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Fitration and usual hypotheses



Fitration and usual hypotheses ([1] 1.1.10)

Fix a probability space (Ω,F ,F,P)

F is called a filtration and it is a collection of σ-fields.

F = {Ft}t≥0 .

∀t ≥ 0, Ft ⊂ F , and for s ≤ t, Fs ⊂ Ft .

Let Ft+ =
⋂
ε>0Ft+ε .

A filtration is right-continuous if Ft = Ft+ for all t ≥ 0.

A filtration is complete if Ft contains all null sets, for t ≥ 0.

A filtration that is right-continuous and complete is said to

satisfy the usual hypotheses.

The natural filtration FX of a stochastic process X is the smallest

filtration F which satisfies the usual hypotheses and such that X is

F-adapted. In short FX = σ(Xs , s ≤ t).
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Martingales



Martingales ([1] 1.2.1)

Definition

An F-adapted process M = (Mt , t ≥ 0), is a F-martingale if

E[|Mt |] <∞ for every t ≥ 0

E[Mt |Fs ] = Ms a.s. for every s < t.

If the last condition is substituted for

E[Mt |Fs ] ≤ Ms or E[Mt |Fs ] ≥ Ms a.s., for s ≤ t

we speak of super-martingale or sub-martingale respectively.

Example

- Let Wt be a standard Brownian Motion, then Wt , W
2
t − t

and exp{aWt − a2t/2}, for a ∈ R, are martingales.

- Let X∞ an F∞-measurable integrable r.v., then the process X

defined as Xt := E[X∞|Ft ] is a martingale. 2



Stopping times



Stopping times ([1] 1.2.3)

Definition

An R+ ∪ {+∞}-valued random variable τ is a stopping time with

respect to a given filtration F (in short, an F-stopping time), if

{τ ≤ t} ∈ Ft , ∀t ≥ 0 .

If τ is an F-stopping time, the σ-algebra of events prior to τ , Fτ is

defined as:

Fτ = {A ∈ F∞ : A ∩ {τ ≤ t} ∈ Ft ,∀t ≥ 0}
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Local Martingales



Local Martingales ([1] 1.2.4)

Definition

An adapted, right-continuous process M is a F-local martingale if

there exists a sequence of stopping times (τn) such that:

The sequence τn is increasing and limn τn =∞, a.s.

For every n, the stopped process Mτn is an F-martingale.

A sequence (τn) such that the two previous conditions hold is

called a localizing or reducing sequence.
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Doob-Mayer decomposition

Proposition

A process X is a sub-martingale (resp. a super-martingale)

if and only if

Xt = Mt + At (resp. Xt = Mt − At)

where

M is a local martingale,

A an increasing predictable process.
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Square Integrable Martingales



Square Integrable Martingales ([1] 1.2.2)

Definition

We denote by H2 the space of L2-bounded martingales, i.e. the

space of F-martingales M such that

sup
t

E[M2
t ] <∞ .

In addition we define:

H2 := {M ∈ H2 : M is continuous}
H2

0 := {M ∈ H2 : M0 = 0}
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Square Integrable Martingales

A square integrable martingale M is also uniformly integrable (u.i.)

(i.e. E[|Mt |; |Mt | > a]
a→∞−→ 0 uniformly on t) and therefore

Mt −→L1 M∞ and Mt = E[M∞|Ft ] .

In addition

E[M2
∞] = lim

t→∞
E[M2

t ] = sup
t

E[M2
t ] <∞

From M2
t ≤ E[M2

∞|Ft ], it follows that M2 = (M2
t , t ≥ 0) is u.i.

Example

- The Brownian motion does not belong to H2, however, it

belongs to H2[0,T ] for all T > 0.

- The martingale Mt = exp{λWt − λ2t/2} is not u.i. on [0,∞[.
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Spaces of Martingales

Accordingly to the previous definition we define the spaces

Hp = {M is an F-adapted martingale : || sup
t
|Mt | ||p <∞} p ≥ 1 ,

where ||X ||p = (E[|X |p])1/p.

By Doob’s inequality, for p > 1,

|| sup
t≤T
|Mt | ||p ≤

p

p − 1
sup
t≤T
||Mt ||p ,

it follows that

sup
t
|Mt | ∈ Lp ⇐⇒ M∞ ∈ Lp

and one can identify the space Hp with the space Lp(F∞), for

p > 1.

Note: For p = 1 this is not true. There are L1 bounded elements

that are not in H1. 8



Continuous Semi-martingales



Continuous Semi-martingales ([1] 1.3)

Definition

A d-dimension continuous semi-martingale is an Rd -valued process

X such that each component X i admits a decomposition

X i = M i + Ai

where

M i is a continuous local martingale vanishing at zero

Ai is a continuous adapted process with locally finite variation

The continuity property assures that the decomposition is unique.
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Brackets of Continuous Local Martingales ([1] 1.3.1)

Definition

If M is a continuous local martingale, there exists a unique

continuous increasing process 〈M 〉, called the bracket (or

predictable quadratic variation) of M such that

M2 − 〈M 〉 = (M2
t − 〈M 〉t , t ≥ 0)

is a continuous local martingale.

Definition

If M,N are two continuous local martingales, there exists a unique

continuous increasing process 〈M,N 〉, called the predictable

bracket (or the predictable covariation process) of M and N, such

that

M N − 〈M,N 〉 = (MtNt − 〈M,N 〉t , t ≥ 0)

is a continuous local martingale.
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Brackets of Continuous Local Martingales ([1] 1.3.1)

It can be shown that

〈M 〉t = p-lim
||Π||→0

|Π|∑
i=1

(Mti −Mti−1)2 ,

where for an interval [0, t], we define a partition as the set

Π = {0 = t0 < t1 < t2 < . . . < tn = t} for some n and |Π| = n,

||Π|| = max1≤i≤n (ti − ti−1) .

Example

If W is a Brownian motion

〈W 〉t = lim
||Π||→0

|Π|∑
i=1

(Wti −Wti−1)2 = t .

The limit here is in L2 sense, (that implies the limit in probability),

and it can be shown that the limit is almost surely if
∑

n |Πn| <∞. 11



Predictable Brackets

We have that

〈M 〉 = 〈M,M 〉

and

〈M,N 〉 =
1

2
(〈M + N 〉 − 〈M 〉 − 〈N 〉) =

1

4
(〈M + N 〉 − 〈M − N 〉)

When the bracket 〈M,N 〉 is equal to 0, the product M N is a local

martingale and M and N are said to be orthogonal.
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The space L2(M)

Definition

Let M ∈ H2, then the space L2(M,F), or simply L2(M),

is defined as

L2(M) = {K is a F-progressively measurable : E[

∫ ∞
0

K 2
t d〈M 〉t ] <∞} .

A real-valued process K is progressively measurable with respect to

a given filtration F = (Ft , t ≥ 0). if, for every t ≥ 0, the map

(ω, s)→ Ks(ω) form Ω× [0, t] into R is Ft ×B([0, t])-measurable.

Any cád (or cág) F-adapted process is progressively measurable.
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Brackets of Continuous Semi-martingales ([1] 1.3.2)

Definition

The bracket (or the predictable quadratic covariation) 〈X ,Y 〉 of

two continuous semi-martingales X and Y is defined as the bracket

of the local martingale parts MX and MY .
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Stochastic Integral



Stochastic Integral ([2] IV Prop. (2.13))

Definition

Let K be F-predictable process and M ∈ H2 then the Itô

stochastic integral K ?M = (K ?Mt , t ≥ 0), is defined as

K ?Mt =

∫ t

0
Ks dMs := p-lim

||Π||→0

|Π|∑
i=1

Kti−1(Mti −Mti−1) .

In addition K ?M is an F-martingale vanishing at 0.

For an interval [0, t], we define a partition as the set

Π = {0 = t0 < t1 < t2 < . . . < tn = t} for some n and |Π| = n,

||Π|| = max1≤i≤n (ti − ti−1) .
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Properties of the Stochastic Integral

Linearity:∫ t

0
(aHs + bKs) dMs = a

∫ t

0
Hs dMs + b

∫ t

0
Ks dMs .

Itô’s Isometry:

E
[(∫ t

0
Ks dMs

)2 ]
= E

[ ∫ t

0
K 2
s d〈M 〉s

]
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Formulas for the Stochastic Integral

Integration by Parts:

XtYt = X0Y0 +

∫ t

0
XsdYs +

∫ t

0
YsdXs + 〈X ,Y 〉

Itô’s Formula: with F ∈ C 1,2(R+ × Rd ,R),

F (t,Xt) =F (0,X0) +

∫ t

0
∂tF (s,Xs)ds +

d∑
i=1

∫ t

0
∂xiF (s,Xs)dX i

s

+
1

2

d∑
i ,j=1

∫ t

0
∂2
xi ,xj

F (s,Xs)d〈X i ,X j 〉s
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Doléans-Dade Exponential



Doléans-Dade Exponential ([1] 1.5.7)

Definition

Let M be a continuous local martingale and λ ∈ R, then the

Doléans-Dade Exponential of λM is a positive local martingale,

E(λM) = (E(λM)t , t ≥ 0) defined as

E(λM)t := exp{λMt −
λ2

2
〈M 〉t} .

Proposition

If λ ∈ L2(M), the process E(λM) is the unique solution of the

stochastic differential equation

dYt = Ytd(λM)t , Y0 = 1 .
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Doléans-Dade Exponential for semi-martingales

Definition

Let X be a continuous semi-martingale, then the Doléans-Dade

Exponential of X is defined as the unique solution of

Zt = 1 +

∫ t

0
Zs dXs ,

and it is given by

E(X )t := exp{Xt −
1

2
〈X 〉t} .

Note: E(λM)t E(µM)t 6= E((λ+ µ)M)t . In general

E(X )t E(Y )t = E(X + Y + 〈X ,Y 〉)t

leads to E(λM)t E(µM)t = E((λ+ µ)M + λµ〈M 〉)t .
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