, 1). In other

words, when p > n, we cannot start with wt = ût, but we can choose wt to consist of the

first d = εn < n components of ût to perform the white-noise test without affecting the

determination of r under the assumption that r is small in applications.

Return to the determination of r when p is large. We can apply the high-dimensional

white noise test of Chang et al. (2017) or Tsay (2018) to subsets of the transformed series

ût. Specifically, let p∗ = p if p < n and p∗ = εn if p ≥ n, where ε ∈ (0, 1). Starting with i = 1

and wt = (ûi,t, . . . , ûp∗,t)
′, we test the null hypothesis that wt has no serial or cross-sectional
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correlations in the first m lags using a selected test statistic. If the null hypothesis is rejected,

increase i by one and repeat the testing process. Using this testing process, we select r̂ as i−1

for which the ith test does not reject the null hypothesis. Note that since both test statistics

considered use the maximum of absolute correlations, the computation of the testing process

is trivial because we only need to compute the cross-correlation matrices of ût once.

3 Theoretical Properties

In this section, we investigate the asymptotic theory for the estimation method used in the

paper. Starting with the assumption that the number of common factors r is known, we

divide the derivations into two cases depending on the value of the dimension p. The case of

estimated r is discussed later.

3.1 Asymptotic properties when n→∞ and p is fixed

We consider first the asymptotic properties of the estimators when p is fixed but n → ∞.

These properties show the behavior of our estimation method when n is large and p is

relatively small. We begin with the assumptions used.

Assumption 1. The process {(yt, ft)} is α-mixing with the mixing coefficient satisfying the

condition
∑∞

k=1 αp(k)1−2/γ <∞ for some γ > 2, where

αp(k) = sup
i

sup
A∈Fi

−∞,B∈F∞i+k

|P (A ∩B)− P (A)P (B)|,

and F ji is the σ-field generated by {(yt, ft) : i ≤ t ≤ j}.

Assumption 2. E|fit|2γ < C1 and E|εjt|2γ < C2 for 1 ≤ i ≤ r and 1 ≤ j ≤ v, where

C1, C2 > 0 are some constants and γ is given in Assumption 1.

Assumption 3. λ1 > ... > λr > λr+1 = ... = λp = 0, where λi is the i-th largest eigenvalue

of M in Equation (2.6).

Assumption 1 is standard for dependent random processes. See Gao et al. (2018) for

a theoretical justification for VAR models. The conditions in Assumption 2 imply that

E|yit|2γ < C under the setting that p is fixed. In Assumption 3, if the r non-zero eigenvalues

of M are distinct, the eigenvector matrix A1 is uniquely defined if we ignore the trivial
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replacement of aj by −aj for 1 ≤ j ≤ r. The following theorem establishes the consistency

of the estimated loading matrix Â1, its orthonormal complement B̂1, the matrix B̂2 and the

extracted common factor Â1x̂t.

Theorem 1. Suppose Assumptions 1-3 hold and r is known and fixed. Then, for fixed p,

‖Â1 −A1‖2 = Op(n
−1/2), ‖B̂1 −B1‖2 = Op(n

−1/2) and ‖B̂2 −B2‖2 = Op(n
−1/2),

as n→∞. Therefore,

‖Â1x̂t −A1xt‖2 = Op(n
−1/2).

Remark 1. From Theorem 1 and as expected, the convergence rates of all estimates are

standard at
√
n, which is commonly seen in the traditional statistical theory. To recover the

factor process, we need to guarantee that B′2A1 is invertible. This follows from the fact that

there exist R1 ∈ Rr×r and R2 ∈ Rv×r such that B2 = L1R1 + L2R2 = A1Q1R1 + A2Q2R2,

i.e. each column of B2 can be represented as a linear combination of the columns of L.

Therefore, Ir = B′2B2 = B′2A1Q1R1 and hence rank(B′2A1) = r which is of full rank.

In general, the choice of A1 in Model (2.2) is not unique so we consider the error in

estimatingM(A1), the column space of A1, becauseM(A1) is uniquely defined by (2.2) and

it does not vary with different choices of A1. The same argument also applies to matrices A2,

B1 and B2. To this end, we adopt the discrepancy measure used by Pan and Yao (2008): for

two p× r half orthogonal matrices H1 and H2 satisfying the condition H′1H1 = H′2H2 = Ir,

the difference between the two linear spaces M(H1) and M(H2) is measured by

D(M(H1),M(H2)) =

√
1− 1

r
tr(H1H′1H2H′2). (3.1)

Note that D(M(H1),M(H2)) ∈ [0, 1]. It is equal to 0 if and only if M(H1) =M(H2), and

to 1 if and only if M(H1) ⊥ M(H2). The following theorem establishes the convergence of

D(M(Â1),M(A1)) when A1 is not uniquely defined.

Theorem 2. Suppose Assumptions 1-2 hold and r is known and fixed. Then, for fixed p,

D(M(Â1),M(A1)) = Op(n
−1/2), D(M(B̂1),M(B1)) = Op(n

−1/2)

and

D(M(B̂2),M(B2)) = Op(n
−1/2),
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as n→∞. The convergence rate of the extracted factors Â1x̂t is the same as that in Theorem

1.

This theorem implies that the convergence rate does not change even when some non-zero

eigenvalues for M are not distinct and A1 is not uniquely defined. In fact, the consistency of

the linear spaces of M(B1) and M(B2) is more meaningful since their columns correspond

to the zero eigenvalues of M and S, respectively, and they cannot be uniquely characterized.

3.2 Asymptotic properties when n→∞ and p→∞

Turn to the case of high-dimensional time series. It is well known that if the dimension p

diverges faster than n1/2, the sample covariance matrix is no longer a consistent estimate

of the population covariance matrix. When p = o(n1/2), it is still possible to consistently

estimate the factor loading matrix A and the number of common factors r. See Gao and

Tsay (2018) for details. Therefore, without any additional assumptions on the underlying

structure of time series, p can only be as large as o(n1/2). To deal with the case of large p,

we impose some conditions on the transformation matrix L of Equation (2.1) and the cross

dependence of yt.

Let L = (c1, ..., cp), where ci is a p-dimensional column vector, and hence, L1 = (c1, ..., cr)

and L2 = (cr+1, ..., cp).

Assumption 4. (i) L1 = (c1, ..., cr) such that ‖cj‖22 � p1−δ1, j = 1, ..., r and δ1 ∈ [0, 1); (ii)

For each j = 1, ..., r and δ1 given in (i), minθi∈R,i 6=j ‖cj −
∑

1≤i≤r,i 6=j θici‖22 � p1−δ1.

Assumption 5. (i) L2 admits a singular value decomposition L2 = A2D2V
′
2, where A2 ∈

Rp×v is given in Equation (2.2), D2 = diag(d1, ..., dv) and V2 ∈ Rv×v satisfying V′2V2 = Iv;

(ii) There exists a finite integer 0 < K < v such that d1 � ... � dK � p(1−δ2)/2 for some

δ2 ∈ [0, 1) and dK+1 � ... � dv � 1.

Assumption 6. 0 ≤ κmin ≤ ‖Σfε(k)‖2 ≤ κmax for 1 ≤ k ≤ k0, where κmin and κmax can be

either finite constants or diverging rates in relation to p and n.

Assumption 7. (i) For any h ∈ Rv with ‖h‖2 = 1, E|h′εt|2γ < ∞; (ii) σmin(R′B∗2
′A1) ≥

C3 for some constant C3 > 0 and some half orthogonal matrix R ∈ R(p−K)×r satisfying

R′R = Ir, where σmin denotes the minimum non-zero singular value of a matrix.

The quantity δ1 of Assumption 4 is used to quantify the strength of the factors. If

δ1 = 0, the corresponding factors are called strong factors, since it includes the case where
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each element of ci is O(1). If δ1 > 0, the corresponding factors are weak factors and the

smaller the δ1 is, the stronger the factors are. One advantage of using index δ1 is to link the

convergence rates of the estimated factors explicitly to the strength of the factors. Assumption

4 ensures that all common factors in xt are of equal strength δ1. There are many sufficient

conditions for Assumption 5 to hold. For example, it holds if we allow (cr+1, ..., cr+K) to

satisfy Assumption 4, and the L1- and L∞-norms of (cr+K+1, ..., cp) are all finite. A special

case is to let cr+K+j be a standard unit vector. In Assumption 6, κmin and κmax control

the strength of the dependence between ft and the past errors εt−j for j ≥ 1. The maximal

order of κmax is p1/2 which is the Frobenius norm of Σfε(k) and κmax = 0 (hence κmin = 0)

implies that ft and εs are independent for all t and s. Throughout this article, if ft and εs

are independent for all t and s, then κmin = κmax = 0 and all the conditions and expressions

below involved with κmin and κmax will be removed. Assumption 7(i) is mild and includes

the standard normal distribution as a special case. Assumption 7(ii) is reasonable since B2

is a subspace of B∗2, and Remark 1 implies that R′B∗2
′A1 is invertible. The choice of R̂ and

hence B̂2 = B̂∗2R̂ will be discussed later.

Remark 2. In Assumption 5, we actually only require dK � p(1−δ2)/2 for some δ2 ∈ [0, 1)

and K ≥ 1, and the upper singular values {d1, ..., dK−1} if K > 1 can be even larger provided

that the largest one d1 should be bounded by another rate p(1−δ3)/2 for some 0 ≤ δ3 ≤ δ2. For

simplicity, we assume the top singular values are of the same order.

If p is large, it is not possible to consistently estimate B2 or even M(B2). Instead, we

will estimate B∗2 = (A22,B2) or equivalently M(B∗2), which is the subspace spanned by the

eigenvectors associated with the p−K smallest eigenvalues of S. Assume B̂∗2 consists of the

eigenvectors corresponding to the smallest p−K eigenvalues of Ŝ. Under some conditions, we

can show thatM(B̂∗2) is consistent toM(B∗2). This is also the case in the literature on high-

dimensional PCA with i.i.d. data. See, for example, Shen et al. (2016) and the references

therein. Therefore, the choice of B̂2 should be a subspace of B̂∗2, and we will discuss it before

Theorem 5 below.

Theorem 3. Suppose Assumptions 1-7 hold and r is known and fixed. As n → ∞, if

pδ1n−1/2 = o(1) or κ−1
maxp

δ1/2+δ2/2n−1/2 = o(1), then

‖Â1−A1‖2 =


Op(p

δ1n−1/2), if κmaxp
δ1/2−δ2/2 = o(1),

Op(κ
−2
minp

δ2n−1/2 + κ−2
minκmaxp

δ1/2+δ2/2n−1/2), if r ≤ K,κ−1
minp

δ2/2−δ1/2 = o(1),

Op(κ
−2
minpn

−1/2 + κ−2
minκmaxp

1+δ1/2−δ2/2n−1/2), if r > K, κ−1
minp

(1−δ1)/2 = o(1),
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and the above results also hold for ‖B̂1 −B1‖2. Furthermore,

‖B̂∗2 −B∗2‖2 = Op

(
p2δ2−δ1n−1/2 + pδ2n−1/2 + (1 + p2δ2−2δ1)‖B̂1 −B1‖2

)
.

Remark 3. (i) If κmax = κmin = 0, i.e., ft and εs are independent for all t and s, we have

‖Â1 −A1‖2 = Op(p
δ1n−1/2) and ‖B̂∗2 −B∗2‖2 = Op(p

2δ2−δ1n−1/2 + pδ2n−1/2 + pδ1n−1/2).

To guarantee these estimates are consistent, we require pδ1n−1/2 = o(1), pδ2n−1/2 = o(1)

and p2δ2−δ1n−1/2 = o(1). When p � n1/2, it implies that 0 ≤ δ1 < 1, 0 ≤ δ2 < 1 and

δ2 < (1 + δ1)/2, i.e., the ranges of δ1 and δ2 are pretty wide. On the other hand, if p � n,

we see that 0 ≤ δ1 < 1/2, 0 ≤ δ2 < 1/2 and 2δ2 − δ1 < 1/2, these ranges become narrower if

p is large.

(ii) When κmax 6= 0 and κmin 6= 0, there are many possible results. A reasonable assumption

is κmin � κmax � pδ/2 for some 0 ≤ δ < 1 since r is small. For example, set δ = δ1,

‖Â1 −A1‖2 =

 Op(p
δ1n−1/2), if pδ1−δ2/2 = o(1),

Op(p
δ2/2n−1/2), if r ≤ K,κ−1

minp
δ2/2−δ1/2 = o(1),

and there is no consistency result when r > K. Furthermore we have ‖B̂∗2 − B∗2‖2 =

Op(p
2δ2−δ1n−1/2+pδ2n−1/2). Thus, we require pδ1n−1/2 = o(1), pδ2n−1/2 = o(1) and p2δ2−δ1n−1/2

= o(1). The ranges of δ1 and δ2 are the same as discussed in Remark 3(i) above, we omit the

details here. On the other hand, if δ > (1− δ1)/2, it is still possible to consistently estimate

them when r > K, the discussion is similar and is omitted for simplicity.

From Theorem 3, we see that when p � n, we require δ1 < 1/2 and δ2 < 1/2 to guarantee

the consistency of our estimation method, which rules out the cases of the presence of weaker

factors with δ1 ≥ 1/2 and a slower diverging of the noise covariance matrix with δ2 ≥ 1/2.

The convergence rates in Theorem 3 are not optimal and they can be further improved under

additional assumption on εt below.

Assumption 8. For any h ∈ Rv with ‖h‖2 = 1, there exists a constant C4 > 0 such that

P (|h′εt| > x) ≤ 2 exp(−C4x
2) for any x > 0.

Assumption 8 implies that εt are sub-Gaussian. Examples of sub-Gaussian distributions

include the standard normal distribution in Rv, the uniform distribution on the cube [−1, 1]v,
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among others. See, for example, Vershynin (2018).

Theorem 4. Let Assumptions 1-8 hold and r is known and fixed, and pδ1/2n−1/2 = o(1),

pδ2/2n−1/2 = o(1).

(i) Under the condition that δ1 ≤ δ2,

‖Â1−A1‖2 =


Op(p

δ1/2n−1/2), if κmaxp
δ1/2−δ2/2 = o(1),

Op(κ
−2
minp

δ2−δ1/2n−1/2 + κ−2
minκmaxp

δ2/2n−1/2), if r ≤ K,κ−1
minp

δ2/2−δ1/2 = o(1),

Op(κ
−2
minp

1−δ1/2n−1/2 + κ−2
minκmaxp

1−δ2/2n−1/2), if r > K, κ−1
minp

(1−δ1)/2 = o(1),

and the above results also hold for ‖B̂1 −B1‖2, and

‖B̂∗2 −B∗2‖2 = Op(p
2δ2−3δ1/2n−1/2 + p2δ2−2δ1‖B̂1 −B1‖2).

(ii) Under the condition that δ1 > δ2, if κmax = 0 and pδ1−δ2/2n−1/2 = o(1), then

‖Â1 −A1‖2 = Op(p
δ1−δ2/2n−1/2).

If κmax >> 0, then

‖Â1 −A1‖2 =

 Op(κ
−2
minκmaxp

δ1/2n−1/2), if r ≤ K,κ−1
minp

δ2/2−δ1/2 = o(1),

Op(κ
−2
minκmaxp

1+δ1/2−δ2n−1/2), if r > K, κ−1
minp

(1−δ1)/2 = o(1),

and the above results also hold for ‖B̂1 −B1‖2, and

‖B̂∗2 −B∗2‖2 = Op(p
δ2/2n−1/2 + ‖B̂1 −B1‖2).

Remark 4. (i) Consider the case κmin = κmax = 0. If δ1 ≤ δ2, ‖Â1−A1‖2 = Op(p
δ1/2n−1/2)

and ‖B̂∗2−B∗2‖2 = Op(p
2δ2−3δ1/2n−1/2). For p � n, we require 0 ≤ δ1 ≤ δ2 < 1 and 4δ2−3δ1 <

1, or equivalently 0 ≤ δ1 ≤ δ2 < 3δ1/4 + 1/4. If δ1 > δ2, ‖Â1 −A1‖2 = Op(p
δ1−δ2/2n−1/2)

and ‖B̂∗2−B∗2‖2 = Op(p
δ2/2n−1/2). Thus, if p � n, we require max{2δ1−1, 0} < δ2 < δ1 < 1.

Therefore, if ft and εs are independent and p � n, δ1 and δ2 need to satisfy 0 ≤ δ1 ≤ δ2 <

3δ1/4 + 1/4 or max{2δ1− 1, 0} < δ2 < δ1 < 1, which is much wider than those of Theorem 3.

(ii) If ft and εs are correlated for s < t, we may have many consistency results depending on

the strength of the dependence between ft and εs. We omit the details here.

When A1, A2, B1 and B2 are not uniquely defined, we can still have similar results as
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Theorem 2 by replacing the rates with their counterparts in Theorem 3 or Theorem 4 under

different conditions. For simplicity, we do not repeat the results here. Once we have B̂∗2,

we suggest to choose B̂2 as B̂2 = B̂∗2R̂, where R̂ = (r̂1, .., r̂r) ∈ R(p−K)×r, and r̂i is the

vector associated with the i-th largest eigenvalues of B̂∗2
′Â1Â

′
1B̂
∗
2. This choice can guarantee

that the matrix (B̂′2Â1)−1 behaves well when recovering the factor x̂t. On the other hand,

this choice could still eliminate the diverging part of the noise covariance matrix and gives

prominent convergence rate, as shown in Theorem 5. There are many ways to choose the

number of components K in Assumption 5 so long as p−K > r. We will discuss the choice

of K in Remark 5 below and also in Section 5. The following theorem states the convergence

rate of the extracted common factors.

Theorem 5. Under the conditions in Theorem 3 or 4, we have

p−1/2‖Â1x̂t −A1xt‖2 = Op(p
−1/2 + p−δ1/2‖Â1 −A1‖2 + p−δ2/2‖B̂∗2 −B∗2‖2).

Remark 5. (i) A similar result is given in Theorem 3 of Lam et al. (2011), which deals with

the approximate factor models. When δ1 = δ2 = 0, i.e. the factors and the noise terms are

all strong, the convergence rate in Theorem 5 is Op(p
−1/2 +n−1/2), which is the optimal rate

specified in Theorem 3 of Bai (2003) when dealing with the traditional approximate factor

models.

(ii) It is a common issue to select the number of principle components in the literature

and there are many possible approaches available. Since it is impossible to eliminate all the

noise effects in recovering the factors and we just need to guarantee that the diverging part of

the noises are removed for large p. Thus, we may select K in a range of possible values. In

practice, Let µ̂1 ≥ ... ≥ µ̂p be the sample eigenvalues of Ŝ and define K̂L as

K̂L = arg min
1≤j≤K̂U

{µ̂j+1/µ̂j}, (3.2)

and K̂U is a pre-specified integer. In practice, we suggest K̂U = min{√p,
√
n, p− r̂, 10}. Then

the estimator K̂ for K can assume some value between K̂L and K̂U .

Next, we study the consistency of the white noise test described in Section 2. In fact,

the consistency conditions depend on which method we use. We only present the consistency

when p is large since the case of small p is trivial.

Theorem 6. (i) Let Assumptions 1-8 hold. If ‖B̂1 − B1‖22‖Σy‖2 = op(1), then the test
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statistic Tn defined in (2.11) can consistently estimate r, i.e. P (r̂ = r)→ 1 as n→∞.

(ii) Let Assumptions 1-8 hold. If ‖B̂1 − B1‖2‖Σy‖2 = op(1) and ‖Σ̂y − Σy‖2 = op(1), the

test statistic T (m) defined in (2.12) can also consistently estimate r.

Remark 6. (i) If ft and εs are independent for all t and s, the conditions in Theorem

6(i) are essentially pn−1 = o(1) if δ1 ≤ δ2 and p1+2δ1−2δ2n−1 = o(1) if δ1 > δ2. Thus,

we require p � nξ for 0 < ξ < 1 for both cases. As for Theorem 6(ii), the conditions are

p1−δ1/2n−1/2 = o(1) if δ1 ≤ δ2 and p1+δ1−3δ2/2n−1/2 = o(1) if δ1 > δ2. We also require p � nξ

for some 0 < ξ < 1. However the conditions in Theorem 6(ii) are slightly stronger than those

in Theorem 6(i) since we need to establish the consistency of the covariance matrix while (i)

does not.

(ii) Even though the conditions in Theorem 6(ii) is slightly stronger, the method based on

T (m) is simple and easy to use, and the performance is also satisfactory when p is moderately

large. See Tsay (2018) and the simulation results in Section 4 for details.

With the estimator r̂, we may define the estimator for A1 as Â1 = (â1, ..., âr̂), where

â1, ..., âr̂ are the orthonormal eigenvectors of M̂, defined in (2.9), corresponding to the r̂

largest eigenvalues. In addition, we may also replace r by r̂ in the whole methodology

described in Section 2.

4 Numerical Properties

4.1 Simulation

In this section, we illustrate the finite-sample properties of the proposed methodology under

the scenarios when p is small and large, respectively. As the dimensions of Â1 and A1 are

not necessarily the same, and L1 is not an orthogonal matrix in general, we first extend the

discrepancy measure in Equation (3.1) to a more general form below. Let Hi be a p × ri
matrix with rank(Hi) = ri, and Pi = Hi(H

′
iHi)

−1H′i, i = 1, 2. Define

D̄(M(H1),M(H2)) =

√
1− 1

min (r1, r2)
tr(P1P2). (4.1)

Then D̄ ∈ [0, 1]. Furthermore, D̄(M(H1),M(H2)) = 0 if and only if eitherM(H1) ⊂M(H2)

or M(H2) ⊂ M(H1), and it is 1 if and only if M(H1) ⊥ M(H2). When r1 = r2 = r and
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H′iHi = Ir, D̄(M(H1),M(H2)) is the same as that in Equation (3.1). We only present the

simulation results by taking k0 = 2 in Equation (2.9) to save space since other choices of k0

produce similar patterns.

Example 1. Consider Model (2.1) with common factors satisfying

ft = Φft−1 + ηt,

where ηt is a white noise process. We set the true number of factors r = 3, the dimension

p = 5, 10, 15, 20, and the sample size n = 200, 500, 1000, 1500, 3000, respectively. For each

realization, the elements of L are drawn independently from U(−2, 2), and the elements of

L2 are then divided by
√
p to balance the accumulated variances of fit and εit for each com-

ponent of yt. Φ is a diagonal matrix with its diagonal elements being drawn independently

from U(0.5, 0.9), εt ∼ N(0, Iv) and ηt ∼ N(0, Ir). We use 1000 replications for each (p, n)

configuration.

We first study the performance of the estimation of the number of factors. Since p is

relatively small compared to the sample size n, for each iteration, we use Ljung-Box test

statistics with m = 10 to determine the number of factors, i.e. Q(10). The empirical proba-

bilities P (r̂ = r) are reported in Table 1. From the table, we see that, for each given p, the

performance of the proposed method improves as the sample size increases. On the other

hand, for a given n, the proportion of the empirical probability decreases slightly as p in-

creases, which is reasonable since it is harder to determine the correct number of factors when

the dimension increases and the errors in the testing procedure accumulates. Overall, the

Ljung-Box test works well for the case of small dimension (e.g., p ≤ 10). However, when p is

slightly larger (e.g., p = 15, 20), the test statistic tends to overestimate the number of factors,

implying that we can still keep sufficient information of the original process yt. To illustrate

this, we present the boxplots of D̄(M(Â1),M(L1)) in Figure 1, where D̄(·, ·) is defined in

(4.1). From Figure 1, for each p, the discrepancy decreases as the sample size increases and

this is in agreement with our theory.

Furthermore, for each (p, n), we study the root-mean-square error (RMSE):

RMSE =

(
1

n

n∑
t=1

‖Â1x̂t − L1ft‖22

)1/2

, (4.2)
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Table 1: Empirical probabilities P (r̂ = r) of various (p, n) configurations for the model of
Example 1 with r = 3, where p and n are the dimension and the sample size, respectively.
1000 iterations are used.

n
p 200 500 1000 1500 3000

r = 3 5 0.861 0.889 0.890 0.912 0.926
10 0.683 0.718 0.723 0.735 0.748
15 0.506 0.555 0.561 0.599 0.601
20 0.395 0.425 0.441 0.447 0.453

which quantifies the accuracy in estimating the common factor process. Boxplots of the

RMSE are shown in Figure 2. From the plot, we see a clear pattern that, as the sample size

increases, the RMSE decreases for each p, which is consistent with the results of Theorem 1.

Overall, the one-by-one testing procedure works well when the sample size is small, and the

RMSE is decreasing when the sample size increases, even though the performance of the test

may deteriorate due to the overestimation of the number of the factors for higher dimension

p.

Example 2. In this example, we consider Model (2.1) with ft being the same as that in

Example 1. We set the true number of factors r = 5, the number of the spiked components

K = 3, 7 defined in Assumption 5, the dimensions are p = 50, 100, 300, 500, and the sample

sizes are n = 300, 500, 1000, 1500, 3000. We consider three scenarios for δ1 and δ2: (δ1, δ2) =

(0, 0), (δ1, δ2) = (0.4, 0.5) and (δ1, δ2) = (0.5, 0.4). For each setting, the elements of L are

drawn independently from U(−2, 2), and then we divide L1 by pδ1/2, the first K columns of

L2 by pδ2/2 and the rest v −K columns by p to satisfy Assumptions 4 and 5. Φ, εt and ηt

are drawn similarly as those of Example 1. We use 1000 replications in each experiment.

We first study the performance of the high-dimensional white noise test. For simplicity,

we only present the results of the T (m) statistics defined in (2.12) and the results for the

other test are similar. When p ≥ n, we only keep the upper 0.75n components of Ĝ′yt in the

testing. The results are reported in Table 2 for r = 5,K = 3 and Table 3 for r = 5,K = 7.

From Tables 2 and 3, we see that for each setting of (δ1, δ2) and fixed p, the performance

of the white noise test improves as the sample size increases. The performance is also quite

satisfactory for moderately large p. In addition, the performance of the test when δ1 < δ2

is slightly better than that when δ1 > δ2 which is in agreement with Theorem 6 since the

the convergence rate discussed in Remark 6 for Theorem 6(ii) is p0.8n−1/2 for the former and
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Figure 1: Boxplots of D̄(M(Â1),M(L1)) when r = 3 under the scenario that p is rela-
tively small in Example 1. The sample sizes are 200, 500, 1000, 1500, 3000, respectively. 1000
iterations are used.
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Figure 2: Boxplots of the RMSE defined in (4.2) when r = 3 under the scenario that p is
relatively small in Example 1. The sample sizes are 200, 500, 1000, 1500, 3000, respectively.
1000 iterations are used.
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p0.9n−1/2 for the later one. Even though the performance of the test for δ1 = δ2 = 0 is better

than that of δ1 = 0.5 and δ2 = 0.4 when the sample size is small (e.g. n = 300), but as

the sample size increases, the performance of the test in the latter case is better than that

in the former case because the convergence rate in the former case is pn−1. This finding is

consistent with the asymptotic theory in Theorem 6.

To shed some light on the advantages of the proposed methodology, we compare our

method of selecting the number of factors with those in Bai and Ng (2002) and Lam et al.

(2011). Specifically, for the principal components method in Bai and Ng (2002), the number

of factors is determined by the BIC-type criterion, defined by

r̂ = arg min
1≤k≤k̃

{
log(

1

np

n∑
t=1

‖ε̂t‖22) + k

(
p+ n

np
log(

np

p+ n
)

)}
, (4.3)

where we choose k̃ = 20 and ε̂t is the p-dimensional residuals obtained by the principal

component analysis. For the ratio-based method in Lam et al. (2011), let λ̂1, ..., λ̂p be the

eigenvalues of M̂, define

r̂ = arg min
1≤j≤R

{ λ̂j+1

λ̂j
}, (4.4)

where we choose R = p/2 as suggested in their paper. Figures 3 and 4 present the boxplots

of r̂. From Figure 3, we see that when the dimension is relatively small (e.g. p = 50), the

criterion in (4.3) tends to overestimate the number of factors and it is far away from the true

one. As p increases, when r = 5,K = 3, the estimated number of factors is 8(= r + K),

which includes the number of factors and the spiked components in the noise covariance. The

same issue occurs to the case when r = 5 and K = 7; see the lower panel in Figure 3. For

the ratio based method, we see from Figure 4 that the estimated number of factors r̂ is the

combination of the factors and the noise terms, which is similar to the BIC method for large

p. Overall, we conclude that the information criterion and the ratio-based method may fail

if the covariance matrix of the noise has diverging eigenvalues. On the other hand, the white

noise test considered still works well.

Next, we study the accuracy of the estimated loading matrices as that in Example 1. The

boxplots of D̄(M(Â1),M(L1)) are shown in Figure 5. Similar pattern is also obtained for the

estimation of other matrices, and we omit them here. From Figure 5, there is a clear pattern

that the estimation accuracy of the loading matrix improves as the sample size increases even

for moderately large p, which is in line with our asymptotic theory. The results also confirm
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Table 2: Empirical probabilities P (r̂ = r) for Example 2 with r = 5 and K = 3, where p and
n are the dimension and the sample size, respectively. δ1 and δ2 are the strength parameters
corresponding to the factors and the errors, respectively. 1000 iterations are used.

n
(δ1, δ2) p 300 500 1000 1500 3000

(0,0) 50 0.510 0.833 0.906 0.917 0.926
100 0.538 0.799 0.910 0.916 0.922
300 0.582 0.907 0.916 0.924 0.932
500 0.560 0.888 0.918 0.928 0.932

(0.4,0.5) 50 0.717 0.903 0.928 0.929 0.935
100 0.800 0.924 0.938 0.940 0.944
300 0.858 0.904 0.928 0.932 0.952
500 0.834 0.922 0.932 0.933 0.948

(0.5,0.4) 50 0.420 0.890 0.910 0.916 0.920
100 0.508 0.868 0.912 0.928 0.936
300 0.581 0.910 0.926 0.929 0.932
500 0.678 0.928 0.936 0.938 0.934

Table 3: Empirical probabilities P (r̂ = r) of Example 2 with r = 5 and K = 7, where p and
n are the dimension and the sample size, respectively. δ1 and δ2 are the strength parameters
corresponding to the factors and the errors, respectively. 1000 iterations are used.

n
(δ1, δ2) p 300 500 1000 1500 3000

(0,0) 50 0.418 0.688 0.904 0.908 0.910
100 0.426 0.754 0.910 0.916 0.918
300 0.406 0.686 0.914 0.925 0.926
500 0.614 0.778 0.912 0.918 0.920

(0.4,0.5) 50 0.806 0.820 0.892 0.912 0.926
100 0.800 0.914 0.922 0.904 0.922
300 0.939 0.935 0.935 0.929 0.930
500 0.898 0.904 0.926 0.930 0.933

(0.5,0.4) 50 0.332 0.856 0.900 0.928 0.938
100 0.356 0.716 0.920 0.922 0.928
300 0.384 0.688 0.924 0.936 0.945
500 0.421 0.778 0.924 0.930 0.931
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Figure 3: Boxplots of r̂ obtained by the information criterion method in (4.3) corresponding
to BN when r = 5, K = 3 for the upper panel, and K = 7 for the lower panel of Example 2.
1000 iterations are used.
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Figure 4: Boxplots of r̂ obtained by the ratio-based method in (4.4) corresponding to LYB
when the true r = 5, K = 3 for the upper panel, and K = 7 for the lower panel of Example
2. 1000 iterations are used.
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Figure 5: Boxplots of D̄(M(Â1),M(L1)) when r = 3 and K = 5 under the scenario that p
is relatively large in Examle 2. n = 300, 500, 1000, 1500, 3000, respectively. 1000 iterations
are used.

that the proposed white noise test selects r̂ reasonably well even for large p.

Finally, we compare the proposed methodology with those in Bai and Ng (2002) and

Lam et al. (2011) in terms of the RMSE defined below:

RMSE =

(
1

np

n∑
t=1

‖Â1x̂t − L1ft‖22

)1/2

, (4.5)

which is different from that in Equation (4.2) since we have another factor p−1/2 in (4.5). This

RMSE quantifies the estimation accuracy of the common factor process. In the comparison,

the number of factors are obtained by the corresponding methods of each methodology. The

results are shown in Table 4 for r = 5, K = 7 and δ1 = δ2 = 0. The pattern is similar for the

other settings. We denote GT as the proposed method, LYB as that in Lam et al. (2011),

and BN as Bai and Ng (2002). When calculating B̂∗2 using our method, we choose the

number of components K̂ = 10, which is fixed in all the iterations. Thus, B̂∗2 contains p− K̂

columns corresponding to the p − K̂ smaller eigenvalues of Ŝ. From the table, we see that,

because the BIC and the ratio-based method tend to overestimate the number of common

factors r in the presence of diverging eigenvalues in the covariance matrix of the idiosyncratic

component, the RMSE of our method is much smaller than those obtained by Bai and Ng

27



Table 4: The RMSE defined in (4.5) when r = 5 and K = 7 in Example 2. n =
300, 500, 1000, 1500, 3000, respectively. Standard errors are given in the parentheses and 1000
iterations are used. GT denotes the proposed method, BN denotes the principal component
analysis in Bai and Ng (2002) and LYB is the one in Lam et al. (2011)

n
Method p 300 500 1000 1500 3000

GT 1.510(0.233) 1.124(0.235) 0.770(0.235) 0.627(0.224) 0.488(0.273)
LYB 50 3.056(0.085) 3.051(0.081) 3.056(0.075) 3.053(0.122) 2.976(0.400)
BN 3.058(0.086) 3.053(0.082) 3.058(0.075) 3.059(0.077) 3.055(0.074)

GT 1.490(0.179) 1.148(0.188) 0.817(0.141) 0.677(0.126) 0.519(0.191)
LYB 100 3.050(0.074) 3.056(0.065) 3.053(0.055) 3.046(0.159) 3.024(0.257)
BN 3.051(0.075)6 3.057(0.065) 3.054(0.055) 3.057(0.055) 3.052(0.052)

GT 1.729(0.118) 1.463(0.107) 1.149(0.094) 1.107(0.079) 0.769(0.077)
LYB 300 3.052(0.047) 3.055(0.047) 3.053(0.040) 3.056(0.037) 3.056(0.034)
BN 3.053(0.055) 3.056(0.047) 3.054(0.040) 3.056(0.037) 3.057(0.034)

GT 1.753(0.089) 1.547(0.081) 1.285(0.052) 1.044(0.070) 0.861(0.047)
LYB 500 3.057(0.053) 3.050(0.042) 3.054(0.035) 3.055(0.034) 3.055(0.027)
BN 3.058(0.053) 3.050(0.042) 3.054(0.035) 3.056(0.034) 3.055(0.027)

(2002) and Lam et al. (2011). Also, as expected, for a given p, the RMSE tends to decrease

when the sample size increases. This is in agreement with the asymptotic theory in Theorem

5. Overall, under the reasonable assumption that the top eigenvalues of the noise covariance

matrix are diverging for the high-dimensional case, the proposed method outperforms the

existing ones in the literature.

4.2 Real data analysis

In this section, we apply the proposed method to a real example to illustrate its usefulness in

practice. The dimension p is smaller than the sample size n in this example. An additional

real example is shown in the online supplement, where the dimension p is greater than the

sample size.

Example 3. In this example, we consider the daily returns of 49 Industry Portfolios which

can be downloaded from http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/

data_library.html. There are many missing values in the data so we only apply the pro-

posed method to the period from July 13, 1988 to November 23, 1990 for a total of 600

observations. The series are shown in Figure 6, where we have n = 600 and p = 49. Applying

the white noise test, we find that there are 6 common factors. In the testing, we use k0 = 5

in Equation (2.9), m = 10 in the test statistic T (m), and the upper 95%-quantile 2.97 of the

Gumbel distribution as the critical value of the test. To recover the factors, we first examine
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Figure 6: Time plots of daily returns of 49 Industry Portfolios with 600 observations from
July 13, 1988 to November 23, 1990 of Example 3.

the eigenvalues of Ŝ. Figure 7(a) shows the first 10 eigenvalues of Ŝ whereas Figure 7(b) plots

the ratios of these eigenvalues. From the ratio-plot, we see that the largest drop of the ratios

occurs at the first eigenvalue to the second. However, following the proposed procedure, we

choose K̂ = K̂L = min{√p,
√
n, 10} = 7 in our analysis. The spectral densities of the 6

estimated factors are shown in Figure 8. Note that the spectral densities hardly change if we

vary K̂ from 1 to 10, but we do not report them here to save space. From the patterns of the

spectral densities in Figure 8, we see that the estimated factors are all different from white

noises. In this example, the largest eigenvalue of x̂t is 10.74, which is almost at the same

level as µ̂1 = 7.14 of Ŝ shown in Figure 7 with p = 49. This empirical phenomenon supports

the assumption that the largest eigenvalue of the covariance matrix of the idiosyncratic terms

tends to diverge for large p.

Next, we compare our method with those in Bai and Ng (2002) and Lam et al. (2011).

First, for the principal component analysis, the estimated number of factors is r̂ = 11 using

the BIC in (4.3). The spectral densities of the first 9 estimated factors are shown in Figure

9. From the plots, we see that the 3rd and 5th extracted factors contain limited dynamic

dependence because their spectral densities are flat. The two estimated factors are plotted in

Figure 10 and the p-values of the Ljung-Box test statistic Q(10) are 0.4016 for the 3rd and

0.1871 for the 5th factor, respectively. Therefore, these two estimated factors are essentially
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Figure 8: The spectral densities of 6 estimated common factors using the proposed method-
ology with K̂ = 7 of Example 3.
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Figure 9: The spectral densities of the first 9 estimated factors using the principal component
analysis in Bai and Ng (2002) of Example 3.

white noise processes. The results demonstrate a weakness of the principal component anal-

ysis, namely, it focuses on the covariance matrix of the data without paying any attention

to the effect of the lagged variables. This weakness does not occur in the proposed method

because it makes use of the relationships between the current and the lagged variables as

shown in Figure 8.

For the ratio-based method in Lam et al. (2011), the estimated number of factors is r̂ = 1.

This phenomenon occurs often, implying that the method only picks the dominating signal.

The spectral density functions of the first 6 transformed series û1t,..., û6t are shown in Figure
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Figure 10: The time plots of the 3rd and 5th estimated factors using the principal component
analysis in Bai and Ng (2002) of Example 3.
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Figure 11: The spectral densities of first 6 transformed series using the eigen-analysis in
Example 3.

11. Clearly, these 6 series are not white noise. Consequently, based on the assumptions of the

procedure of Lam et al. (2011), these series are not idiosyncratic and should be included in

the common factors. For financial returns, the first factor alone is not adequate in describing

the behavior of the data, and many empirical analyses suggest that there are usually 3 or

more factors affecting the financial market. See, for example, Fama and French (2015) and

the references therein.

Finally, we compare the forecasting performance of the proposed method with those of

other methods. For the h-step ahead forecasts, we compare the actual and predicted values

of the model estimated using data in the time span [1, τ ] for τ = 500, ..., 600 − h, and the

associated h-step ahead forecast error is defined as

FEh =
1

100− h+ 1

600−h∑
τ=500

(
1
√
p
‖ŷτ+h − yτ+h‖2

)
, (4.6)

where p = 49 in this example. We first examine the estimated number of factors in the

sub-samples using our method and those in Bai and Ng (2002) and Lam et al. (2011).

The boxplots of the estimated r̂ for each τ are shown in Figure 12, and the means of r̂

obtained by the three methods are 6, 10.7 and 1, respectively. Therefore, we use r̂ = 6, 11

and 1, respectively, for each τ . In addition, we employ VAR(1)-VAR(3) models to fit the
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factor processes obtained by our method and the principal component analysis in Bai and

Ng (2002), and scalar AR(1)-AR(3) models to fit the single factor process obtained by the

ratio-based method in Lam et al. (2011). For simplicity, we use AR to denote AR model for

a univariate process or VAR models for a multivariate process. The h-step ahead forecast

errors are reported in Table 5 for h = 1, 2, 3, and similar patterns can be found for other

forecast horizon h. In Table 5, we vary K̂ from 1 to 7 and the values in boldface represent the

smallest ones using AR(1) to AR(3) models, respectively. From the table, we see that for the

1-step ahead forecasts the performance of the proposed method is slightly worse than that of

Bai and Ng (2002), but the proposed method fares better than either BN or LYB method for

2-step and 3-step ahead forecasts, especially for K̂ ≥ 5. The result is understandable because

the PCA method in Bai and Ng (2002) extracts the most significant coordinates of the

data and, hence, it might produce more precise forecasts in the short term, but the increased

variability associated with longer horizon is likely to decrease the accuracy in forecasting. On

the other hand, the proposed method seems to be more stable in the forecasting performance,

especially for the longer forecast horizon h. As an illustration, the point-wise forecast errors

of the 1-step ahead prediction using AR(1) models and K̂ = 1 are shown in Figure 13, where

we also choose a random walk as the benchmark procedure. From Figure 13, we see that

the three methods perform rather similarly and there are times our method produces smaller

errors. We also note that all methods are better than the benchmark. In practice, we may

find an optimal K̂ based on some cross-validation if the main interest of data analysis is

prediction.

In this application, the factors identified by the proposed method appears to be reason-

able, and they also fare well in out-of-sample forecasts. The principal component analysis of

Bai and Ng (2002) extracts the components with large variances while overlooks the dynam-

ical dependence in the data. In fact, the estimated factors themselves may be white noise.

The ratio-based method of LYB only extracts the component associated with the largest

eigenvalue, which may not be sufficient and makes model interpretation hard.

5 Discussion and Concluding Remarks

This article introduced a new structured factor model for high-dimensional time series analy-

sis. We allow the largest eigenvalues of the covariance matrix of the idiosyncratic components
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models with K̂ = 1 for various methods used in Example 3.
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Table 5: The 1-step, 2-step and 3-step ahead forecast errors. Standard errors are given in
the parentheses. GT denotes our method, BN denotes the principal component analysis in
Bai and Ng (2002) and LYB is the one in Lam et al. (2011). Boldface numbers denote the
smallest one for a given model.

GT BN LYB

K̂ = 1 K̂ = 2 K̂ = 3 K̂ = 4 K̂ = 5 K̂ = 6 K̂ = 7
1-step AR(1) 1.152 1.161 1.159 1.162 1.158 1.158 1.159 1.142 1.157

(0.469) (0.484) (0.482) (0.489) (0.487) (0.483) (0.487) (0.442) (0.465)
AR(2) 1.164 1.165 1.166 1.168 1.164 1.165 1.164 1.156 1.162

(0.474) (0.480) (0.482) (0.493) (0.486) (0.483) (0.485) (0.446) (0.470)
AR(3) 1.170 1.172 1.172 1.174 1.169 1.170 1.168 1.168 1.162

(0.477) (0.485) (0.489) (0.498) (0.493) (0.493) (0.496) (0.441) (0.470)
2-step AR(1) 1.179 1.180 1.180 1.180 1.179 1.178 1.178 1.182 1.180

(0.512) (0.512) (0.512) (0.513) (0.512) (0.510) (0.510) (0.513) (0.514)
AR(2) 1.190 1.190 1.190 1.188 1.188 1.187 1.185 1.197 1.185

(0.519) (0.514) (0.514) (0.513) (0.514) (0.512) (0.512) (0.520) (0.519)
AR(3) 1.194 1.193 1.194 1.191 1.191 1.191 1.189 1.204 1.185

(0.520) (0.519) (0.520) (0.519) (0.520) (0.520) (0.523) (0.510) (0.520)
3-step AR(1) 1.181 1.180 1.180 1.180 1.180 1.180 1.180 1.184 1.184

(0.511) (0.511) (0.511) (0.510) (0.511) (0.510) (0.510) (0.514) (0.513)
AR(2) 1.185 1.183 1.183 1.183 1.183 1.182 1.182 1.190 1.187

(0.510) (0.510) (0.508) (0.508) (0.508) (0.507) (0.508) (0.514) (0.512)
AR(3) 1.187 1.184 1.184 1.184 1.184 1.184 1.184 1.198 1.188

(0.517) (0.513) (0.513) (0.512) (0.514) (0.518) (0.520) (0.510) (0.514)

to diverge to infinity by imposing some structure on the noise terms. The first step of the

proposed analysis is an eigen-analysis of the matrix M̂ defined in Equation (2.9). The form

of M̂ is a special case of the orthonormalized Partial Least Squares on time series data

by assuming the covariance matrix of the data is identity. By an abuse of notation, let

wt = (y′t−1, ...,y
′
t−k0)′ be the vector of past k0 lagged values of the time series yt, where k0 is

a pre-specified positive integer as that in (2.6) and (2.9). The orthonormalized Partial Least

Squares computes the orthogonal score vectors for yt by solving the following optimization

problem:

max
ai

‖E(a′iytw
′
t)‖22, subject to a′iE(yty

′
t)ai = 1. (5.1)

See, for example, Arenas-Garćıa and Camps-Valls (2008). It can be shown that the columns

ai are given by the principal eigenvectors of the following generalized eigenvalue problem:

ΣywΣ′ywai = ηΣyai. (5.2)

Note that M = ΣywΣ′yw which is just the form in (2.6). To solve the above equation, we need

to obtain accurate estimates for the covariance matrix and its inverse simultaneously, which

however is not easy. Instead we change the subject condition in (5.1) to a′iai = 1 and apply

the eigen-analysis on M̂ in (2.9), and this approach remains an effective way if we assume

35



the component variances of the data are uniformly bounded. In this case, the second step is

needed.

The second step of the proposed analysis is the projected PCA on Ŝ in (2.10) by assum-

ing the largest K eigenvalues of the covariance matrix of the idiosyncratic component are

diverging. In practice, the most useful assumption is that the largest eigenvalue is diverging

whereas the rests are bounded. Limited experience indicates that many real datasets share

such a phenomenon. If we are only concerned with the forecasting performance of the pro-

posed analysis, we may select K̂ in a range such as K̂L ≤ K̂ ≤ K̂U , where K̂L and K̂U are

defined in Remark 5(ii), via some cross-validation method like out-of-sample testing.

The white noise test considered is an efficient way to determine the number of common

factors. The one-by-one bottom-up testing procedure may not perform well when the di-

mension p is high, but the limiting distribution of the test statistic of Tsay (2018) holds for

large p by making use of the limiting theorems for the extreme value theory. If we like to

use the test statistic for a wide range of dimensions and various sample sizes, we may adopt

the small-sample adjustments for the test statistic discussed by the author. The simulation

results in Tsay (2018) show that the resulting test statistic works reasonably well.

In conclusion, the proposed model and approach are natural and useful in analyzing high-

dimensional time series data. The produced factors are meaningful and interpretable, and the

forecast performance of the proposed method is as good as the principal component analysis

and the ratio-based method commonly used in the literature.

Supplementary Material

The supplementary material contains all technical proofs of the theorems in Section 3 and an

additional real example consisting of half-hourly temperature data observed at the Adelaide

Airport in Australia with p = 508 and n = 336.
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