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The homogeneous Poisson process

In this section we give a precise definition of what we mean by a homogeneous Poisson process. To do this we
first give the definition of a counting process.

Definition 1. A counting process, N(t), is any integer valued process with the following properties:

i N(0) = 0.

ii N(t+ s) ≥ N(t), ∀s ≥ 0.

We will use often the notation N(t, t+ s]
∆
= N(t+ s)−N(t) to denote the number of point counted in the

interval (t, t+ s] and in general N(A) to denote the number of points counted in a general set A ∈ B(R+).

Definition 2. A homogeneous Poisson process, N(t), with rate λ is defined as a counting process with
independent and stationary increments with the property that the number of points counted in an interval (t, t+s]
is given by a Poisson distribution with parameter λ s, i.e.

N(t, t+ s] ∼ Po(λ s) .

The property of independence and stationarity of the increments implies that the number of points counted
in any two disjoint intervals is given by two independent Poisson random variable whose parameters are pro-
portional to the size of the corresponding intervals by the proportional constant λ.

Let Sn be the location of the n-th point when n ≥ 1 and assume that S0
∆
= 0, we define the n-th inter-arrival

time, Xn, as Xn = Sn − Sn−1 ≥ 0. It follows that the sequence {Sn, n ≥ 1} can be rewritten in terms of the
sequence {Xn, n ≥ 1} by using the relation Sn =

∑n
i=1Xi. In the same way, the process N(t) can be expressed

in terms of the sequence {Sn, n ≥ 1} by the relation

N(t) = max{n : Sn ≤ t} (1)

and we can reconstruct the sequence {Sn, n ≥ 1} by the function N(t) via the reverse relation

Sn = sup{t : N(t) < n} (2)

It follows that we can characterize a homogeneous Poisson process by characterize one of the these three
objects: the sequence of the arrival times, {Sn, n ≥ 1} , the sequence of the inter-arrival times, {Xn, n ≥ 1} ,
or the counting function {N(t), t ≥ 0} .

We start by describing the distribution of the inter-arrival times, that according to the following proposition
is given by a sequence of i.i.d. random variables.

Proposition 1. Let {N(t), t ≥ 0} be a homogeneous Poisson process with rate λ, then the inter-arrival times
{Xn, n ≥ 1} are independent random variables, each of them distributed as an exponential distribution with
parameter λ.

Proof. Using the fact that the event {X1 > t} is the same as the event {N(t) = 0} we immediately get, using
the fact that N(t) ∼ Po(λ t), that

F̄X1
(t) = P{X1 > t} = P{N(t) = 0} = e−λ t ,

that is the tail distribution of an exponential random variable with the parameter λ.
To get the tail distribution of X2 we condition on the value of the first arrival time, S1 = X1, that is

F̄X2(t) = P{X2 > t} =

∫ ∞
0

P{X2 > t,X1 ∈ ds} =

∫ ∞
0

P{X2 > t|X1 = s}P{X1 ∈ ds} . (3)

The event {X1 = s} is the same as the event {N(s) = 1, N [0, s) = 0}, and in addition {X2 > t} ∩ {X1 = s} =
{N(s+ t) = 1} ∩ {X1 = s}, hence

P{X2 > t|X1 = s} = P{N(s+ t) = 1|N(s) = 1, N [0, s) = 0}
= P{N(s+ t)−N(s) = 0|N(s) = 1, N(u) = 0, 0 ≤ u < s}
⊥
= P{N(s+ t)−N(s) = 0} = e−λ t .

This implies that X1 ⊥ X2, and after substituting the expression above in equation (3) that X2 ∼ Exp(λ) as
well. Repeating the same argument for the other variables Xn, with n > 2, the result holds true.
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Knowing the joint distribution of the fundamental sequence {Xn, n ≥ 1} , it is easy to compute the marginal
distribution for the sequence {Sn, n ≥ 1} . Indeed, having that Sn =

∑n
i=1Xi, it follows that the n-th arrival

time has the same distribution as the sum of n i.i.d. Exp(λ) random variables, that is known as the Erlang(n, λ)
distribution. The following proposition shows how to compute its density function.

Proposition 2. Let {N(t), t ≥ 0} be a homogeneous Poisson process with rate λ, then the n-th arrival time,
Sn has the following density function

fSn
(t) = λ

(λ t)n−1

n− 1!
e−λt

that corresponds to the density function of an Erlang(n, λ) random variable.

Proof. Take n > 1, having that {Sn ≤ t} ⇔ {N(t) ≥ n}, it immediately follows that

FSn(t) =

∞∑
i=n

(λ t)i

i!
e−λt .

By differentiating with respect to t we have that

fSn(t) = λe−λt

( ∞∑
i=n

(λ t)i−1

i− 1!
−
∞∑
i=n

(λ t)i

i!

)
= λe−λt

( ∞∑
i=n−1

(λ t)i

i!
−
∞∑
i=n

(λ t)i

i!

)
= λe−λt

(λ t)n−1

n− 1!
.

The same result could be obtained heuristically by noticing that the event {Sn ∈ (t, t+ dt)} is the same as the
event {N(t) = n− 1, N(t, t+ dt] = 1} and therefore

fSn
(t) dt = P{Sn ∈ (t, t+ dt)} = P{N(t, t+ dt] = 1|N(t) = n− 1, }P{N(t) = n− 1, }

⊥
= P{N(t, t+ dt] = 1}P{N(t) = n− 1, } = λ dt e−λdt

(λ t)n−1

n− 1!
e−λ t .

The result then follows by dividing both terms by dt and computing the limit as dt→ 0.

Distribution of the points in a interval conditioned to the total number of points

In this section we study what is the joint distribution of the points of a homogeneous Poisson process in an
interval given that we know already how many points fell in that interval.

Proposition 3. Conditioned on the even {N(t) = n} the random vector (S1, . . . , Sn) has the same distribution
of the ordered statistics (U(1), . . . , U(n)), where the Ui, 1 ≤ i ≤ n, are independent random variables uniformly
distributed in [0, t].

Proof. According to Proposition 5 we need to prove that

fS1,...,Sn|N(t)=n(t1, . . . , tn) =
1{0≤t1≤...≤tn≤t}

tn
.

Let tn+1 = t, We start by computing the following probability,

∆FS1,...,Sn|N(t)=n(t1, . . . , tn)
∆
= P(Si ∈ (ti, ti + dti), 1 ≤ i ≤ n|N(t) = n)

and then we compute the density in the following way

fS1,...,Sn|N(t)=n(t1, . . . , tn) = lim
dti→0, 1≤i≤n

∆FS1,...,Sn|N(t)=n(t1, . . . , tn)∏n
i=1 dti

. (4)

We have that

∆FS1,...,Sn|N(t)=n(t1, . . . , tn) =
P(Si ∈ (ti, ti + dti), 1 ≤ i ≤ n,N(t) = n)

P(N(t) = n)

=
P(N(t1) = 0, N(ti, ti + dti) = 1, N(ti + dti, ti+1) = 0, 1 ≤ i ≤ n)

P(N(t) = n)

⊥
=

P(N(t1) = 0)
∏n
i=1 P(N(ti, ti + dti) = 1)P(N(ti + dti, ti+1) = 0)

P(N(t) = n)

=
e−λ t1

∏n
i=1(λ dti)e

−λ dtie−λ (ti+1−ti−dti)

(λ t)n e−λ t/n!
=
n!

tn

n∏
i=1

dti

and therefore computing the limit in (4) we finally get

fS1,...,Sn|N(t)=n(t1, . . . , tn) =
n!

tn
,

that according to Proposition 5 corresponds to the joint density function of the order statistics of n independent
uniform random variables in [0, t].
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The Poisson process on the line

In this section we define the general Poisson process on the line, that is we do not assume that the intensity
rate is the same at each time.

Definition 3. A Poisson process, N(t), with rate λ(t) is defined as a counting process with independent
increments with the property that the number of points counted in an interval (t, t + s] is given by a Poisson

distribution with parameter
∫ t+s
t

λ(s) ds, i.e.

N(t, t+ s] ∼ Po(Λ[t, t+ s]) ,

where Λ is defined as the intensity measure, with Λ(A) =
∫
A
λ(t) dt.

The Poisson process has some nice properties, that is we can make some operations with its points and
get after the operation again a new Poisson process. One example is given in Exercise 2 where a new Poisson
process is generated by joining two independent ones. In the next proposition we analyze the reverse case.

Proposition 4 (Splitting of a Poisson Process). Assume that you have a homogeneous Poisson process, N(t),
with rate λ, and that each time there is an arrival that point is colored in red or blue with a probability that
depends on its arrival epoch and independently of the colors the other points were painted. For example, if Sn
denotes the position of the n-th point, then it will be colored red with probability p(Sn) and blue with probability
q(Sn) = 1−p(Sn). Define NR(t) and NB(t), the processes that count respectively only the “red” and the “blue”
points. Then NR(t) and NB(t) are non-homogeneous Poisson processes with intensity rates λR(t) = λ p(t) and
λB(t) = λ q(t).

1

p(t)

t
S1 S2 S3 S4 S5 S6 S7S8 S9 S10

T10

t

Proof. Since the process N(t) is a homogeneous Poisson process and the points counted by the processes NR(t)
and NB(t) are the same, we immediately get that these last two processes are counting processes and that the
number of points counted in disjoint intervals are independent. What is left to prove is that NR(t) and NB(t)
are Poisson distributed, and in addition we prove that they are mutually independent, that is we show that

P(NR(t) = n, NB(t) = m) =
ΛR(t)n

n!
e−ΛR(t) ΛB(t)m

m!
e−ΛB(t) , (5)

where ΛR(t) = λ
t

∫ t
0
p(s)ds and ΛB(t) = λ

t

∫ t
0
q(s)ds, that gives the right intensity rates λR(t) = Λ′R(t) = λ p(t)

and λB(t) = Λ′B(t) = λ q(t).
We prove by using conditioning, i.e.

P(NR(t) = n, NB(t) = m) = P(NR(t) = n|N(t) = n+m)P(N(t) = n+m)

= P(

n+m∑
i=1

1{Ti ≤ p(Si)} = n|N(t) = n+m)
(λ t)n+m

n+m!
e−λ t

= P(

n+m∑
i=1

1{Ti ≤ p(U(i))} = n)
(λ t)n+m

n+m!
e−λ t

= P(

n+m∑
i=1

1{Ti ≤ p(Ui)} = n)
(λ t)n+m

n+m!
e−λ t (6)

where {Ti, 1 ≤ i ≤ n+m} are i.i.d. U(0, 1) random variables such that when Ti ≤ p(Si) it means that we color
the point Si “red” and when Ti ≤ p(Si) it means that we color the point Si “blue”. In the third equality we
used Proposition 3. The random variables 1{Ti ≤ p(Ui)} are i.i.d. Bernoulli with parameter

p =

∫ t

0

p(u) dFUi
(u) =

1

t

∫ t

0

p(u) du ,
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so it follows that the random variable Y =
∑n+m
i=1 1{Ti ≤ p(Ui)} ∼ Bin(n+m, p). Substituting in (6) we finally

get

P(NR(t) = n, NB(t) = m) = P(Y = n)
(λ t)n

n!
e−λ t =

(
n+m

n

)
pn qm

(λ t)n+m

n+m!
e−λ t

=
n+m!

n!m!
pn qm

(λ t)n+m

n+m!
e−λ(p+q) t

=
(λ p t)n

n!
e−λ p t

(λ q t)m

m!
e−λ q t (7)

with q = 1− p that is the same as equation (5).

Exercises

1. Simulate a homogenous Poisson process with rate λ > 0, N(·), in a fixed interval [0, t] using three different
techniques:

• Approximating it by a set of uniform random variables {Ui}i in a interval [0, T ] with T >> t.

• Using a sequence of i.i.d. exponential random variables {Xi} with parameter λ as inter-arrival times.

• By using the Proposition 3, simulating first the total number of points falling in the interval [0, t],
i.e. N(t), and then positioning the points uniformly in this interval.

2. Given two independent homogeneous Poisson processes, N I(t) and N II(t), with rates λI and λII respec-
tively. Prove that the process N(t) = N I(t) +N II(t) is again a Poisson process and find its rate.

A Appendix

A.1 Sum of independent random variables

Given two independent random variables X and Y , with distribution functions FX(x) = P{X ≤ x} and
FY (y) = P{Y ≤ y} if we define Z = X + Y , the distribution function FZ(z) is the given by

FZ(z) = P{Z ≤ z} = P{X + Y ≤ z} =

∫ ∞
−∞

P{X + Y ≤ z|X = x} dFX(x)

=

∫ ∞
−∞

P{Y ≤ z − x|X = x} dFX(x)

⊥
=

∫ ∞
−∞

P{Y ≤ z − x} dFX(x)

=

∫ ∞
−∞

FY (z − x) dFX(x) (8)

And if we define the Stieltjes convolution operator F ∗G(t) that given two distribution functions F (t), G(t)
is equal to

F ∗G(t) =

∫ ∞
−∞

F (t− s) dG(s)

we get that
FZ(z) = FY ∗ FX(z).

It is easy to check that F ∗ G(t) = G ∗ F (t) by a simple change of variable or by simply noting that
Z = X + Y = Y +X. If we differentiate the expression (8) and assuming that all the random variable have a
density function, we have that

fZ(z) = F ′z(z) =

∫ ∞
−∞

fY (z − x) dFX(x) =

∫ ∞
−∞

fY (z − x) fX(x) dx (9)

and defining the convolution between two functions as f ∗ g(t) =
∫∞
−∞ f(t− s) g(s) ds we have that

fZ(z) = fY ∗ fX(z).
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A.1.1 Positive random variables

Assuming now that X,Y ≥ 0, we have that FX(x) = 0 for x < 0 and also FY (y) = 0 for y < 0. Note that we
admit FX(0) > 0 and FY (0) > 0. In this case equation (8) becomes

FZ(z) =

∫ z

0

FY (z − x) dFX(x) =

∫ z

0

FX(z − y) dFY (y) (10)

still it is valid that FZ(z) = FY ∗ FX(z) = FX ∗ FY (z) that now reduces to the expression (10).

A.1.2 Laplace transforms

Assume that X has Laplace transform φX(s) = F̃X(s) = E[esX ], and in the same way Y has Laplace transform
φY (s) = F̃Y (s) = E[es Y ], then it follows that Z = X + Y has Laplace transform φZ(s) = F̃Z(s) given by

F̃Z(s) = E[esZ ] = E[es (X+Y )] = E[esX es Y ]

⊥
= E[esX ]E[es Y ] = F̃X(s) F̃Y (s)

Last equation expresses the fact that the Laplace transform translates the convolution operator to a product
operator, i.e.

L(F ∗G)(s) = L(F )(s)L(G)(s),

where we denoted by L(F )(s) the Laplace-Stieltjes transform of the distribution function F (t), i.e.

L(F )(s) =

∫ ∞
0

e−s t dF (t).

A.1.3 Sum of i.i.d. positive random variables

Assume to have two i.i.d. random variables X1 and X2 with common distribution function FX(x). Now
Y = X1 +X2 has distribution function

FY (y) = FX ∗ FX(y) = F ∗2X (y),

known also has 2-fold convolution of FX(x). In general if Z =
∑n
i=1Xi with Xi i.i.d. and with common

distribution FX(x), then the distribution of Z is given by the n-th convolution of FX(x), i.e.

FZ(z) = F ∗nX (z)

with F ∗nX (z) = F
∗(n−1)
X ∗ FX(z), that in the transformed domain corresponds to

φZ(s) = F̃Z(s) =
(
F̃X(s)

)n
.

A.2 Order Statisctics

Given a vector of n random variables (Y1, Y2, . . . , Yn) we say that the corresponding vector of order statistics
(Y(1), Y(2), . . . , Y(n)) is the vector constructed by reordering the random variable in increasing order, that is

Y(1) ≤ Y(2) ≤ . . . ≤ Y(n) .

If we assume that the vector of the staring random variables (Yi, 1 ≤ i ≤ n) is made of i.i.d. random variables
with common density fY (y) we can easily compute the joint density function by using the independence property,
and getting the following result

fY1,...,Yn
(y1, . . . , yn) =

n∏
i=1

fY (yi) .

Let Π(y1, . . . , yn) be the set of permutations of the vector (y1, . . . , yn), that is if π ∈ Π(y1, . . . , yn) is a given
permutation then there is a bijective function i(k) from the set 1 ≤ k ≤ n to itself, such that π = (yi(1), . . . , yi(n)},
then we have that the number of elements of Π(y1, . . . , yn), is equal to n!. It follows that the joint density function
of the statistic ordering vector (Y(i), 1 ≤ i ≤ n) is given by

fY(1),...,Y(n)
(y1, . . . , yn) = 1{y1≤y2≤...≤yn}

∑
π∈Π(y1,...,yn)

(
n∏
i=1

fY (πi)

)

= 1{y1≤y2≤...≤yn}
∑

π∈Π(y1,...,yn)

(
n∏
i=1

fY (yi)

)

= 1{y1≤y2≤...≤yn} n!

n∏
i=1

fY (yi) .
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In particular if we assume that the random vector (Yi, 1 ≤ i ≤ n) is made of i.i.d. uniform random variables in
[0, t] we have the following result.

Proposition 5. Assuming that the vector (Ui, 1 ≤ i ≤ n) is made of n independent random variables each
uniformly distributed in [0, t], then its joint density function is given by

fU1,...,Un
(u1, . . . , un) =

∏n
i=1 1{0≤ui≤t}

tn
,

and the one of the corresponding order statistics is given by

fU(1),...,U(n)
(u1, . . . , un) =

1{0≤u1≤...≤un≤t}

tn
.

A.3 Excercises

1. Assume X1 and X2 i.i.d uniformly distributed between [0, 1], compute the distribution function of Y =
X1 +X2. Compute its Laplace transform as well.

2. Assume Xn i.i.d exponential random variables with parameter λ > 0. Compute the distribution of
Z =

∑n
i=1Xi. Do you recognize this distribution? Compute its Laplace transform as well.

3. If Φ(z) is the CDF of a standard Normal random variable. What would be its n-th fold convolution?
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