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1 The infinitesimal generator of a Markov Chain

In these notes we introduce informally the infinitesimal generator of a homogeneous continuous-time Markov process
and we show its expression for the case of Markov chains.

Let us consider the following family of operators, {Tt}t≥0, indexed by the variable t ≥ 0 and acting on the
bounded functions f : E → R. Since we deal with Markov chains, we will assume implicitly that the state space is
numerable.

Ttf(i) = E[f(X(t))|X(0) = i] = Ei[f(X(t))] .

By time-homogeneity we have also that Ttf(i) = E[f(X(t + s))|X(s) = i], for any s ≥ 0. The family {Tt}t,
satisfies the following relation

Tt(Tsf)(i) = E[Tsf(X(t))|X(0) = i] = E[E[f(X(s+ t))|X(t), X(0) = i]|X(0) = i]

= E[f(X(s+ t))|X(0) = i] = Tt+sf(i) ,

that is Tt Ts = Ts+t, that expresses the fact that this family of operators forms a semigroup under composition.
If we denote by ||f || = supi∈E |f(i)|, we have that given a function f such that ||f || ≤ 1, also ||Ttf || ≤ 1 that

generally is expressed by the fact that the family {Tt}t is a contraction semigroup.
In addition it is also strongly continuous as we have that

lim
t↓0

Ttf = f .

All the limits have to be interpreted in the sup norm, this converges naturally implies also the weaker pointwise
convergence. For example the limit above means that

||Ttf − f ||
t↓0→ 0 .

The infinitesimal generator, A, is informally the derivative at time 0 of the continuous semigroup, that is, given
a function f we define its value at f as

Af = lim
t↓0

Ttf − f
t

whenever such limit exists, and we define the domain of the generator as the set of functions, D(A), for which the
limit above exists.

The limit again is in the sup norm, that is, if we take a function f ∈ D(A) we have that

||Ttf − f
t

−Af || t↓0→ 0 .

Once we know that f ∈ D(A) then we also have the pointwise convergence

Af(i) = lim
t↓0

Ttf(i)− f(i)

t
, ∀i ∈ E .

1.1 Backwards and Forward Kolmogorov equations

In this section we informally compute the derivative of the semigroup {Tt}t≥0 at a time t > 0, we than have

KBE :

KFE :
T ′t = lim

s↓0

Tt+sf − Ttf
s

=
lims↓0

Ts(Ttf)−T0(Ttf)
s

lims↓0
Tt(Tsf)−Tt(T0f)

s

=
lims↓0

(Ts−T0)
s Ttf = ATtf

lims↓0 Tt
Tsf−T0f

s = TtAf

where T0 = I, with I being the identity operator. Therefore we can write A = T ′0 and in general using the KFE

T ′t = TtA
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with boundary conditions T0 = I. It follows that at least formally one expects that

Ttf = etAf

where the exponential of the operator A is formally defined as

etA =

∞∑
n=0

tn

n!
An .

1.2 Computing the infinitesimal generator for the HCMC

In this section we compute the infinitesimal generator for the case of a homogeneous continuous time Markov Chain
with transition probability P = (pij) and mean sojourn times µi = ρ−1i . If we define the diagonal rate matrix
R = diag(ρi) we have that the rate transition matrix, Q = (qij) = R(P − I), where I is the identity matrix.

Given the function f , we compute the value of the generator applied to this function evaluated at point i in the
following way

Af(i) = lim
t↓0

Ei[f(X(t))]− f(i)

t

= lim
t↓0

Ei[f(X(t));N(t) = 0]− f(i)

t
+ lim

t↓0

Ei[f(X(t));N(t) = 1]

t
+ lim

t↓0

Ei[f(X(t));N(t) ≥ 2]

t
, (1)

where we denoted by N(t) the number of transitions in the interval [0, t] and used the notation E[f(X);A] =
E[f(X) 1{A}], for a given event A.

For the first term we have that

lim
t↓0

Ei[f(X(t));N(t) = 0]− f(i)

t
= lim

t↓0

Ei[f(i);N(t) = 0]− f(i)

t
= lim

t↓0
f(i)

Pi{N(t) = 0} − 1

t

= lim
t↓0

f(i)
e−ρit − 1

t
= −f(i) ρi = f(i) qii

For the second term we have that

lim
t↓0

Ei[f(X(t));N(t) = 1]

t
= lim

t↓0

∑
j

pijf(j)
Pi{N(t) = 1, X(T1) = j}

t
=

∑
j

f(j) ρi pij =
∑
j 6=i

f(j) qij

In the second equality we used the fact that

Pi{N(t) = 1, X(T1) = j} = Pi{T1 < t, T2 > t,X(T1) = j} = Pi{Y1 < t, Y1 + Y2 > t,X(T1) = j}

= ρie
−tρi 1− e−t(ρj−ρi)

ρj − ρi
= tρie

−tρi + o(t) ,

where T1 and T2 are the first two transition epochs and Y1 = T1, Y2 = T2−T1 are the first two inter-transition times.
Y1|X(0) = i ∼ Exp(ρi) and Y2|X(T1) = j ∼ Exp(ρj) are independent exponential random variables.

For the last term we have that

lim
t↓0

Ei[f(X(t));N(t) ≥ 2]

t
= lim

t↓0

∑
j

pijf(j)
Pi{N(t) ≥ 2, X(T1) = j}

t
= 0

In the last equality we used the fact that

Pi{N(t) ≥ 2, X(T1) = j} = Pi{T1 < t, T2 < t,X(T1) = j} = Pi{Y1 < t, Y1 + Y2 < t,X(T1) = j}

=
ρi

ρi − ρj
(1− e−tρj )− ρj

ρi − ρj
(1− e−tρi) = o(t) .

Substituting the expressions above in (1) we finally get

Af(i) =
∑
j

qij f(j) = (Q f)i

where in the last equation we identified the function f with the column vector (f(i))i∈E .
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1.3 Computing the transition probabilities

In this section we show how to compute the transition probabilities pij(t) = Pi{X(t) = j} using the infinitesimal
generator.

Choose the Kronecker function f(i) = δij . We have that

Ttf(i) = Ei[f(X(t))] = Ei[1{X(t) = j}] = Pi{X(t) = j} = pij(t)

Using the KFE we have that

p′ij(t) = T ′tf(i) = TtAf(i) =
∑
k,h

pik(t) qkh δhj =
∑
k

pik(t) qkj

and in matrix form, by denoting P (t) = (pij(t)) the t-transition matrix, we have

P ′(t) = P (t)Q

that with boundary condition P (0) = I gives the solution

P (t) = etQ ,

where etQ =
∑
n≥0 t

nQn/n!.
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