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Universitat Politècnica de Catalunya, Barcelona, Spain

and Hans-Georg Müller

University of California at Davis, USA

[Received October 2014. Final revision November 2015]

Summary. We introduce a simple and interpretable model for functional data analysis for sit-
uations where the observations at each location are functional rather than scalar. This new
approach is based on a tensor product representation of the function-valued process and util-
izes eigenfunctions of marginal kernels.The resulting marginal principal components and prod-
uct principal components are shown to have nice properties. Given a sample of independent
realizations of the underlying function-valued stochastic process, we propose straightforward
fitting methods to obtain the components of this model and to establish asymptotic consistency
and rates of convergence for the estimates proposed. The methods are illustrated by modelling
the dynamics of annual fertility profile functions for 17 countries. This analysis demonstrates
that the approach proposed leads to insightful interpretations of the model components and
interesting conclusions.
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1. Introduction

In various applications one encounters stochastic processes and random fields that are defined
on temporal, spatial or other domains and take values in a function space, which is assumed to
be the space of square integrable functions L2. More specifically, for S ⊂Rd1 and T ⊂Rd2 , we
consider the stochastic process X :T →L2.S/ and denote its value at time t ∈T by X.·, t/, which
is a square integrable random function with argument s ∈S. A key feature of our approach is
that we consider the case where we have n independent observations of the functional stochastic
process.

A specific example that we shall discuss in detail (Section 5) is that of female fertility profile
functions X.·, t/, which are available annually (t =year) for n=17 countries, with age as argument
s. The starting point is the age-specific fertility rate ASFR X.s, t/ for a specific country, which
is defined as
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X.s, t/=ASFR.s, t/= births during year t given by women aged s

person-years lived during year t by women aged s
: .1/

Fig. 1 illustrates the ASFR-data for the USA from 1951 to 2006. Fig. 1(a) shows ASFR.·, t/ for
t =1960, 1980, 2000. The image plot representing ASFR.s, t/ for all possible values of s and t in
Fig. 1(b) provides a visualization of the dynamics of fertility in the USA over the whole period.
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Fig. 1. Age-specific fertility rate for the USA: (a) profiles for three calendar years ( , t D1960; ,
t D1980; , t D2000); (b) image plot representing ASFR.s, t/ for all possible values of s and t
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For data structures where we observe only one realization of a function-valued process, re-
lated modelling approaches have been discussed previously (Delicado et al., 2010; Nerini et al.,
2010; Gromenko et al., 2012, 2013; Huang et al., 2009). Similarly, Hyndman and Ullah (2007)
and Hyndman and Shang (2009) considered functional time series in a setting where only one
realization is observed. In related applications such as mortality analysis, the decomposition
into age and year has been studied by Eilers and Marx (2003), Currie et al. (2004, 2006) and
Eilers et al. (2006), by using P-splines. The case where independently and identically distributed
samples are available for random fields has been much less studied. Multilevel functional mod-
els and functional mixed effects models have been investigated by Morris and Carroll (2006),
Crainiceanu et al. (2009), Greven et al. (2010) and Yuan et al. (2014), among others, whereas
Chen and Müller (2012) developed a ‘double functional principal component (FPC)’ method
and studied its asymptotic properties.

Our approach applies to general dimensions of both the domain of the underlying random
process, with argument t, as well as of the domain of the observed functions, with argument s,
and we emphasize the case of function-valued observations for stochastic processes on a one-
dimensional time domain. This is the most common case and it often allows for particularly
meaningful interpretations. Consider processes X.s, t/ with mean μ.s, t/ = E{X.s, t/} for all
s∈S ⊆Rd1 and all t ∈T ⊆Rd2 , and covariance function

C{.s, t/, .u, v/}=E{X.s, t/X.u, v/}−μ.s, t/μ.u, v/=E{Xc.s, t/Xc.u, v/}, .2/

where here and in what follows we denote the centred processes by Xc.
A well-established tool of functional data analysis is functional principal component analysis

(FPCA) (Ramsay and Silverman, 2005) of the random process X.s, t/, which is based on the
Karhunen–Loève expansion

X.s, t/=μ.s, t/+
∞∑

r=1
Zrγr.s, t/, s∈S, t ∈T : .3/

Here {γr : r �1} is an orthonormal basis of L2.S ×T / that consists of the eigenfunctions of the
covariance operator of X, and {Zr =∫

γr.s, t/Xc.s, t/dsdt : r �1} are the (random) coefficients.
This expansion has the optimality property that the first K terms form the K-dimensional
representation of X.s, t/ with the smallest unexplained variance.

A downside of the two- or higher dimensional Karhunen–Loève representation (3) is that it
allows only for a joint symmetric treatment of the arguments and therefore is not suitable for
analysing the separate (possibly asymmetric) effects of s and t. An additional technical drawback
is that an empirical version of expression (3) requires the estimation of the covariance function
C in equation (2) that depends on dimension 2.d1 +d2/ and, for the case of sparse designs, this
then requires performing non-parametric regression depending on at least four variables, with
associated slow computing, curse of dimensionality and loss of asymptotic efficiency. Finally,
Karhunen–Loève expansions for functional data depending on more than one argument are
non-standard and suitable software is difficult to obtain.

Aiming to address these difficulties and with a view towards interpretability and simplicity
of modelling, we propose in this paper the representation

X.s, t/=μ.s, t/+
∞∑

j=1
ξj.t/ψj.s/=μ.s, t/+

∞∑
k=1

∞∑
j=1

χjkφjk.t/ψj.s/, .4/

where {ψj : j �1} are the eigenfunctions of the operator in L2.S/ with kernel
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GS.s, u/=
∫

T
C{.s, t/, .u, t/}dt, .5/

and {ξj.t/ :j �1} are the (random) coefficients of the expansion of the centred processes Xc.·, t/

in ψj.s/, and ξj.t/=Σ∞
k=1χjkφjk.t/ is the Karhunen–Loève expansion of the random functions

ξj.t/ in L2.T / with eigenfunctions φjk and FPCs χjk.
We refer to GS as the marginal covariance function, and to equation (4) as the marginal

Karhunen–Loève representation of X that leads to the marginal FPCA and note that the product
basis functions φjk.t/ψj.s/ are orthogonal to each other. Hence the scores χjk can be optimally
estimated by the inner product of Xc with the corresponding basis. Also, for each j � 1, we
have E.χjkχjk′/ = 0 for k �= k′. In related settings, marginal covariance functions very recently
have also been utilized by other researchers (Park and Staicu, 2015; Aston et al., 2015). In
theorem 1 below we establish the optimality of the marginal eigenfunctions ψj under a well-
defined criterion and show in theorem 2 that the finite expansion based on the marginal FPCA
approach nearly minimizes the variance between all representations of the same form.

When using representation (4), the effects of the two arguments s and t can be analysed
separately, which we shall show in greater detail below in Sections 2 and 5. We also note that the
estimation of the marginal representation (4) requires only estimation of covariance functions
that depend on 2d1 or 2d2 real arguments. In particular, when d1 =d2 =1, only two-dimensional
surfaces need to be estimated and marginal FPCA can be easily implemented by using standard
functional data analysis packages.

Motivated by a common principal component perspective, we also introduce a simplified
version of equation (4): the product FPCA,

X.s, t/=μ.s, t/+
∞∑

k=1

∞∑
j=1

χjkφk.t/ψj.s/, .6/

where the φk, k �1, are the eigenfunctions of the marginal kernel GT .s, u/, which is analogous
to GS.t, v/, with supporting theory provided by theorem 4 and theorem 5.

Sections 2 and 3 provide further details on the model and estimation. Theoretical consider-
ations are in Section 4. In Section 5, we compare the performance of the proposed marginal
FPCA, product FPCA and the conventional two-dimensional FPCA in the context of an anal-
ysis of the fertility data. Simulation results are described in Section 6 and conclusions can be
found in Section 7. Detailed proofs, additional materials and the analysis of an additional
human mortality data example have been relegated to the on-line supplement.

The data that are analysed in the paper and the programs that were used to analyse them can
be obtained from

http://wileyonlinelibrary.com/journal/rss-datasets

2. Marginal functional principal component analysis

2.1. Modelling
Consider the standard inner product 〈f , g〉 = ∫

S
∫

T f.s, t/g.s, t/dtds in the separable Hilbert
space L2.S × T / and the corresponding norm ‖ · ‖. In what follows, X is in L2.S × T / with
mean μ.s, t/. Using the covariance function C{.s, t/, .u, v/} as kernel for the Hilbert–Schmidt
covariance operator Γ.f/.s, t/=∫

S
∫
T C{.s, t/, .u, v/}f.u, v/dvdu with orthonormal eigenfunc-

tions γr, r �1, and eigenvalues λ1 �λ2 �: : : then leads to the Karhunen–Loève representation
of X in expression (3), where E.Zr/=0 and cov.Zr, Zl/=λrδrl, with δrl =1 for r = l and δrl =0
otherwise; see Horváth and Kokoszka (2012) and Cuevas (2013).
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Since the marginal kernel GS.s, u/ as defined in equation (5) is a continuous symmetric
positive definite function (see lemma 1 in on-line supplement A), denoting its eigenvalues and
eigenfunctions by τj and ψj, j �1, respectively, the following representation for X emerges:

X.s, t/=μ.s, t/+
∞∑

j=1
ξj.t/ψj.s/, .7/

where ξj.t/ = 〈X.·, t/ − μ.·, t/,ψj〉S , j � 1, is a sequence of random functions in L2.T / with
E{ξj.t/}=0 for t ∈T , and E.〈ξj, ξk〉T /=τjδjk (see lemma 2 in on-line supplement A). Theorem
1 in Section 4 shows that the above representation has an optimality property.

The marginal Karhunen–Loève representation (7) provides new functional data, the score
functions ξj.t/, which are random functions that depend on only one argument. For each j �1,
the ξj have their own covariance functions Θj.t, v/=E{ξj.t/ξj.v/}, t, v∈T , j � 1, with eigen-
components (eigenvalues and eigenfunctions) {ηjk,φjk.t/ : k �1}. The continuity of the covari-
ance function C implies that the Θj.t, v/ are also continuous functions. The random functions
ξj.t/ then admit their own Karhunen–Loève expansions,

ξj.t/=
∞∑

k=1
χjkφjk.t/, j �1, .8/

with E.χjk/=0 and E.χjkχjr/=ηjkδkr. From equations (7) and (8) we obtain the representation
for X.s, t/ in equation (4), X.s, t/=μ.s, t/+Σ∞

j=1Σ
∞
k=1χjkφjk.t/ψj.s/. As already mentioned, this

expansion does not coincide with the standard Karhunen–Loève expansion of X and it is not
guaranteed that χjk and χlr are uncorrelated for j �= l. But the product functions φjk.t/ψj.s/

remain orthonormal in the sense that
∫
S,T φjk.t/ψj.s/φlh.t/ψl.s/dsdt = δjk,lh, where δjk,lh = 1

when j = l and k =h; δjk,lh =0 otherwise.

2.2. Estimating procedures
Time- or space-indexed functional data consist of a sample of n independent subjects or units.
For the ith subject, i=1, : : : , n, random functions Xi.·, t/ are recorded at a series of time points
tim, m = 1, : : : , Mi. Ordinarily, these functions are not continuously observed but instead are
observed at a grid of functional design points sl, l=1, : : : , L. In this paper we focus on the case
where the grid of s is dense, regular and the same across all subjects. The case of sparse designs
in s will be discussed in Section 7. Our proposed marginal FPCA procedure consists of three
main steps.

Step 1: centre the data to obtain X̂
c
i .s, t/=Xi.s, t/− μ̂.s, t/. Obtain an estimator of μ.s, t/ by

pooling all the data. If the recording points t are densely and regularly spaced, i.e. tim = tm, an
empirical estimator by averaging over n subjects and interpolating between design points can
be used. This scheme is also applicable to dense irregular designs by adding a presmoothing
step and sampling smoothed functions at a dense regular grid. Alternatively, one can recover
the mean function μ by smoothing the pooled data (Yao et al., 2005), for example with a
local linear smoother, obtaining a smoothing estimator μ̂.s, t/= â0, where

.â0, â1, â2/=argmin
1
n

n∑
i=1

Mi∑
m=1

Lim∑
l=1

[{Xi.tim, siml/−a0 −a1.siml − s/−a2.tim − t/}2

×Khs.siml − s/Kht .tim − t/]: .9/

Step 2: use the centred data X̂
c
i .s, t/ from step 1 to obtain estimates of the marginal covariance

function GS.s, u/ as defined in equation (5), its eigenfunctions ψj.s/ and the corresponding
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FPC score functions ξi,j.t/. For this, we pool the data {X̂
c
i .·, tim/, i=1, : : : , n, m=1, : : : , Mi}

and obtain estimates

ĜS.sj, sl/= |T |
n∑

i=1
Mi

n∑
i=1

Mi∑
m=1

X̂
c
i .sj, tim/X̂

c
i .sl, tim/, .10/

where 1� j � l�L and |T | is the Lebesgue measure of T , followed by interpolating between
grid points to obtain ĜS.s, u/ for .s, u/ ∈S ×S. We then obtain the eigenfunctions ψ̂j and
eigenvalues τ̂ j by standard methods (Yao et al., 2005) as implemented in the PACE package
(http://www.stat.ucdavis.edu/PACE) or as in Kneip and Utikal (2001), and the
FPC function estimates ξ̂i,j.t/ by interpolating numerical approximations of the integrals
ξ̂i,j.tim/=∫

X̂
c
i .s, tim/ψ̂j.s/ds. Theorem 3 shows that ĜS in equation (10) and ψ̂j are consistent

estimates of the marginal covariance function GS and its eigenfunctions and that estimates
{ξ̂i,j.t/, i=1, : : : , n, } converge uniformly to the target processes {ξi,j.t/, j �1}.
Step 3: this is a standard FPCA of one-dimensional processes {ξi,j.t/, j �1}, where, for each
fixed j, one obtains estimates for the FPCs χjk and eigenfunctions {φjk.t/ : k � 1}; see for
example Ramsay and Silverman (2005) and Kneip and Utikal (2001) for designs that are
dense in t and Yao et al. (2005) for designs that are sparse in t.

After selecting appropriate numbers of included components P and Kj, j=1, : : : , P , we obtain
the overall representation

X̂i.s, t/= μ̂.s, t/+
P∑

j=1
ξ̂i,j.t/ ψ̂j.s/= μ̂.s, t/+

P∑
j=1

Kj∑
k=1

χ̂i,jk φ̂jk.t/ψ̂j.s/: .11/

The number of components P included can be selected via a fraction of variance explained
(FVE) criterion, finding the smallest P such that ΣP

j=1 τ̂ j=ΣM
j=1 τ̂ j � 1 − p, where M is large

and we choose p = 0:15 in our application. The number of components Kj included can be
determined by a second application of the FVE criterion, where the variance Vjk explained by
each term .j, k/ is defined as

Vjk =
.1=n/

n∑
i=1

χ̂2
i,jk

.1=n/
n∑

i=1
‖X.s, t/− μ̂.s, t/‖2

S×T

: .12/

Note that Vjk does not depend on the choice of P in the first step, since it is the fraction of
total variance explained. Here the total variance explained, ΣKj

k=1 ΣP
j=1E.χ2

jk/, cannot exceed
the variance explained in the first step, ΣP

j=1τj.
We shall illustrate these procedures in Section 5. Since the functions ψj.s/φjk.t/ are orthog-

onal, the unexplained variance E‖Xc‖2 −ΣP
j=1 ΣKj

k=1E.χ2
jk/ and the reconstruction loss

E

[∫
S,T

{Xc.s, t/−
P∑

j=1

Kj∑
k=1

〈Xc,φjkψj〉φjk.t/ψj.s/}2dsdt

]

are equivalent.

3. Product functional principal component analysis

In this section we discuss a simplified version of the marginal Karhunen–Loève representation



Modelling Function-valued Stochastic Processes 183

(4). A simplifying assumption is that the eigenfunctions φjk in the Karhunen–Loève expan-
sion of ξj.t/ in expression (4) do not depend on j. This assumption leads to a more compact
representation of X as given in equation (6), X.s, t/=μ.s, t/+Σ∞

j=1Σ
∞
k=1χjkφk.t/ψj.s/.

To study the properties of this specific product representation, we consider product repre-
sentations with general orthogonal basis X.s, t/=μ.s, t/+Σ∞

j=1Σ
∞
k=1χjk fk.t/gj.s/, where χjk =

〈Xcfkgj〉. For such general representations, the assumption

cov.χjk,χjl/=0 for k �= l,

cov.χjk,χhk/=0 for j �=h
.13/

implies that the covariance kernel induced by ξj.t/=〈Xc.t, ·/, gj〉S has common eigenfunctions
{fk.t/, k �1}, not depending on j, and the covariance kernel induced by ξk.s/=〈Xc.·, s/, fk〉T
has common eigenfunctions {gj.s/, j �1}, not depending on k. Therefore we refer to expression
(13) as the common principal component assumption. We prove in theorem 4 below that if there
are bases {gj.s/, j � 1} and {fk.t/, k � 1} such that assumption (13) is satisfied, then gj ≡ψj

and fk ≡φk, the eigenfunctions of the marginal covariance GS.s, u/ and GT .t, v/ respectively,
where GT .t, v/ is defined as

GT .t, v/=
∫

S
C {.s, t/, .s, v/} ds, t, v∈T : .14/

Even without invoking assumption (13), in theorem 5 we show that the finite expansion based
on the marginal eigenfunctionsφk andψj yields a nearly optimal solution in terms of minimizing
the unexplained variance between all possible product expansions. This result provides addi-
tional theoretical support for the use of product FPCA based on the marginal kernels GS and
GT under fairly general situations. Although the product functions φk.t/ψj.s/ are orthonor-
mal, without additional conditions, the scores χjk in general will not be uncorrelated. Product
FPCA (6) is well suited for situations where the two arguments of X.s, t/ play symmetric roles.
This simplified model retains substantial flexibility, as we shall demonstrate in the application
to fertility data (see on-line supplement C).

The estimation procedures for this model are analogous to those described in the previous
section. This also applies to the theoretical analysis of these estimates and their asymptotic
properties. A straightforward approach to estimate the eigenfunctions appearing in equation
(6) is to apply the estimation procedure that was described in Section 2.2 twice, first following
the description there to obtain estimates of GS and ψj and then changing the roles of the two
arguments in a second step to obtain estimates of GT and φk.

4. Theoretical properties

Detailed proofs of the results in this section are in on-line supplement A. We show that the
optimal finite dimensional approximation property of FPCA extends to the proposed marginal
FPCA under well-defined criteria. Theorem 1 establishes the optimality of the basis functions
ψj, i.e. the eigenfunctions in equation (4) derived from the marginal covariance in equation (5).
Theorem 2 shows the near optimality of the marginal representation (4), based on the eigen-
functions φjk and ψj, in terms of minimizing the unexplained variance between all functional
expansions of the same form.

Theorem 1. For each P � 1 for which τP > 0, the functions g1, : : : , gP in L2.S/ that provide
the best finite dimensional approximations in the sense of minimizing
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E

{∫
T

‖Xc.·, t/−
P∑

j=1
〈Xc.·, t/, gj〉Sgj‖2

S dt

}

are gj =ψj, j =1, : : : , P , i.e. the eigenfunctions of GS . The minimizing value is Σ∞
j=P+1τj.

Theorem 2. For P �1 and Kj �1, consider the loss minimization

min
fjk ,gj

E

[∫
S,T

{Xc.s, t/−
P∑

j=1

Kj∑
k=1

〈Xc, fjkgj〉fjk.t/gj.s/}2dsdt

]
,

with minimizing value QÅ, where the gj.s/, j �1, are orthogonal and, for each j, the fjk.t/, k�
1, are orthogonal. The marginal eigenfunctions ψj.s/ and φjk.t/ achieve good approximation
in the sense that

E

[∫
S,T

{Xc.s, t/−
P∑

j=1

Kj∑
k=1

〈Xc,φjkψj〉φjk.t/ψj.s/}2 dsdt

]
<QÅ +aE‖Xc‖2,

where a=max1�j�P aj, with 1−aj denoting the fraction of variance explained by Kj terms
for each process ξj.t/=〈Xc.·, t/ψj〉S .

In what follows, ‖GS.s, u/‖S = {
∫
S

∫
S GS.s, u/2dsdu}1=2 is the Hilbert–Schmidt norm and

ab denotes that a and b are of the same order asymptotically. For the consistency of marginal
FPCA (4) it is important that the covariance kernel GS and its eigenfunctionsψj and eigenvalues
τj can be consistently estimated from the data. Uniform convergence of the empirical working
processes {ξ̂i,j.tim/, 1� i�n, 1�m�Mi} to the target processes {ξi,j.t/, t ∈T } then guarantees
the consistency of the estimates of the eigenfunctions φjk and the eigenvalues ηjk (Yao and Lee,
2006).

The following assumptions are needed to establish these results. We use 0<B<∞ as a generic
constant that can take different values at different places.

Assumption 1. sups,t |μ.s, t/|<B and sups |ψj.s/|<B for all 1� j �P .

Assumption 2. E{sups,t |X.s, t/|}<B and sups,t E|X.s, t/|4 <B.

Assumption 3. sup.s,u/∈S2,.t1,t2/∈T 2 |C{.s, t1/, .u, t1/}−C{.s, t2/, .u, t2/}|<B|t1 − t2|.

Assumption 4. sup.s1,u1,s2,u2/∈S4 |GS.s1, u1/−GS.s2, u2/|<B.|s1 − s2|+ |u1 −u2|/.

Assumption 5. For all 1� j �P , δj > 0, where δj =min1�l�j.τl − τl+1/.

Assumption 6.

(a) The grid points {tim : m=1, : : : , M} are equidistant, and n=M =O.1/.
(b) The grid points {tim : m = 1, : : : , Mi} are independently and identically distributed with

uniform density, and miniMi maxiMi.

Condition 1 generally holds for smooth functions that are defined on finite domains. Con-
ditions 2 are commonly used moment conditions for X.s, t/. Conditions 3 and 4 are Lipschitz
conditions for the joint covariance C and the marginal covariance GS and quantify the smooth-
ness of these covariance surfaces. Condition 5 requires non-zero eigengaps for the first P leading
components and has been widely adopted in the literature (Hall et al., 2006; Li and Hsing, 2010).
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Condition 6, parts (a) and (b), correspond to two alternative scenarios for the design at which
the underlying random process is sampled over t. Here condition 6, part (a), reflects the case
of a dense regular design, where we observe functions X.·, tm/ at a dense and regular grid of
{tm : m = 1, : : : , M}, with n=M = O.1/, whereas part (b) corresponds to the case of a random
design, where we observe functions X.·, tim/ at a series of random locations corresponding to
the time points {tim : m=1, : : : , Mi}, where the number of available measurements Mi may vary
across subjects.

Theorem 3. If conditions 1–5 and 6, part (a), or 1–5 and 6, part (b), hold, max.sl − sl−1/=
O.n−1/, and μ̂.s, t/ obtained in step 1 above satisfies sups,t|μ̂.s, t/−μ.s, t/|=Op[{log.n/=n}1=2],
we have the following results for 1� j �P :

‖ĜS.s, u/−GS.s, u/‖S =Op[{log.n/=n}1=2], .15/

|τ̂ j − τj|=Op[{log.n/=n}1=2], .16/

‖ψ̂j.s/−ψj.s/‖S =Op[{log.n/=n}1=2], .17/

1
n

n∑
i=1

sup
1�m�Mi

|ξ̂i,j.tim/− ξi,j.tim/|=Op[{log.n/=n}1=2]: .18/

The empirical estimator and the smoothing estimator that are discussed in step 1 both satisfy
sups,t |μ̂.s, t/ − μ.s, t/| = Op[{log.n/=n}1=2] under appropriate conditions and an appropriate
choice of the bandwidth in the smoothing estimator. We refer to Chen and Müller (2012), theo-
rems 1 and 2 for detailed conditions and proofs. The following result establishes the uniqueness
of the product representation with marginal eigenfunctions ψj and φj derived from expressions
(5) and (14) under the common principal component assumption (13). An important implica-
tion of theorem 4 is that the product FPCA based on marginal eigenfunctions is optimal if the
eigenfunctions of kernel C.s, t; u, v/ indeed can be written as products in their arguments.

Theorem 4. If there are orthogonal bases {gj.s/, j � 1} and {fk.t/, k � 1}, under which
the common principal component assumption (13) is satisfied, we have gj.s/ ≡ψj.s/ and
fk.t/≡φk.t/, with

GS.s, u/=
∞∑

j=1
τjψj.s/ψj.u/, for all s, u∈S, .19/

GT .t, v/=
∞∑

k=1
ϑkφk.t/φk.v/, for all t, v∈T , .20/

where

τj =
∞∑

k=1
var.χjk/,

ϑk =
∞∑

j=1
var.χjk/,

χjk =
∫

S

∫
T

{X.s, t/−μ.s, t/}ψj.s/φk.t/dtds,

E.χjk/=0,

cov.χjk,χjl/=var.χjk/δkl,

cov.χjk,χhk/=var.χjk/δjh:

.21/
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Theorem 5. For P �1 and K �1, consider the loss minimization

min
fk ,gj

E

[∫
S,T

{Xc.s, t/−
P∑

j=1

K∑
k=1

〈Xc, fkgj〉fk.t/gj.s/}2 dsdt

]
,

with minimizing value QÅ, where fk, k�1, are orthogonal, and gj, j �1, are orthogonal. The
marginal eigenfunctions ψj.s/ of GS.s, u/ and φk.t/ of GT .t, v/ achieve good approximation
in the sense that

E

[∫
S,T

{Xc.s, t/−
P∑

j=1

K∑
k=1

〈Xc,φkψj〉φk.t/ψj.s/}2 dsdt

]
<QÅ +aE‖Xc‖2,

where a= min.aT , aS/, with 1 −aT denoting the fraction of variance explained by K terms
for GT .t, v/ and analogously for aS .

Similarly to the situation in theorem 2, the error term aE‖Xc‖2 depends on the loss involved
in truncating just the (marginal) principal component decompositions, which also imposes a
lower bound on QÅ.

5. Functional data analysis of fertility

Human fertility naturally plays a central role in demography (Preston et al., 2001) and its analysis
recently has garnered much interest due to declining birth rates in many developed countries and
associated subreplacement fertilities (Takahashi, 2004; Ezeh et al., 2012). The Human Fertility
Database (Human Fertility Database, 2013) contains detailed period and cohort fertility annual
data for 22 countries (plus five subdivisions: two for Germany and three for the UK). We are
interested in age-specific fertility rates ASFR, considered as functions of women’s age in years, s,
and repeatedly measured for each calendar year t for various countries. These rates (see equation
(1)) constitute the functional data X.s, t/=ASFR.s, t/.

A detailed description how ASFR is calculated from raw demographic data can be found in the
Human Fertility Database methods protocol (Jasilioniene et al., 2012). The specific definition
of ASFR that we are using corresponds to period fertility rates by calendar year and age (Lexis
squares; age in completed years). In Human Fertility Database (2013), ASFR.s, t/ is included
for mothers of ages s = 12–55 years; thus the domain S is an interval of length L = 44 years.
The interval of calendar years with available ASFR varies by country. Aiming at a compromise
between the length M of the studied period T and the number n of countries that can be included,
we choose T as the interval from 1951 to 2006. There are n=17 countries (or territories) with
available ASFR-data during this time interval (see Table 4 and Fig. 5 in on-line supplement B
for the list of n=17 countries included and heat maps depicting individual functions ASFRi).

The sample means ASFR.s, t/ of the ASFR-functions for 17 countries that are displayed in
Fig. 2 shows that fertility rates are, on average, highest for women aged between 20 and 30 years
and are decreasing with increasing calendar year; this overall decline is interspersed with two
periods of increasing fertility before 1965, corresponding to the baby boom, and after 1995 with
a narrow increase for ages between 30 and 40 years, is narrowing in terms of the age range with
high fertility and displays an increase in regard to the ages of women where maximum fertility
occurs. We applied marginal FPCA, product FPCA and two-dimensional FPCA to quantify the
variability across individual countries and summarize the main results here. Additional details
can be found in on-line supplement C.

The fertility data include one fertility curve over age per calendar year and per country and
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are observed on a regular grid spaced in years across both co-ordinates age s and calendar
year t, which means that the empirical estimators that were described in Section 2 can be
applied to these data. Fig. 6 in on-line supplement B displays the nM =952 centred functional
data ASFRc

i .sl, tm/=ASFRi.sl, tm/−ASFR.sl, tm/, for l=1, : : : , L=44, m=1, : : : , M =56 and
i=1, : : : , n=17, demonstrating that there is substantial variation across countries and calendar
years. The results of the proposed marginal FPCA are summarized in Figs 3 and 4 for the
first three eigenfunctions ψ̂j.s/, j =1, 2, 3, resulting in an FVE of 95:8%. From Fig. 3, the first
eigenfunction ψ̂1.s/ can be interpreted as a contrast between fertility before and after the age
of 25 years, representing the direction from mature fertility (negative scores) to young fertility
(positive scores).

The second eigenfunction ψ̂2.s/ takes positive values for all ages s, with a maximum at age
s = 24 years. The shape of ψ̂2.s/ is similar to that of the mean function ASFR.s, t/ for a fixed
year t (see Fig. 2(b)). Therefore ψ̂2.s/ can be interpreted as a size component: country-years
with positive score in the direction of this eigenfunction have higher fertility ratios than the
mean function for all ages. The third eigenfunction ψ̂3.s/ represents a direction from more
concentrated fertility around the age of 25 years to a more dispersed age distribution of fertility.

Examining the score functions ξ̂i,j.t/, t ∈T , which are country-specific functions of calendar
year, we find from Fig. 3 for ξ̂i,1.t/ that there are countries, such as the USA, Bulgaria or
Slovakia, for which ξ1.t/ is positive for all calendar years t, which implies that these countries
always have higher fertility rates for young women and vice versa for mature women, relative
to the mean function. Countries from eastern Europe such as Bulgaria, the Czech Republic,
Hungary and Slovakia have high scores until the end of the 1980s when there is a sudden decline,
implying that the relationship of fertility between younger and more mature women has reversed
for these countries. Also notable is a declining trend in the dispersion of the score functions since
1990, implying that the fertility patterns of the 17 countries are converging.

The score functions ξ̂i,2.t/ corresponding to the size component indicate that Canada and the
USA had a particularly strong baby boom in the 1960s, whereas Portugal and Spain had later
baby booms during the 1970s. In contrast, Hungary had a period of relatively low fertility during
the 1960s. Again, the dispersion of these size score functions declines towards 2006. The patterns
of the score functions ξ̂i,3.th/ indicate that Japan has by far the largest degree of concentrated
fertility at ages from 22 to 29 years, from 1960–1980, but lost this exceptional status in the 1990s
and beyond. There is also a local anomaly for Japan in 1966. Takahashi (2004) reported that
in 1966 the total fertility in Japan declined to the lowest value ever recorded, because 1966 was
the year of the Hinoe-Uma (‘fire horse’, which is a calendar event that occurs every 60 years),
associated with the superstitious belief of bad luck for girls who are born in such years.

Trends over calendar time for particular countries can be visualized by track plots, which
depict the changing vectors of score functions .ξi,1.t/, : : : , ξi,K.t//, parameterized in t ∈ T , as
one-dimensional curves in RK. Track plots are most useful for pairs of score functions and
are shown in the form of planar curves for the pairs .ξi,1.t/, ξi,2.t// and .ξi,1.t/, ξi,3.t//, t ∈T ,
in Fig. 4 for selected countries and in Fig. 7 in on-line supplement B for all countries. Fig.
4(a) with the track plot illustrating the evolution in calendar time of first and second FPCs
shows predominantly vertical movements: From 1951 to 2006 for most countries there are
more changes in total fertility than changes in the distribution of fertility over the different
ages of mothers. Exceptions to this are Portugal, Spain, the Czech Republic, and the USA,
with considerable variation over the years in the first FPC score. There was more variation in
fertility patterns between the countries that were included in this analysis in 1951 than in 2006,
indicating a ‘globalization’ of fertility patterns. In the track plot corresponding to the first and
third eigenfunctions in Fig. 4(b), the anomalous behaviour of Japan stands out. The third step
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dexed by calendar time t, where ξi,j .t/ is the jth score function for country i (for selected countries) as in
equation (4)
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Table 1. FVE of ASFR.s, t/ for the leading terms in the proposed marginal FPCA, product
FPCA and two-dimensional FPCA†

Marginal FPCA FVE (%) Product FPCA FVE (%) 2nd FPCA FVE (%)

Six terms 87.49 Seven terms 87.38 Four terms 89.73
φ̂11.t/ ψ̂1.s/ 54.33 φ̂1.t/ ψ̂1.s/ 53.69 γ̂1.s, t/ 58.93
φ̂21.t/ ψ̂2.s/ 13.04 φ̂2.t/ ψ̂2.s/ 8.10 γ̂2.s, t/ 13.71
φ̂22.t/ ψ̂2.s/ 6.88 φ̂1.t/ ψ̂2.s/ 8.08 γ̂3.s, t/ 11.04
φ̂12.t/ ψ̂1.s/ 4.62 φ̂3.t/ ψ̂2.s/ 5.51 γ̂4.s, t/ 6.05
φ̂23.t/ ψ̂2.s/ 4.40 φ̂2.t/ ψ̂1.s/ 4.47
φ̂31.t/ ψ̂3.s/ 4.22 φ̂4.t/ ψ̂2.s/ 3.85

φ̂1.t/ ψ̂3.s/ 3.68

†The number of terms in each case is selected to achieve an FVE of more than 85%.

of the marginal FPCA that was described in Section 2 consists of performing a separate FPCA
for the estimated score functions ξ̂i,j.t/, i=1, : : : , n, for j =1, 2, 3, with estimated eigenfunctions
φ̂jk shown in Fig. 8 in on-line supplement B. The interpretation of these eigenfunctions is relative
to the shape of the ψj.s/.

The results in Table 1 for estimated representations (11) justify the inclusion of only the six
terms with the highest FVE in the final model, leading to a cumulative FVE of 87:49%, where the
FVE for each term .j, k/ is estimated by equation (12). The corresponding six product functions
φ̂jk.t/ψ̂j.s/ are shown in Fig. 9 in on-line supplement B. Regarding the comparative performance
of standard two-dimensional FPCA, product FPCA (with detailed results in on-line supplement
C) and marginal FPCA, we have the following findings.

(a) As expected, standard FPCA based on the two-dimensional Karhunen–Loève expansion
requires fewer components to explain a given amount of variance, as four eigenfunctions
lead to an FVE of 89:73% (see Table 1), whereas the marginal FPCA representation
achieves an FVE of 87:49% with six terms, and product FPCA needs seven terms to
explain 87:38%.

(b) Product FPCA and marginal FPCA represent the functional data as a sum of terms that
are products of two functions, each depending on only one argument. This enables much
better interpretability and makes it possible to discover patterns in functional data that
are not found when using standard FPCA. For instance, the second eigenfunction ψ2 in
the first step of the marginal FPCA could be characterized as a fertility size component,
with a country-specific time varying multiplier ξ2.t/. Standard FPCA does not pinpoint
this feature, which is an essential characteristic of demographic changes in fertility.

(c) Marginal FPCA makes it much easier than standard FPCA to analyse the time dynamics
of the fertility process.

Specifically, the plots in Figs 3(d)–3(f) or the track plots in Fig. 4 are informative about the
fertility evolution over calendar years.

(a) The relative balance between young and mature fertility at each country changes over
the years. The graphical representation of functional score functions ξ̂i,1.t/ allows us to
characterize and quantify this phenomenon.

(b) The track plot in Fig. 4(a) indicates that in general it is much more common that fertility
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rates rise or decline across all ages compared with transfers of fertility between different
age groups.

(c) The fertility patterns of the various countries are much more similar in 2006 than in 1951.

All three approaches to FPCA for function-valued stochastic processes, namely standard
FPCA (3), marginal FPCA (4) and product FPCA (6), can be used to produce country scores
which can be plotted against each other. They turn out to be similar for these approaches;
as an example the standard FPCA scores are shown in Fig. 12 in on-line supplement C. We
conclude that standard FPCA, marginal FPCA and product FPCA complement each other.
Our recommendation is to perform all whenever feasible, to gain as much insight about complex
functional data as possible.

6. Simulations

We conducted two simulation studies: one to investigate the estimation procedure for marginal
FPCA, and a second study to evaluate the performance of product FPCA. Both were conducted
in a scenario that mimics the fertility data. For simulation 1, we generated data following a
truncated version of equation (4), where we used the estimated mean function ASFR.s, t/ from
the country fertility data (Section 5) as mean function and the estimated product functions
φ̂jk.t/ ψ̂j.s/, 1� j, k �4, as base functions in equation (4). Random scores χjk were generated as
independent normal random variables with variances λjk, corresponding to the estimates de-
rived from the fertility data, λjk = .1=n/Σn

i=1χ̂
2
i,jk. We also added independently and identically

distributed noise to the actual observations Yi.sl, th/=X.sl, th/+"i,lh, l=1, : : : , 44, h=1, : : : , 56,
where "i,lh ∼N.0,σ2/ with σ=0:005 to mimic the noise level of the fertility data.

Estimated and true functions ψj.s/ and φjk.t/ obtained for one sample run with n = 50 are
shown in Fig. 10 in on-line supplement B, demonstrating very good recovery of the true basis
functions. To quantify the quality of the estimates of μ.s, t/, we use the relative squared error

RE= ‖μ.s, t/− μ̂.s, t/‖2

‖μ.s, t/‖2 , .22/

where ‖μ.s, t/‖2 =∫ ∫
μ.s, t/2dsdt, analogously for X̂

c
i .s, t/ and φ̂jk.t/ψ̂j.s/. The relative squared

errors over 200 simulation runs, which are reported in Table 2, were found to be quite small for

Table 2. Results for simulation 1, reporting median relative errors RE, as defined
in equation (22) (with median absolute deviation in parentheses), for various com-
ponents of the model and varying sample sizes n

Component FVE (%) REs for the following values of n:

n=50 n=100 n=200

μ 0.0012 (0.0008) 0.0006 (0.0004) 0.0003 (0.0002)
Xc 0.1523 (0.0228) 0.1483 (0.0168) 0.1435 (0.0091)
φ11.t/ ψ1.s/ 53.6967 0.0092 (0.0071) 0.0045 (0.0040) 0.002 (0.0016)
φ21.t/ ψ2.s/ 12.9333 0.0584 (0.0538) 0.0280 (0.0243) 0.0133 (0.0110)
φ22.t/ ψ2.s/ 6.7450 0.1306 (0.1267) 0.0660 (0.0619) 0.0311 (0.0287)
φ12.t/ ψ1.s/ 4.5367 0.0222 (0.0178) 0.0129 (0.0091) 0.005 (0.0037)
φ23.t/ ψ2.s/ 4.1917 0.0999 (0.0904) 0.0469 (0.0417) 0.0296 (0.0238)
φ31.t/ ψ3.s/ 4.0400 0.0283 (0.0238) 0.0127 (0.0100) 0.0077 (0.0062)
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Table 3. Results for simulation 2, reporting median relative errors RE, as defined
in equation (22) (with median absolute deviations in parentheses) for various
components of the model and varying sample sizes n

Component FVE (%) REs for the following values of n:

n=50 n=100 n=200

μ 0.0011 (0.0006) 0.0006 (0.0003) 0.0003 (0.0002)
Xc 0.1464 (0.0216) 0.1390 (0.0138) 0.1324 (0.0080)
φ1.t/ ψ1.s/ 53.5400 0.0099 (0.0075) 0.0053 (0.0048) 0.0022 (0.0017)
φ2.t/ ψ2.s/ 8.1500 0.0559 (0.0525) 0.0342 (0.0275) 0.0174 (0.0180)
φ1.t/ ψ2.s/ 8.0817 0.0109 (0.0078) 0.0064 (0.0051) 0.0026 (0.0018)
φ3.t/ ψ2.s/ 5.4300 0.0776 (0.0635) 0.0389 (0.0331) 0.0208 (0.0204)
φ2.t/ ψ1.s/ 4.2783 0.0543 (0.0502) 0.0328 (0.0271) 0.0173 (0.0180)
φ4.t/ ψ2.s/ 3.7817 0.0368 (0.0293) 0.0167 (0.0131) 0.0089 (0.0072)
φ1.t/ ψ3.s/ 3.5917 0.0108 (0.0075) 0.0056 (0.0039) 0.0028 (0.0019)

μ, Xc
i and for the six product functions φ̂jk.t/ψ̂j.s/ with largest FVEs, which are the same six

functions as in Fig. 9 in on-line supplement B. The errors decline with increasing sample size
n, as expected. The FVEs for each term .j, k/ are also in Table 2, averaged over simulation runs
and over the different sample sizes, as they were similar across varying sample sizes.

For simulation 2, data were generated according to a truncated product FPC model

X.s, t/=μ.s, t/+
4∑

j=1

4∑
k=1

χjkφk.t/ψj.s/,

where μ.s, t/ and φk.t/ψj.s/ for 1 � j, k � 4 are substituted by the estimates obtained from the
fertility data. As in simulation 1, the random scores χjk were generated as independent normal
random variables with variances estimated from the data. Estimated and true functions ψj.s/

and φk.t/ obtained for one sample run with n= 50 are shown in Fig. 11 in on-line supplement
B. The relative squared errors over 200 simulation runs, for μ, Xc

i and for the seven product
functions φ̂k.t/ψ̂j.s/ with largest FVEs (among 16 total product functions), which are the same
seven functions as in Fig. 18 in on-line supplement C, are reported in Table 3. Both Fig. 18 and
the numbers demonstrate good performance of the method.

7. Discussion

The marginal FPCA and product FPCA proposed provide a simple and straightforward rep-
resentation of function-valued stochastic processes. This holds especially in comparison with
a previously proposed two-step expansion for repeatedly observed functional data (Chen and
Müller, 2012), in which processes X are represented as

X.s, t/=μ.s, t/+
∞∑

j=1
νj.t/ρj.s|t/=μ.s, t/+

∞∑
j=1

∞∑
k=1

θjkωjk.t/ρj.s|t/, .23/

where ρj.·|t/ is the jth eigenfunction of the operator in L2.S/ with kernel GS.s, u|t/=C{.s, t/,
.u, t/}, νj.t/=〈X.·, t/,ρj.·|t/〉S and Σ∞

k=1θjkωjk.t/ is the Karhunen–Loève expansion of νj.t/ as a
random function in L2.T /. This method can be characterized as a conditional FPCA approach
(we note that in Chen and Müller (2012) the notation of s and t is reversed compared with in the
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present paper). Similarly to the proposed marginal approach this conditional method enables
asymmetric handling of arguments s and t of X and is a two-step procedure which is composed
of iterated one-dimensional FPCAs.

Key differences between the marginal FPCA and the conditional FPCA are as follows.

(a) The first step of the conditional FPCA approach (23) requires performing a separate
FPCA for each t ∈T , whereas in the marginal approach (4) only one FPCA is required,
with lower computational cost, and, most importantly, using all the data rather than the
data in a window around t.

(b) In equation (23), the eigenfunctions ρj.s|t/ depend on both arguments, making it difficult
to separate and interpret the effects of s and t in conditional FPCA, in contrast with
marginal FPCA, where the eigenfunctions in equation (4) depend on s only.

(c) For sparse designs, conditional FPCA requires a smoothing estimator of the function
GS.s, u|t/ that depends on 2d1 +d2 univariate arguments. This improves on the standard
two-argument FPCA (3), where the corresponding covariance functions depend on 2d1 +
2d2 arguments. The improvement is, however, even greater for marginal FPCA, where the
covariance function depends on only 2d1 or 2d2 arguments, leading to faster convergence.

The proposed marginal FPCA improves on standard FPCA by providing interpretable com-
ponents and making it possible to treat the index of the stochastic process asymmetrically in the
arguments of the random functions that constitute the values of the process. Although we have
discussed in detail the case of time-indexed function-valued processes, and our example also
conforms with this simplest setting, extensions to spatially indexed function-valued processes or
processes which are indexed on a rectangular subdomain of Rp are straightforward. Marginal
FPCA also is supported by theoretical optimality properties as per theorem 1 and theorem
2.

A promising simplified version of the marginal FPCA is product FPCA, motivated by a
common principal component assumption; see theorem 4. Additional motivation is its near
optimality even without the common principal component assumption, as per theorem 5. In
our fertility data example, the loss of flexibility is quite limited and may be outweighed by the
simplicity and interpretability of this model. In general, the explanatory power of the product
FPCA model depends on the structure of the double-indexed array ηjk = var.χjk/. When one
of the marginal kernels does not have fast decaying eigenvalues, relatively large values of ηjk

might show up in large j or large k and in such situations the product FPCA might have limited
explanatory power, and it would be better to apply marginal FPCA or two-dimensional FPCA.
The eigenvalues of the marginal kernels can be directly estimated and can be used to diagnose
this situation in data applications.

In this paper we mainly focus on the case where the argument of the functional values s is
densely and regularly sampled. In practical applications with designs that are sparse in s, one
may obtain ĜS by pooling the data {X̂

c
i .·, tim/, i=1, : : : , n, m=1, : : : , Mi}, and utilizing a two-

dimensional smoothing estimator of the covariance (Yao et al., 2005). The FPCs can be obtained
through principal analysis by conditional expectation under Gaussian assumptions; software is
available from http://www.stat.ucdavis.edu/PACE/. For this case, one can only show
that ξ̂i,j.t/→E{ξi,j.t/|data}, almost surely, under Gaussian assumptions.
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