Notes

February $21^{\text {st }}, 2017$

Definition of period and cyclic classes

Theorem 1 ([1] 1.8.4). Let \mathbf{P} be irreducible. There is an integer $d \geq 1$, called the period of \mathbf{P}, and a partition

$$
\mathbb{S}=C_{0} \cup C_{1} \cup \ldots \cup C_{d-1}
$$

such that (setting $C_{n d+r}=C_{r}$)
a) $p_{i j}^{(n)}>0$ only if $i \in C_{r}$ and $j \in C_{r+n}$ for some r;
b) $p_{i j}^{(n d)}>0$ for all sufficiently large n, for all $i, j \in C_{r}$ for all r.

The sets $\left(C_{r}\right)_{r \in\{0,1, \ldots, d-1\}}$ are called cyclic classes of \mathbf{P}.
Proof. If $\mathbb{S}=\{k\}$, the theorem is trivial with $d=1$. So we assume there are at least two states in \mathbb{S}.

- Fix a $k \in \mathbb{S}$ and let $T_{k}=\left\{n: p_{k k}^{(n)}>0\right\}$. Since the chain is irreducible, there are $m_{1}>0$ and $m_{2}>0$, such that $p_{k i}^{\left(m_{1}\right)}>0$ and $p_{i k}^{\left(m_{2}\right)}>0$, for $i \in \mathbb{S}, i \neq k$. Therefore $m_{1}+m_{2} \in T_{k}$. In addition T_{k} is closed under addition, that is, if $n_{1}, n_{2} \in T_{k} \Longrightarrow n_{1}+n_{2} \in T_{k}$, therefore T_{k} contains at least all integer multiples of $\left(m_{1}+m_{2}\right)$ and it follows that it has infinite elements.
- Let $d=\min \left\{n_{2}-n_{1}: n_{1}, n_{2} \in T_{k}, n_{2}>n_{1}\right\}$. The minimum is attained since $d \in \mathbb{N}$ and $d \geq 1$, so we define $d=n_{2}^{*}-n_{1}^{*}$ with $n_{1}^{*}, n_{2}^{*} \in T_{k}$.
- There exists an N such that for all $n>N, n d \in T_{k}$

Let $N=n_{1}^{*}\left(n_{1}^{*}-1\right)$ and take $n>N$. Write $n=q n_{1}^{*}+r$ with $r \in\left\{0,1, \ldots, n_{1}^{*}-1\right\}$ and $q \geq n_{1}^{*}-1$. It follows that $n d=q d n_{1}^{*}+r d=q d n_{1}^{*}+r\left(n_{2}^{*}-n_{1}^{*}\right)=(q d-r) n_{1}^{*}+r n_{2}^{*}$. Since $q d-r \geq q-r \geq 0$ it follows that $n d \in T_{k}$ by the closure of T_{k} under addition and the fact that $n_{1}^{*}, n_{2}^{*} \in T_{k}$.

- Let $C_{r}=\left\{i \in \mathbb{S}: p_{k i}^{(n d+r)}>0\right.$ for some $\left.n \geq 0\right\}$. By irreducibility $\mathbb{S} \subset \bigcup_{r \in\{0,1, \ldots, d-1\}} C_{r}$. We define $C_{n d+r}=C_{r}$.
- Since $n d \in T_{k}$ for $n>N$, an alternative and equivalent definition for the set C_{r} would be

$$
C_{r}=\left\{i \in \mathbb{S}: \exists N_{i r} \geq 0 \mid p_{k i}^{(n d+r)}>0 \text { for all } n \geq N_{i r}\right\}
$$

- The collection $\left(C_{r}\right)_{r \in\{0,1, \ldots, d-1\}}$ forms a partition of \mathbb{S} :

We have to show that for $r, s \in\{0,1, \ldots, d-1\}$ and $s \neq r, C_{r} \cap C_{s}=\emptyset$.
Assume that there exists an $n \geq \max \left\{N_{i r}, N_{i s}\right\}$ such that $p_{k i}^{(n d+r)}>0$ and $p_{k i}^{(n d+s)}>0$ with $r>s$, and let $m>0$ be an integer such that $p_{i k}^{(m)}>0$. We have $p_{k k}^{(n d+r+m)}>0$ and $p_{k k}^{(n d+s+m)}>0$ implying that $n d+r+m, n d+s+m \in T_{k}$, with $(n d+r+m)-(n d+s+m)=r-s<d$, that is absurd by the minimality definition of d.

- Proof of a):

Suppose $p_{i j}^{(n)}>0$ and $i \in C_{r}$ and let $m>0$ be an integer such that $p_{k i}^{(m d+r)}>0$. Therefore $p_{k j}^{(n+m d+r)}>0$, implying that $j \in C_{n+r}$.

- The period d is the greatest common divisor of the set T_{k}, i.e. $d=G \cdot C \cdot D .\left(T_{k}\right)$:

Since $k \in C_{0}$, by a), the only possible m such that $p_{k k}^{(m)}>0$ are multiple of the period d, that is $m=n d$. In particular, n_{1}^{*}, n_{2}^{*} are multiple of d and $T_{k} \subset\{n d: n \in \mathbb{N}\}$.

- Proof of b):

Choose N such that for all $h>N, h d \in T_{k}$ and let m_{1}, m_{2} be such that $p_{i k}^{\left(m_{1}\right)}>0$ and $p_{k j}^{\left(m_{2}\right)}>0$, by irreducibility. Then $p_{i j}^{\left(m_{1}+h d+m_{2}\right)} \geq p_{i k}^{\left(m_{1}\right)} p_{k k}^{(h d)} p_{k j}^{\left(m_{2}\right)}>0$ for all $h>N$. Since $i, j \in C_{r}, m_{1}+m_{2}=M d$, with $M>0$, that is, the sum is multiple of the period. The result follows for any $n>M+N$.

References

[1] Norris, J.R., Markov Chains., Cambridge University Press, 1997.

