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The Financial Market



The Financial Market

We assume there are

- d risky assets or securities: S i , i = 1, . . . , d

They are assumed to be semi-martingales with respect to a

filtration F.

- One riskless asset or saving account: S0

Its dynamics are given by

dS0
t = S0

t rt dt, S0
0 = 1 .

- r is the (positive) interest rate, assumed F-adapted.
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Discount factor

One monetary unit invested at time 0 in the riskless asset will give

a payoff of exp{
∫ t
0 rs ds} at time t > 0.

If r is deterministic, the price at time 0 of one monetary unit

delivered at time t is Rt = exp{−
∫ t
0 rs ds}.

In general

Rt = (S0
t )−1

is called the discount factor.
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Zero-Coupon bond (ZC)

The asset that delivers one monetary unit at time T is called a

zero-coupon bond (ZC) of maturity T .

If r is deterministic, its price at time t is given by

P(t,T ) = exp(−
∫ T
t rs ds) and follows the dynamics

dtP(t,T ) = rt P(t,T ) dt, P(T ,T ) = 1 .

In general the formula above is absurd for r stochastic (the left

side is Ft-measurable, while the right side is not), and

P(t,T ) = (Rt)
−1EQ[RT |Ft ]

where Q is the risk probability measure.
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Portfolio

A portfolio (or a strategy) is a (d + 1)-dimensional F-predictable

process π̂:

(π̂t = (πit , i = 0, . . . , d) = (π0t , πt), t ≥ 0)

where πit represents the number of shares of the asset i held at

time t.

The time-t value of the portfolio π̂ is given by

Vt(π̂) =
d∑

i=0

πit S
i
t = π0t S

0
t +

d∑
i=1

πit S
i
t .

4



Some Assumptions

- borrowing and lending interest rates are equal to (rt , t ≥ 0).

- there a no transaction costs (market liquidity)

- the number of shares of the asset available in the market is

unbounded

- it is allowed short-selling (πit < 0 for i > 0) as well as

borrowing money (π0t < 0)

Then we add the self-financing condition, that is changes in the

value of portfolio are not due to rebalancing but only to changes in

the asset prices. In continuous time it is a constraint and it is not

a consequence of the Itô lemma.
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Self-financing condition

Definition

A portfolio π̂ is said to be self-financing if

dVt(π̂) =
d∑

i=0

πit dS
i
t ,

or in an integral form,

Vt(π̂) = V0(π̂) +
d∑

i=0

∫ t

0
πis dS

i
s .

We are going to assume that
∫ t
0 π

i
s dS

i
s are well defined.

If π̂ = (π0, π) is a self-financing portfolio then

dVt(π̂) = rt Vt(π̂) dt + πt · (dSt − rtSt dt) .
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Self-financing condition

The self-financing condition holds also for the discounted processes

Proposition ([1] 2.1.1.3)

If π̂ = (π0, π) is a self-financing portfolio then

Rt Vt(π̂) = V0(π̂) +
d∑

i=1

∫ t

0
πis d(Rs S

i
s) ,

or equivalently

dV 0
t (π̂) =

d∑
i=1

πit dS
i ,0
t ,

where V 0
t = Vt Rt = Vt/S

0
t and S i ,0

t = S i
t Rt = S i ,0

t /S0
t .

By abuse of language, we call π = (π1, . . . , πd) a self-financing

portfolio.
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Self-financing condition

Proposition ([1] 2.1.1.3 continue)

Conversely, if x is a given positive real number, π = (π1, . . . , πd) is

a vector of predictable processes, and V π denotes the solution of

dV π
t = rt V

π
t dt + πt · (dSt − rtSt dt), V π

0 = x ,

then the Rd+1-valued process π̂ = (R(V π − π S), π) is a self

financing strategy, and V π
t = Vt(π̂).

Exercise (2.1.1.4)

Let dSt = (µ dt + σ dWt) and r = 0.

Is the portfolio π̂ = (t, 1) self-financing?

If not, find π0t such that π̂ = (π0t , 1) is self-financing.
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Arbritrage Opportunities



Arbritrage Opportunities ([1] 2.1.2)

An arbritrage opportunity is informally a self-financing strategy

with 0 initial value and with terminal value VT (π̂) ≥ 0, such that

E[VT (π̂)] > 0.

Theorem (Dudley (1977))

Let X be an FW
T -random variable, then there exists a predictable

process θ such that
∫ T
0 θ2s <∞, a.s., and

X =

∫ T

0
θsdWs .

With d = 1, and dSs = σSs dWs , and r = 0, set πt = θt/(σSt)

with
∫ T
0 θsdWs = A, A > 0.
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Equivalent Martingale Measure ([1] 2.1.3)

Definition

An equivalent martingale measaure (e.m.m.) is a probability

measure Q, equivalent to P on FT , such that the discounted prices

(RtS
i
t , t ≤ T ) are Q-local martingales.

Folk Theorem: Protter 2001

Let S be the stock price process. There is absence of arbitrage

essentially if and only if there exists a probability Q equivalent to

P such that the discounted price process is a Q-local martingale.

Proposition

Under any e.m.m. the discounted value of a self-financing strategy

is a local martingale.
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Admissible strategies ([1] 2.1.4)

Definition

A self-financing strategy π is said to be admissible if there exists a

constant A such that V π
t ≥ −A, a.s. for every t ≤ T .

Definition

An arbitrage opportunity on the time interval [0,T ] is an

admissible self-financing strategy π such that V π
0 = 0, V π

T ≥ 0 and

E[V π
T ] > 0.
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Admissible strategies ([1] 2.1.4)

Following Delban and Schachermayer (1994)

K = {
∫ T

0
πs dSs : π is admissible}

A0 = K − L0+ = {
∫ T

0
πs dSs − f : π is admissible, f ≥ 0, f finite}

A = A0 ∩ L∞

Ā = closure of A in L∞ .

Definition

A semi-martingale S satisfies the no-arbitrage condition if

K∩ L∞+ = 0. A semi-martingale S satisfies the No-Free Lunch with

Vanishing RIsk (NFLVR) condition if Ā ∩ L∞+ = 0.

12



Admissible strategies ([1] 2.1.4)

Following Delban and Schachermayer (1994)

Theorem (Fundamental Theorem. See [1] Th. 2.1.4.4)

Let S be a locally bounded semi-martingale. There exists an

equivalent measure Q for S if and only if S satisfies NFLVR.

Theorem (Th. 9.7.2 in [4])

Let S be an adapted cádlág process. If S is locally bounded and

satisfies the NFLVR condition for simple integrands, then S is a

semi-martingale.
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Complete Market



Contingent claims and replicating strategies ([1] 2.1.5)

Definition

A contingent claim, H, is defined as a square integrable

FT -random variable, where T is a fixed horizon.

Definition

A contingent claim H is said to be edgeable if there exists a

predictable process π = (π1, . . . , πd) such that V π
T = H. The self

financing strategy π̂ = (R(V π − π S), π) is called replicating

strategy (or the hedging strategy) of H, and V0(π) = h is the

initial price. The process V π is the price process of H.
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Completeness

Definition

Assume that r is deterministic and let FS be the natural filtration

of the prices. The market is said to be complete if any contingent

claim H ∈ L2(FS
T ) is the value at time T of some self-financing

strategy π.
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Completeness

Theorem ([1] Th. 2.1.5.4)

Let S̃ be a process which represents the discounted prices. If there

exists a unique e.m.m. Q such that S̃ is a Q-local martingale, then

the market is complete and arbitrage free.

Theorem ([1] Th. 2.1.5.5)

In an arbitrage free and complete market, the time-t price of a

(bounded) contingent claim H is

VH
t = R−1t EQ[RT H|Ft ] .

where Q is the unique e.m.m. and R is the discount factor.
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