Initial Enlargment: General Results

Bernardo D'Auria

email: bernardo.dauria@uc3m.es
web: www.est.uc3m.es/bdauria
Additional Material
ICMAT / UC3M

Initial Enlargment: General Results

Initial Enlargment: General Results ([1] 5.9.3)

Given a random variable L, we consider the filtration $\mathbb{F}^{(L)}$ made by

$$
\mathcal{F}_{t}^{(L)}=\mathcal{F}_{t} \vee \sigma(L)
$$

or more precisely $\mathcal{F}_{t}^{(L)}=\cap_{\epsilon>0}\left\{\mathcal{F}_{t+\epsilon} \vee \sigma(L)\right\}$.

Definition

There exists a family of regular conditional distributions $\lambda_{t}(\omega, d x)$ that satisfies
$\lambda_{t}(\cdot, A)$ is a version of $\mathbb{E}\left[\mathbb{1}\{L \in A\} \mid \mathcal{F}_{t}\right]$
$\forall \omega, \lambda_{t}(\omega, \cdot)$ is a probability distribution on \mathbb{R}.

Jacod's Criterion

Proposition (Jacod's Criterion. [1] 5.9.3.1)

Suppose that, for each $t<T, \lambda_{t}(\omega, d x) \ll \nu(d x)$ where ν is the law of L. Then, every \mathbb{F}-semi-martingale $\left(X_{t}, t<T\right)$ is also an $\mathbb{F}^{(L)}$-semi-martingale.

Moreover, if $\lambda_{t}(\omega, d x)=p_{t}(\omega, x) \nu(d x)$ and if X is an \mathbb{F}-martingale, its decomposition in the filtration $\mathbb{F}^{(L)}$ is

$$
X_{t}=\tilde{X}_{t}+\int_{0}^{t} \frac{d\langle p(L), X\rangle}{p_{s}(L)}
$$

where $p(L)=\left(p_{t}(L), t \geq 0\right)$.

Jacod's Criterion - general settings i

For a bounded Borel function f, let $\left(\lambda_{t}(f), t \geq 0\right)$ be the continuous version of the martingale $\left(\mathbb{E}\left[f(L) \mid \mathcal{F}_{t}\right], t \geq 0\right)$. There exists a predictable kernel $\lambda_{t}(d x)$ such that

$$
\lambda_{t}(f)=\int f(x) \lambda_{t}(d x)
$$

and by the predictable representation property applied to the martingale $\left(\mathbb{E}\left[f(L) \mid \mathcal{F}_{t}\right], t \geq 0\right)$, there exists a predictable process $\hat{\lambda}_{t}(d x)$ such that

$$
\lambda_{t}(f)=\mathbb{E}[f(L)]+\int_{0}^{t} \hat{\lambda}_{s}(f) d B_{s}
$$

Jacod's Criterion - general settings if

Proposition ([1] 5.9.3.2)

Assume that there exists a predictable kernel $\hat{\lambda}_{t}(d x)$ such that

$$
d t \text { a.s., } \hat{\lambda}_{t}(f)=\int f(x) \hat{\lambda}_{t}(d x)
$$

In addition $d t \times d \mathbb{P}$ a.s. the measure $\hat{\lambda}_{t}(d x)$ is absolutely continuous w.r.t. $\lambda_{t}(d x)$:

$$
\hat{\lambda}_{t}(d x)=\rho(t, x) \lambda_{t}(d x)
$$

Then, if X is an \mathbb{F}-martingale, there exists a $\mathbb{F}^{(L)}$-martingale \tilde{X}, such that

$$
X_{t}=\tilde{X}_{t}+\int_{0}^{t} \rho(s, L) d\langle X, B\rangle
$$

Examples ([1] 5.9.3.3)

Example

Enlargement with B_{1}.

Example

Enlargement with $M_{1}=\sup _{s \leq 1} B_{s}$.
We use the formula:

$$
\mathbb{E}\left[f\left(M^{B}\right) \mid \mathcal{F}_{t}\right]=F\left(1-t, B_{t}, M_{t}^{B}\right)
$$

where $M_{t}^{B}=\sup _{s \leq t} B_{s}$ and

$$
F(s, a, b)=\sqrt{\frac{2}{\pi s}}\left(f(b) \int_{0}^{b-a} e^{-\frac{u^{2}}{2 s}} d u+\int_{b}^{\infty} f(u) e^{-\frac{(u-a)^{2}}{2 s}} d u\right)
$$

Bibliography

Bibliography

Q M. Jeanblanc, M. Yor and M. Chesney (2009). Mathematical methods for financial markets. Springer, London.

Q D. Revuz and M. Yor (1999). Continuous Martingales and Brownian Motion. Springer Verlag, Berlin. $3^{\text {rd }}$ ed.
击 K. Itö (1976). Extension of stochastic integrals. Proc. Intern. Symp. on Stochastic Differential Equations, 95-109.

