Notes
 March $20^{\text {th }}, 2012$

1 The infinitesimal generator of a Markov Chain

In these notes we introduce informally the infinitesimal generator of a homogeneous continuous-time Markov process and we show its expression for the case of Markov chains.

Let us consider the following family of operators, $\left\{T_{t}\right\}_{t \geq 0}$, indexed by the variable $t \geq 0$ and acting on the bounded functions $f: E \rightarrow \mathbb{R}$. Since we deal with Markov chains, we will assume implicitly that the state space is numerable.

$$
T_{t} f(i)=\mathbb{E}[f(X(t)) \mid X(0)=i]=\mathbb{E}_{i}[f(X(t))]
$$

By time-homogeneity we have also that $T_{t} f(i)=\mathbb{E}[f(X(t+s)) \mid X(s)=i]$, for any $s \geq 0$. The family $\left\{T_{t}\right\}_{t}$, satisfies the following relation

$$
\begin{aligned}
T_{t}\left(T_{s} f\right)(i) & =\mathbb{E}\left[T_{s} f(X(t)) \mid X(0)=i\right]=\mathbb{E}[\mathbb{E}[f(X(s+t)) \mid X(t), X(0)=i] \mid X(0)=i] \\
& =\mathbb{E}[f(X(s+t)) \mid X(0)=i]=T_{t+s} f(i)
\end{aligned}
$$

that is $T_{t} T_{s}=T_{s+t}$, that expresses the fact that this family of operators forms a semigroup under composition.
If we denote by $\|f\|=\sup _{i \in E}|f(i)|$, we have that given a function f such that $\|f\| \leq 1$, also $\left\|T_{t} f\right\| \leq 1$ that generally is expressed by the fact that the family $\left\{T_{t}\right\}_{t}$ is a contraction semigroup.

In addition it is also strongly continuous as we have that

$$
\lim _{t \downarrow 0} T_{t} f=f
$$

All the limits have to be interpreted in the sup norm, this converges naturally implies also the weaker pointwise convergence. For example the limit above means that

$$
\left\|T_{t} f-f\right\| \xrightarrow{t \downarrow 0} 0
$$

The infinitesimal generator, \mathcal{A}, is informally the derivative at time 0 of the continuous semigroup, that is, given a function f we define its value at f as

$$
\mathcal{A} f=\lim _{t \downarrow 0} \frac{T_{t} f-f}{t}
$$

whenever such limit exists, and we define the domain of the generator as the set of functions, $\mathcal{D}(\mathcal{A})$, for which the limit above exists.

The limit again is in the sup norm, that is, if we take a function $f \in \mathcal{D}(\mathcal{A})$ we have that

$$
\left\|\frac{T_{t} f-f}{t}-\mathcal{A} f\right\| \xrightarrow{t+0} 0 .
$$

Once we know that $f \in \mathcal{D}(\mathcal{A})$ then we also have the pointwise convergence

$$
\mathcal{A} f(i)=\lim _{t \downarrow 0} \frac{T_{t} f(i)-f(i)}{t}, \quad \forall i \in E
$$

1.1 Backwards and Forward Kolmogorov equations

In this section we informally compute the derivative of the semigroup $\left\{T_{t}\right\}_{t \geq 0}$ at a time $t>0$, we than have

$$
\begin{aligned}
& \mathrm{KBE}: \\
& \mathrm{KFE} \mathrm{:}
\end{aligned}
$$

where $T_{0}=I$, with I being the identity operator. Therefore we can write $\mathcal{A}=T_{0}^{\prime}$ and in general using the KFE

$$
T_{t}^{\prime}=T_{t} \mathcal{A}
$$

with boundary conditions $T_{0}=I$. It follows that at least formally one expects that

$$
T_{t} f=e^{t \mathcal{A}} f
$$

where the exponential of the operator \mathcal{A} is formally defined as

$$
e^{t \mathcal{A}}=\sum_{n=0}^{\infty} \frac{t^{n}}{n!} \mathcal{A}^{n}
$$

1.2 Computing the infinitesimal generator for the HCMC

In this section we compute the infinitesimal generator for the case of a homogeneous continuous time Markov Chain with transition probability $\boldsymbol{P}=\left(p_{i j}\right)$ and mean sojourn times $\mu_{i}=\rho_{i}^{-1}$. If we define the diagonal rate matrix $\boldsymbol{R}=\operatorname{diag}\left(\rho_{i}\right)$ we have that the rate transition matrix, $\boldsymbol{Q}=\left(q_{i j}\right)=\boldsymbol{R}(\boldsymbol{P}-\mathbb{I})$, where \mathbb{I} is the identity matrix.

Given the function f, we compute the value of the generator applied to this function evaluated at point i in the following way

$$
\begin{align*}
\mathcal{A} f(i) & =\lim _{t \downarrow 0} \frac{\mathbb{E}_{i}[f(X(t))]-f(i)}{t} \\
& =\lim _{t \downarrow 0} \frac{\mathbb{E}_{i}[f(X(t)) ; N(t)=0]-f(i)}{t}+\lim _{t \downarrow 0} \frac{\mathbb{E}_{i}[f(X(t)) ; N(t)=1]}{t}+\lim _{t \downarrow 0} \frac{\mathbb{E}_{i}[f(X(t)) ; N(t) \geq 2]}{t} \tag{1}
\end{align*}
$$

where we denoted by $N(t)$ the number of transitions in the interval $[0, t]$ and used the notation $\mathbb{E}[f(X) ; A]=$ $\mathbb{E}[f(X) 1\{A\}]$, for a given event A.

For the first term we have that

$$
\begin{aligned}
\lim _{t \downarrow 0} \frac{\mathbb{E}_{i}[f(X(t)) ; N(t)=0]-f(i)}{t} & =\lim _{t \downarrow 0} \frac{\mathbb{E}_{i}[f(i) ; N(t)=0]-f(i)}{t}=\lim _{t \downarrow 0} f(i) \frac{\mathbb{P}_{i}\{N(t)=0\}-1}{t} \\
& =\lim _{t \downarrow 0} f(i) \frac{e^{-\rho_{i} t}-1}{t}=-f(i) \rho_{i}=f(i) q_{i i}
\end{aligned}
$$

For the second term we have that

$$
\lim _{t \downarrow 0} \frac{\mathbb{E}_{i}[f(X(t)) ; N(t)=1]}{t}=\lim _{t \downarrow 0} \sum_{j} p_{i j} f(j) \frac{\mathbb{P}_{i}\left\{N(t)=1, X\left(T_{1}\right)=j\right\}}{t}=\sum_{j} f(j) \rho_{i} p_{i j}=\sum_{j \neq i} f(j) q_{i j}
$$

In the second equality we used the fact that

$$
\begin{aligned}
\mathbb{P}_{i}\left\{N(t)=1, X\left(T_{1}\right)=j\right\} & =\mathbb{P}_{i}\left\{T_{1}<t, T_{2}>t, X\left(T_{1}\right)=j\right\}=\mathbb{P}_{i}\left\{Y_{1}<t, Y_{1}+Y_{2}>t, X\left(T_{1}\right)=j\right\} \\
& =\rho_{i} e^{-t \rho_{i}} \frac{1-e^{-t\left(\rho_{j}-\rho_{i}\right)}}{\rho_{j}-\rho_{i}}=t \rho_{i} e^{-t \rho_{i}}+o(t)
\end{aligned}
$$

where T_{1} and T_{2} are the first two transition epochs and $Y_{1}=T_{1}, Y_{2}=T_{2}-T_{1}$ are the first two inter-transition times. $Y_{1} \mid X(0)=i \sim \operatorname{Exp}\left(\rho_{i}\right)$ and $Y_{2} \mid X\left(T_{1}\right)=j \sim \operatorname{Exp}\left(\rho_{j}\right)$ are independent exponential random variables.

For the last term we have that

$$
\lim _{t \downarrow 0} \frac{\mathbb{E}_{i}[f(X(t)) ; N(t) \geq 2]}{t}=\lim _{t \downarrow 0} \sum_{j} p_{i j} f(j) \frac{\mathbb{P}_{i}\left\{N(t) \geq 2, X\left(T_{1}\right)=j\right\}}{t}=0
$$

In the last equality we used the fact that

$$
\begin{aligned}
\mathbb{P}_{i}\left\{N(t) \geq 2, X\left(T_{1}\right)=j\right\} & =\mathbb{P}_{i}\left\{T_{1}<t, T_{2}<t, X\left(T_{1}\right)=j\right\}=\mathbb{P}_{i}\left\{Y_{1}<t, Y_{1}+Y_{2}<t, X\left(T_{1}\right)=j\right\} \\
& =\frac{\rho_{i}}{\rho_{i}-\rho_{j}}\left(1-e^{-t \rho_{j}}\right)-\frac{\rho_{j}}{\rho_{i}-\rho_{j}}\left(1-e^{-t \rho_{i}}\right)=o(t) .
\end{aligned}
$$

Substituting the expressions above in (1) we finally get

$$
\mathcal{A} f(i)=\sum_{j} q_{i j} f(j)=(\boldsymbol{Q} f)_{i}
$$

where in the last equation we identified the function f with the column vector $(f(i))_{i \in E}$.

1.3 Computing the transition probabilities

In this section we show how to compute the transition probabilities $p_{i j}(t)=\mathbb{P}_{i}\{X(t)=j\}$ using the infinitesimal generator.

Choose the Kronecker function $f(i)=\delta_{i j}$. We have that

$$
T_{t} f(i)=\mathbb{E}_{i}[f(X(t))]=\mathbb{E}_{i}[1\{X(t)=j\}]=\mathbb{P}_{i}\{X(t)=j\}=p_{i j}(t)
$$

Using the KFE we have that

$$
p_{i j}^{\prime}(t)=T_{t}^{\prime} f(i)=T_{t} A f(i)=\sum_{k, h} p_{i k}(t) q_{k h} \delta_{h j}=\sum_{k} p_{i k}(t) q_{k j}
$$

and in matrix form, by denoting $\boldsymbol{P}(t)=\left(p_{i j}(t)\right)$ the t-transition matrix, we have

$$
\boldsymbol{P}^{\prime}(t)=\boldsymbol{P}(t) \boldsymbol{Q}
$$

that with boundary condition $\boldsymbol{P}(0)=\mathbb{I}$ gives the solution

$$
\boldsymbol{P}(t)=e^{t \boldsymbol{Q}}
$$

where $e^{t \boldsymbol{Q}}=\sum_{n \geq 0} t^{n} \boldsymbol{Q}^{n} / n!$.

