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Predictable Representation Property



Predictable Representation Property

Let W be a real-valued Brownian motion and FW its natural

filtration.

Theorem (([1] 1.6.1.1)

Let M be square integrable FW -martingale. There exists a

constant µ and a unique predictable process m in L2(W ), such that

Mt = µ+

∫ t

0
ms dWs , ∀t ≥ 0 .

Example

Consider the case Mt = F (t,Wt), with F smooth (F is space-time

harmonic, that is ∂tF + 1
2∂

2
x2F = 0).
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Predictable Representation Property

Corollary

Every FW -local martingale admits a continuous version.

Corollary

Let W be a G-Brownian motion with natural filtration F. Then, for

every square integrable G-adapted process ψ,

E
[∫ t

0
ψs dWs

∣∣Ft

]
=

∫ t

0
E
[
ψs

∣∣Ft

]
dWs

where E
[
ψs

∣∣Ft

]
denotes the predictable version of the conditional

expectation.

Example

- Mt = E[F |Ft ], with F =
∫∞
0 h(s,Ws) ds.

- Mt = E[h(WT )|Ft ] for t ≤ T with h ∈ C 1
b (R).
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Change of Probability and

Girsanov’s Theorem



Change of Probability ([1] 1.7.1)

Consider a probability space (Ω,F ,F,P) with F0 trivial.

Proposition (([1] 1.7.1.1)

Let P and Q be two equivalent probabilities on (Ω,FT ). Then,

there exists a strictly positive (P,F)-martingale (Lt , t ≤ T ), such

that

Q|Ft = Lt P|Ft ,

that is EQ[X ] = EP[Lt X ] for any Ft-measurable positive random

variable X with t ≤ T . Moreover, L0 = 1 and EP [Lt ] = 1, ∀t ≤ T .

Definition

A probability Q on a filtered probability space (Ω,F ,F,P) is said

to be locally equivalent to P if there exists a strictly positive

F-martingale L such that Q|Ft = Lt P|Ft , ∀t ≥ 0. The martingale

L is called the Radon-Nikodým density of Q w.r.t. P.
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Change of Probability ([1] 1.7.1)

Proposition (([1] 1.7.1.4)

Let P and Q be locally equivalent with Radon-Nikodým density L.

Then, for any stopping time τ ,

Q|Fτ∩{τ<∞} = Lτ P|Fτ∩{τ<∞} .

Proposition (Bayes Formula ([1] 1.7.1.5)

Let P and Q be locally equivalent on FT with Radon-Nikodým

density L. Let X be a Q-integrable FT -measurable random

variable, then, for t < T

EQ[X |Ft ] =
1

Lt
EP[LTX |Ft ] .
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Change of Probability ([1] 1.7.1)

Proposition ([1] 1.7.1.6)

Let P and Q be locally equivalent with Radon-Nikodým density L.

A process M is a Q-martingale if and only if the process LM is a

P-martingale. By localization, this result remains true for local

martingales.

Example

Find the Radon-Nikodým density L, for Q = h(WT )P with

h ∈ C 1
c (R+).

Exercise ([1] 1.7.1.7)

Let (Ω,F ,F,P) be a filtered probability space and denote by L the

Radon-Nikodým density of Q with respect to P.

Then, if F̃ is a sub-filtration of F, prove that Q|F̃t
= L̃t P|F̃t

, where

L̃t = EP[Lt |F̃t ].
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Decomposition of P-Martingales as Q-semi-martingales

Theorem ([1] 1.7.2.1)

Let P and Q be locally equivalent with a continuous

Radon-Nikodým density L. If M is a continuous P-local martingale,

then the process M̃ defined by

dM̃ = dM − 1

L
d〈M, L〉

is a continuous Q-local martingale. If N is another continuous

P-local martingale 〈M,N 〉 = 〈M̃, Ñ 〉 = 〈M, Ñ 〉 .

Corollary ([1] 1.7.2.1)

We may write the process L as a Doléans-Dade martingale:

Lt = E(ξ), where ξ is an F-local martingale. The process

M̃ = M − 〈M, ξ 〉 is a Q-local martingale.
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