## Notes

## February $28^{\text {th }}, 2012$

## 1 The Renewal Equation

The renewal equation is an important integral equation that appears often in Renewal Theory. Its expression is given by

$$
\begin{equation*}
Z(t)=H(t)+\int_{0}^{t} Z(t-s) F(s), \quad t \geq 0 \tag{1}
\end{equation*}
$$

with $Z(t), H(t)$ and $F(t)$ general functions defined for $t \geq 0$. Usually the functions $F(t)$ and $H(t)$ are known and the task is to look for a function $Z(t)$ that satisfies equation (1) for all $t \geq 0$.

Remembering that the Stieltjes convolution $Z * F(t)$ of two functions defined on $\mathbb{R}^{+}, Z(t)$ and $F(t)$, is given by

$$
Z * F(t)=\int_{0}^{t} Z(t-s) F(d s)
$$

the renewal equation can be expressed also in the following alternative form

$$
Z(t)=H(t)+Z * F(t)
$$

In addition, since it is known that the Laplace transform of a convolution is given by the product of the Laplace transforms of the convoluted functions, i.e $\mathcal{L}[Z * F](s)=\mathcal{L}[Z](s) \cdot \mathcal{L}[F](s)$, equation (1) is equivalent to the following

$$
\tilde{Z}(s)=\tilde{H}(s)+\tilde{Z}(s) \tilde{F}(s)
$$

where we denoted by $\tilde{Z}(s)=\mathcal{L}[Z](s), \tilde{F}(s)=\mathcal{L}[F](s)$ and $\tilde{H}(s)=\mathcal{L}[G](s)$ the Laplace transforms of $Z(t), F(t)$ and $H(t)$ respectively.

Solving for $Z(s)$ we get that the Laplace transform of the solution function $Z(t)$ in (1) is given by

$$
\begin{equation*}
\tilde{Z}(s)=\frac{\tilde{H}(s)}{1-\tilde{F}(s)} \tag{2}
\end{equation*}
$$

Since the Laplace transform uniquely characterizes the transformed function, the unique solution of the renewal equation (1) is given by the inverse transform of (2), i.e. $Z(t)=\mathcal{L}^{-1}[\tilde{Z}](t)$.

Noticing that

$$
\frac{1}{1-\tilde{F}(s)}=\sum_{n=0}^{\infty} \tilde{F}(s)^{n}
$$

we get directly that

$$
\begin{equation*}
Z(t)=\mathcal{L}^{-1}[\tilde{Z}](t)=\mathcal{L}^{-1}\left[\frac{\tilde{H}}{1-\tilde{F}}\right](t)=H * \sum_{n=0}^{\infty} F^{* n}(t) \tag{3}
\end{equation*}
$$

where we denoted by $F^{*(n+1)}(t)=F^{* n} * F(t)$, for $n \geq 0$, having defined $F^{* 0}(t) \equiv 1$.
Example 1. Let $N(t)$ be a renewal process with general inter renewal time $\tau$ whose distribution is denoted by $F(t)=\mathbb{P}\{\tau \leq t\}$. It is known that the renewal function $m(t)=\mathbb{E}[N(t)]$ can be expressed in the following form

$$
m(t)=\sum_{n=1}^{\infty} F^{* n}(t)=F * \sum_{n=0}^{\infty} F^{* n}(t)
$$

therefore it is solution of the following renewal equation

$$
m(t)=F(t)+m * F(t)
$$

Example 2. Let $N_{D}(t)$ be a delayed renewal process with general inter renewal time $\tau$ whose distribution is denoted by $F(t)=\mathbb{P}\{\tau \leq t\}$ and with $H(t)$ being the distribution of the initial delay. Then the delayed renewal function $m_{D}(t)=\mathbb{E}\left[N_{D}(t)\right]$ has the following known expression

$$
m_{D}(t)=H * \sum_{n=0}^{\infty} F^{* n}(t)
$$

therefore it is solution of the following renewal equation

$$
m_{D}(t)=H(t)+m_{D} * F(t) .
$$

