Basic Concepts and Examples in Finance

Bernardo D'Auria

email: bernardo.dauria@uc3m.es

web: www.est.uc3m.es/bdauria

July 5, 2017

ICMAT / UC3M

The Financial Market

The Financial Market

We assume there are

- d risky assets or securities: $S^i, i=1,\ldots,d$ They are assumed to be semi-martingales with respect to a filtration \mathbb{F} .
- One *riskless asset* or *saving account*: S^0 Its dynamics are given by

$$dS_t^0 = S_t^0 \, r_t \, dt, \quad S_0^0 = 1 \; .$$

- r is the (positive) *interest rate*, assumed \mathbb{F} -adapted.

1

Discount factor

One monetary unit invested at time 0 in the riskless asset will give a *payoff* of $\exp\{\int_0^t r_s ds\}$ at time t > 0.

If r is deterministic, the price at time 0 of one monetary unit delivered at time t is $R_t = \exp\{-\int_0^t r_s ds\}$.

In general

$$R_t = (S_t^0)^{-1}$$

is called the discount factor.

Zero-Coupon bond (ZC)

The asset that delivers one monetary unit at time T is called a **zero-coupon bond** (ZC) of maturity T.

If r is deterministic, its price at time t is given by $P(t, T) = \exp(-\int_t^T r_s ds)$ and follows the dynamics

$$d_t P(t,T) = r_t P(t,T) dt, \quad P(T,T) = 1.$$

In general the formula above is absurd for r stochastic (the left side is \mathcal{F}_t -measurable, while the right side is not), and

$$P(t,T) = (R_t)^{-1} \mathbb{E}_{\mathbb{Q}}[R_T | \mathcal{F}_t]$$

where \mathbb{Q} is the risk probability measure.

Portfolio

A *portfolio* (or a *strategy*) is a (d+1)-dimensional \mathbb{F} -predictable process $\hat{\pi}$:

$$(\hat{\pi}_t = (\pi_t^i, i = 0, \dots, d) = (\pi_t^0, \pi_t), \quad t \ge 0)$$

where π_t^i represents the number of shares of the asset i held at time t.

The *time-t value* of the portfolio $\hat{\pi}$ is given by

$$V_t(\hat{\pi}) = \sum_{i=0}^d \pi_t^i \, S_t^i = \pi_t^0 \, S_t^0 + \sum_{i=1}^d \pi_t^i \, S_t^i \, .$$

4

Some Assumptions

- borrowing and lending interest rates are equal to $(r_t, t \ge 0)$.
- there a no transaction costs (market liquidity)
- the number of shares of the asset available in the market is unbounded
- it is allowed *short-selling* $(\pi_t^i < 0 \text{ for } i > 0)$ as well as borrowing money $(\pi_t^0 < 0)$

Then we add the *self-financing* condition, that is changes in the value of portfolio are not due to rebalancing but only to changes in the asset prices. In continuous time it is a constraint and it is not a consequence of the *Itô lemma*.

Self-financing condition

Definition

A portfolio $\hat{\pi}$ is said to be *self-financing* if

$$dV_t(\hat{\pi}) = \sum_{i=0}^d \pi_t^i dS_t^i ,$$

or in an integral form,

$$V_t(\hat{\pi}) = V_0(\hat{\pi}) + \sum_{i=0}^d \int_0^t \pi_s^i dS_s^i .$$

We are going to assume that $\int_0^t \pi_s^i dS_s^i$ are well defined.

If $\hat{\pi} = (\pi^0, \pi)$ is a self-financing portfolio then

$$dV_t(\hat{\pi}) = r_t \ V_t(\hat{\pi}) dt + \pi_t \cdot (dS_t - r_t S_t dt) .$$

6

Self-financing condition

The self-financing condition holds also for the discounted processes

Proposition ([1] 2.1.1.3)

If $\hat{\pi} = (\pi^0, \pi)$ is a self-financing portfolio then

$$R_t V_t(\hat{\pi}) = V_0(\hat{\pi}) + \sum_{i=1}^d \int_0^t \pi_s^i d(R_s S_s^i) ,$$

or equivalently

$$dV_t^0(\hat{\pi}) = \sum_{i=1}^d \pi_t^i \, dS_t^{i,0} \; ,$$

where
$$V_t^0 = V_t R_t = V_t / S_t^0$$
 and $S_t^{i,0} = S_t^i R_t = S_t^{i,0} / S_t^0$.

By abuse of language, we call $\pi = (\pi^1, \dots, \pi^d)$ a self-financing portfolio.

Self-financing condition

Proposition ([1] 2.1.1.3 continue)

Conversely, if x is a given positive real number, $\pi = (\pi^1, ..., \pi^d)$ is a vector of predictable processes, and V^{π} denotes the solution of

$$dV_t^{\pi} = r_t \ V_t^{\pi} \ dt + \pi_t \cdot (dS_t - r_t S_t \ dt), \quad V_0^{\pi} = x \ ,$$

then the \mathbb{R}^{d+1} -valued process $\hat{\pi} = (R(V^{\pi} - \pi S), \pi)$ is a self financing strategy, and $V_t^{\pi} = V_t(\hat{\pi})$.

Exercise (2.1.1.4)

Let $dS_t = (\mu dt + \sigma dW_t)$ and r = 0.

Is the portfolio $\hat{\pi} = (t, 1)$ self-financing?

If not, find π^0_t such that $\hat{\pi} = (\pi^0_t, 1)$ is self-financing.

Arbritrage Opportunities

Arbritrage Opportunities ([1] 2.1.2)

An arbritrage opportunity is informally a self-financing strategy with 0 initial value and with terminal value $V_T(\hat{\pi}) \geq 0$, such that $\mathbb{E}[V_T(\hat{\pi})] > 0$.

Theorem (Dudley (1977))

Let X be an \mathcal{F}_T^W -random variable, then there exists a predictable process θ such that $\int_0^T \theta_s^2 < \infty$, a.s., and

$$X = \int_0^T \theta_s dW_s .$$

With d=1, and $dS_s=\sigma S_s\,dW_s$, and r=0, set $\pi_t=\theta_t/(\sigma S_t)$ with $\int_0^T\theta_s\,dW_s=A$, A>0.

C

Equivalent Martingale Measure ([1] 2.1.3)

Definition

An equivalent martingale measure (e.m.m.) is a probability measure \mathbb{Q} , equivalent to \mathbb{P} on \mathcal{F}_T , such that the discounted prices $(R_tS_t^i, t \leq T)$ are \mathbb{Q} -local martingales.

Folk Theorem: Protter 2001

Let S be the stock price process. There is absence of arbitrage essentially if and only if there exists a probability $\mathbb Q$ equivalent to $\mathbb P$ such that the discounted price process is a $\mathbb Q$ -local martingale.

Proposition

Under any e.m.m. the discounted value of a self-financing strategy is a local martingale.

Admissible strategies ([1] 2.1.4)

Definition

A self-financing strategy π is said to be admissible if there exists a constant A such that $V_t^{\pi} \geq -A$, a.s. for every $t \leq T$.

Definition

An arbitrage opportunity on the time interval [0,T] is an admissible self-financing strategy π such that $V_0^\pi=0$, $V_T^\pi\geq 0$ and $\mathbb{E}[V_T^\pi]>0$.

Admissible strategies ([1] 2.1.4)

Following Delban and Schachermayer (1994)

$$\mathcal{K} = \{ \int_0^T \pi_s \, dS_s : \pi \text{ is admissible} \}$$

$$\mathcal{A}_0 = \mathcal{K} - \mathcal{L}_+^0 = \{ \int_0^T \pi_s \, dS_s - f : \pi \text{ is admissible}, f \geq 0, f \text{ finite} \}$$

$$\mathcal{A} = \mathcal{A}_0 \cap \mathcal{L}^\infty$$

$$\bar{\mathcal{A}} = \text{ closure of } \mathcal{A} \text{ in } \mathcal{L}^\infty \ .$$

Definition

A semi-martingale S satisfies the *no-arbitrage condition* if $\mathcal{K} \cap L_+^\infty = 0$. A semi-martingale S satisfies the *No-Free Lunch with Vanishing RIsk* (*NFLVR*) condition if $\bar{\mathcal{A}} \cap L_+^\infty = 0$.

Admissible strategies ([1] 2.1.4)

Following Delban and Schachermayer (1994)

Theorem (Fundamental Theorem. See [1] Th. 2.1.4.4) Let S be a locally bounded semi-martingale. There exists an equivalent measure \mathbb{Q} for S if and only if S satisfies NFLVR.

Theorem (Th. 9.7.2 in [4])

Let S be an adapted cádlág process. If S is locally bounded and satisfies the NFLVR condition for simple integrands, then S is a semi-martingale.

Complete Market

Contingent claims and replicating strategies ([1] 2.1.5)

Definition

A *contingent claim*, H, is defined as a square integrable \mathcal{F}_T -random variable, where T is a fixed horizon.

Definition

A contingent claim H is said to be *edgeable* if there exists a predictable process $\pi = (\pi^1, \dots, \pi^d)$ such that $V_T^\pi = H$. The self financing strategy $\hat{\pi} = (R(V^\pi - \pi S), \pi)$ is called *replicating strategy* (or the *hedging strategy*) of H, and $V_0(\pi) = h$ is the initial price. The process V^π is the price process of H.

Completeness

Definition

Assume that r is deterministic and let \mathbb{F}^S be the natural filtration of the prices. The market is said to be *complete* if any contingent claim $H \in L^2(\mathcal{F}_T^S)$ is the value at time T of some self-financing strategy π .

Completeness

Theorem ([1] Th. 2.1.5.4)

Let \tilde{S} be a process which represents the discounted prices. If there exists a unique e.m.m. \mathbb{Q} such that \tilde{S} is a \mathbb{Q} -local martingale, then the market is complete and arbitrage free.

Theorem ([1] Th. 2.1.5.5)

In an arbitrage free and complete market, the time-t price of a (bounded) contingent claim H is

$$V_t^H = R_t^{-1} \mathbb{E}_{\mathbb{Q}}[R_T H | \mathcal{F}_t] \ .$$

where \mathbb{Q} is the unique e.m.m. and R is the discount factor.

Bibliography

Bibliography

- M. Jeanblanc, M. Yor and M. Chesney (2009). Mathematical methods for financial markets. Springer, London.
- D. Revuz and M. Yor (1999). Continuous Martingales and Brownian Motion. Springer Verlag, Berlin. 3rd ed.
- Ph. Protter (2001). *A partial introduction to financial asset pricing theory.* Stochastic Processes and their Appl., 91:169–204.
- F. Delban and W. Schachermayer (1994). *A general version of the fundamental theorem of asset pricing*. Math. Annal., 300:463–520.