$1^{\text {st }}$ Partial Exam

1. Let $\left(X_{n}\right)_{n \geq 0}$ be $\operatorname{Markov}(\lambda, \mathbf{P})$ with \mathbf{P} irreducible and aperiodic and with invariant distribution π. Show that, for any λ :
(a) $\mathbb{P}\left(X_{n}=j\right) \rightarrow \pi_{j} \quad$ as $\quad n \rightarrow \infty \quad$ for all j;
(b) $p_{i j}^{(n)} \rightarrow \pi_{j} \quad$ as $\quad n \rightarrow \infty \quad$ for all i, j.

Then, assuming that

$$
\mathbf{P}=\left(\begin{array}{ll}
3 / 4 & 1 / 4 \\
1 / 2 & 1 / 2
\end{array}\right)
$$

and $\lambda=\left(\begin{array}{ll}1 & 0\end{array}\right)$:
(c) define explicitly the two dimensional Markov chain that you introduced in the previous proof;
(d) compute the mean and the tail distribution of the stopping time you used in the previous proof;
(e) explicitly show that the estimation you used to prove the convergence actually holds.
(6 Points)
2. A particle moves on the six vertices of a hexagon in the following way: at each step the particle is equally likely to move and stay, then in case of moving it is equally likely to move to each of its two adjacent vertices.
Let i be the initial vertex occupied by the particle and o the vertex opposite to i.
(a) Describe the Markov chain model, classify its states and their periods
and calculate each of the following quantities:
(b) the expected number of steps until the particle returns to i;
(c) the expected number of visits to o until the first return to i;
(d) the expected number of steps until the first visit to o.

