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1 Application of the Stochastic Calculus

1.1 The Geometric Brownian Motion

In this section we look for the solution of the following SDE

dX(t)

X(t)
= µdt+ σ dB(t) (1)

that can also be rewritten as
dX(t) = µX(t) dt+ σX(t) dB(t). (2)

We use as test function X(t) = f(t, B(t)) and applying the Itôformula, we get

df(t, B(t)) = [ft(t, B(t)) +
1

2
fxx(t, B(t))] dt+ fx(t, B(t)) dB(t). (3)

Matching the coefficients of dt and dB(t) we obtain

µf(x, t) = ft(t, x) +
1

2
fxx(t, x) (4)

σf(x, t) = fx(t, x) (5)

(6)

and taking the derivative of (5) and substituting it in (4) we get

ft(t, x) =

[
µ− σ2

2

]
f(t, x)

that solved gives

f(t, x) = f(0, x) e

(
µ−σ2

2

)
t
.

Substituting last expression in (5) we get
fx(0, x) = σf(0, x)

that has solution
f(0, x) = f(0, 0)eσ x.

Finally the solution of (2) is given by

X(t) = f(t, B(t)) = X(0) e

(
µ−σ2

2

)
t+σ B(t)

.

Alternative derivation.
Another way to get a solution of (5) is by computing the correct differential of the function ln(X(t) that differs from
dX(t)/X(t) of the classical calculus.

Using Itôformula, we have that

d ln(X(t)) =
dX(t)

X(t)
− (dX(t))2

2X2(t)
,

and substituting the expressions of dX(t) and (dX(t))2 obtained from (2)

dX(t) = µX(t) dt+ σX(t) dB(t)

(dX(t))2 = µ2X2(t) (dt)2 + σ2X2(t) (dB(t))2 + 2µσX2(t) dB(t)× dt
= σ2X2(t) dt
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we obtain

d ln(X(t)) =

(
µ− σ2

2

)
dt+ σ dB(t)

that integrated yields again to

X(t) = X(0) e

(
µ−σ2

2

)
t+σ B(t)

.

1.2 The Uhlenbeck-Ornstein process

In this section we look for the solution, X(t), of the following SDE

dX(t) = −αX(t) dt+ σ dB(t),

with α and σ two positive constants.

Use the test function X(t) = f(t) = a(t)
[
c+

∫ t
0
b(s) dB(s)

]
whose differential is equal to

dX(t) =
a′(t)

a(t)
X(t) dt+ a(t) b(t) dB(t),

where we used the formula for the differential of the product of functions.
Matching the coefficients of dt and dB(t), we get

a′(t)

a(t)
= −α and a(t) b(t) = σ

that solved give

a(t) = a(0) e−α t and b(t) =
σ

a(t)
=

σ

a(0)
eα t

and setting f(0) = X(0) we finally obtain

X(t) = X(0) e−α t + σ

∫ t

0

e−α(t−s) dB(s).

By the Itôisometry, we obtain that if X(0) is independent of B(t) and normally distributed (including the
deterministic degenerate normal distribution), then X(t) is a Gaussian process with mean and covariance functions

E[X(t)] = E[X(0)] e−α t → 0 as t→∞

Cov[X(t), X(s)] = Var[X(0)] e−α (t+s) + σ2

∫ t∧s

0

e−α(t+s−2u) du

Var[X(t)] = Var[X(0)] e−2α t + σ2

∫ t

0

e−2α(t−u) du→ σ2

2α
as t→∞

Therefore we see that the O-U process admits a stationary distribution and we can construct a stationary version

of the process by setting X(0) ∼ N(0, σ
2

2α ).

1.3 The Brownian Bridge

In this section we look for the solution, X(t), of the following SDE

dX(t) = −X(t)

1− t
dt+ dB(t),

with X(0) = 0.

Use the test function X(t) = f(t) = a(t)
[
c+

∫ t
0
b(s) dB(s)

]
whose differential is equal to

dX(t) =
a′(t)

a(t)
X(t) dt+ a(t) b(t) dB(t).
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Matching the coefficients of dt and dB(t), we get

a′(t)

a(t)
= − 1

1− t
and a(t) b(t) = 1

that solved give

a(t) = 1− t and b(t) =
1

1− t
and setting X(0) = 0 we finally obtain

X(t) =

∫ t

0

1− t
1− s

dB(s). (7)

By the Itôisometry, we obtain that X(t) is a Gaussian process with mean and covariance functions

E[X(t)] = 0 and Cov[X(t), X(s)] = (1− t ∨ s)(t ∧ s)

that coincide with the ones of the Brownian Bridge. Since two Gaussian processes with identical mean and covariance
functions are equal in distribution we see that equation (7) gives an alternative representation of the Brownian Bridge
process.
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