Notes

February 21st, 2017

Definition of period and cyclic classes

Theorem 1 ([1] 1.8.4). Let **P** be irreducible. There is an integer $d \ge 1$, called the period of **P**, and a partition

 $\mathbb{S} = C_0 \cup C_1 \cup \ldots \cup C_{d-1}$

such that (setting $C_{nd+r} = C_r$)

a) $p_{ij}^{(n)} > 0$ only if $i \in C_r$ and $j \in C_{r+n}$ for some r;

b) $p_{ij}^{(nd)} > 0$ for all sufficiently large n, for all $i, j \in C_r$ for all r.

The sets $(C_r)_{r \in \{0,1,\dots,d-1\}}$ are called cyclic classes of **P**.

Proof. If $S = \{k\}$, the theorem is trivial with d = 1. So we assume there are at least two states in S.

- Fix a $k \in \mathbb{S}$ and let $T_k = \{n : p_{kk}^{(n)} > 0\}$. Since the chain is irreducible, there are $m_1 > 0$ and $m_2 > 0$, such that $p_{ki}^{(m_1)} > 0$ and $p_{ik}^{(m_2)} > 0$, for $i \in \mathbb{S}$, $i \neq k$. Therefore $m_1 + m_2 \in T_k$. In addition T_k is closed under addition, that is, if $n_1, n_2 \in T_k \implies n_1 + n_2 \in T_k$, therefore T_k contains at least all integer multiples of $(m_1 + m_2)$ and it follows that it has infinite elements.
- Let $d = \min\{n_2 n_1 : n_1, n_2 \in T_k, n_2 > n_1\}$. The minimum is attained since $d \in \mathbb{N}$ and $d \ge 1$, so we define $d = n_2^* n_1^*$ with $n_1^*, n_2^* \in T_k$.
- There exists an N such that for all n > N, $n d \in T_k$: Let $N = n_1^*(n_1^* - 1)$ and take n > N. Write $n = qn_1^* + r$ with $r \in \{0, 1, \ldots, n_1^* - 1\}$ and $q \ge n_1^* - 1$. It follows that $nd = qdn_1^* + rd = qdn_1^* + r(n_2^* - n_1^*) = (qd - r)n_1^* + rn_2^*$. Since $qd - r \ge q - r \ge 0$ it follows that $nd \in T_k$ by the closure of T_k under addition and the fact that $n_1^*, n_2^* \in T_k$.
- Let $C_r = \{i \in \mathbb{S} : p_{ki}^{(nd+r)} > 0 \text{ for some } n \ge 0\}$. By irreducibility $\mathbb{S} \subset \bigcup_{r \in \{0,1,\dots,d-1\}} C_r$. We define $C_{nd+r} = C_r$.
- Since $n d \in T_k$ for n > N, an alternative and equivalent definition for the set C_r would be

$$C_r = \{i \in \mathbb{S} : \exists N_{ir} \ge 0 \mid p_{ki}^{(nd+r)} > 0 \text{ for all } n \ge N_{ir}\}$$

• The collection $(C_r)_{r \in \{0,1,\dots,d-1\}}$ forms a partition of S:

We have to show that for $r, s \in \{0, 1, \dots, d-1\}$ forms a partition of \mathcal{B} . We have to show that for $r, s \in \{0, 1, \dots, d-1\}$ and $s \neq r$, $C_r \cap C_s = \emptyset$. Assume that there exists an $n \geq \max\{N_{ir}, N_{is}\}$ such that $p_{ki}^{(nd+r)} > 0$ and $p_{ki}^{(nd+s)} > 0$ with r > s, and let m > 0 be an integer such that $p_{ik}^{(m)} > 0$. We have $p_{kk}^{(nd+r+m)} > 0$ and $p_{kk}^{(nd+s+m)} > 0$ implying that $nd + r + m, nd + s + m \in T_k$, with (nd + r + m) - (nd + s + m) = r - s < d, that is absurd by the minimality definition of d.

• Proof of a):

Suppose $p_{ij}^{(n)} > 0$ and $i \in C_r$ and let m > 0 be an integer such that $p_{ki}^{(md+r)} > 0$. Therefore $p_{kj}^{(n+md+r)} > 0$, implying that $j \in C_{n+r}$.

- The period d is the greatest common divisor of the set T_k , i.e. $d = G.C.D.(T_k)$: Since $k \in C_0$, by a), the only possible m such that $p_{kk}^{(m)} > 0$ are multiple of the period d, that is m = nd. In particular, n_1^*, n_2^* are multiple of d and $T_k \subset \{nd : n \in \mathbb{N}\}$.
- Proof of b):

Choose N such that for all h > N, $h d \in T_k$ and let m_1, m_2 be such that $p_{ik}^{(m_1)} > 0$ and $p_{kj}^{(m_2)} > 0$, by irreducibility. Then $p_{ij}^{(m_1+hd+m_2)} \ge p_{ik}^{(m_1)} p_{kk}^{(hd)} p_{kj}^{(m_2)} > 0$ for all h > N. Since $i, j \in C_r$, $m_1 + m_2 = Md$, with M > 0, that is, the sum is multiple of the period. The result follows for any n > M + N.

References

[1] Norris, J.R., Markov Chains., Cambridge University Press, 1997.