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1. Introduction: Finding Hidden Risks

1.1. Background.

Suppose
X = (X1, . . . , Xd)

is a risk vector . Imagine Xi is

• loss from ith asset in portfolio;

• concentration of ith pollutant;

• car maker’s warranty exposure over a month for ith car model in
lineup.

Goal: Estimate the probability of a risk region R

P [X ∈ R]

where R is beyond the range of observed data.
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Example:

d = 2 and

R = (x,∞] = (x1,∞]×(x2,∞]

and

P [X ∈ R] = P [X1 > x1, X2 > x2].

0

x

Risk contagion: Can two or more components of the risk vector X be
simultaneously large? Typically,

large=beyond the range of the data.
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2. Mathematical foundation: Regularly varying func-
tions and measures

2.1. Regularly varying functions

A function U : Rd
+ 7→ R+ is multivariate regularly varying if

lim
t→∞

U(tx)

U(t1)
= λ(x) 6= 0,

for x ≥ 0, x 6= 0.

• If d = 1, limit must be a power function and we are dealing with
functions U which are asymptotically like power functions; for
d = 1,

U(tx)

U(t)
→ xρ, ρ ∈ R.

Call ρ the index and when d = 1 we write U ∈ RVρ.

• When d > 1, a scaling argument shows ∃ ρ ∈ R and

λ(tx) = tρλ(x),

and U(t1) ∈ RVρ.
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– Therefore, equivalent formulation is there exists V ∈ RVρ
such that

U(tx)

V (t)
→ λ(x) 6= 0.

– Possible choice: V (t) = U(t1).

– Sequential version when ρ > 0): ∃ bn →∞ such that

U(bnx)

n
→ λ(x).

– Can set bn = V ←(n).
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2.2. Connection to domain of attraction (DOA) characteriza-
tions.

Suppose {Xn, n ≥ 1} are iid non-negative, common distribution func-
tion F (x). The extreme is

Mn =
n∨
i=1

Xi = max{X1, . . . , Xn}.

One of the extreme value distributions is the Frechet:

Φα(x) := exp{−x−α}, x > 0, α > 0.

Questions:

• What are conditions on F , called domain of attraction conditions ,
so that there exists bn > 0 such that

P [b−1
n Mn ≤ x] = F n(bnx)→ Φα(x). (DOA-frechet)

When (DOA-frechet) holds, we say F is in the domain of attrac-
tion of Φα and write F ∈ D(Φα).

• How do you characterize the normalization sequence {bn}?
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Answers:

• DofA: One argues that we must have

x0 = sup{x : F (x) < 1} =∞,

and furthermore
bn →∞.

In (DOA-frechet), take logarithms to get for

lim
n→∞

n(− logF (bnx)) = x−α, x > 0.

Use
− log(1− z) ∼ z, (z → 0,

and (DOA-frechet) is equivalent to

lim
n→∞

n(1− F (bnx)) = x−α, x > 0. (1)

This is the sequential version of regular variation for F̄ := 1− F .

• Characterize bn: Set U(x) = 1/(1− F (x)) and (1) is the same as

U(bnx)/n→ xα, x > 0,

and inverting, we find that

U←(ny)

bn
→ y1/α, y > 0. (2)
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Conclude:

U←(n) = (1/(1− F ))←(n) = F←(1− 1

n
) ∼ bn

and this determines bn (convergence to types theorem).

2.2.1. Summary: Connecting regular variation and domains of attraction in
one dimension.

With
Φα(x) = exp{−x−α}, x > 0, α > 0,

we have

F ∈ D(Φα) iff lim
t→∞

F̄ (tx)

F̄ (t)
= x−α, x > 0;

that is, F̄ ∈ RV−α.
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2.3. Behavior of one dimensional regularly varying functions:

Regularly varying functions behave asymptotically like power func-
tions. Helpful notation: Call L(x) slowly varying if L(·) ∈ RV0. Then
if

U ∈ RVρ
we have

L(x) := U(x)/xρ ∈ RV0

and we can write
U(x) = xρL(x).

Rules for manipulating:

• Karamata theorem: For ρ > −1,∫ x

0

U(t)dt

behaves as if L(t) comes out of the integral and the power part
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integrates. So if U(x) = xρL(x), then∫ x

0

U(t)dt =

∫ x

0

tρL(t)dt

∼L(x)

∫ x

0

tρdt = L(x)
xρ+1

ρ+ 1

=
xU(x)

ρ+ 1
.

• Differentiation: If U ∈ RVρ has a monotone density u(x), then
u(x) ∈ RVρ−1 (as if it were a power function).

• Regularly varying functions have smooth asymptotically equiva-
lent versions which comes from the Karamata representation: if
U ∈ RVρ,

U(x) = c(x) exp{
∫ x

1

ρ(s)

s
ds},

where
c(x)→ c0, ρ(t)→ ρ.

So

U(x) ∼ c0 exp{
∫ x

1

ρ(s)

s
ds},

and the right side can be made as smooth as one likes (eg, in-
finitely differentiable).
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• The regular variation ratio converges locally uniformly; eg, if U ∈
RVρ,

lim
t→∞

U(tx)

U(t)
= xρ,

uniformly on [a, b], 0 < a < b <∞.

– If ρ < 0, uniform convergence on [b,∞), b > 0.

• Inversion: If U ∈ RVρ, ρ > 0, regular variation U ∈ RVρ implies
U← ∈ RV1/ρ:

lim
t→∞

U←(tx)

U←(t)
= x1/ρ.
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2.4. Multivariate Regular Variation for Multivariate Distribution
Functions and Measures on Rd

+

Application to distributions: Let Z be a random vector in Rd
+ with df

F . A regularly varying tail means

1− F (tx)

1− F (t1)
→ ν∗([0,x]c),

for some Radon measure ν∗. Awkward to deal with multivariate df’s
and better to deal with measures.
Let

E =[0,∞]d \ {0}
ℵ ={x ∈ E : ‖x‖ = 1} (unit sphere) ,

R =‖Z‖, Θ =
Z

‖Z‖
∈ ℵ ( polar coordinates).

The following are equivalent.

1. ∃ a Radon measure ν∗ on E such that

lim
t→∞

1− F (tx)

1− F (t1)
= lim

t→∞

P
[
Z1

t
∈ [0,x]c

]
P
[
Z1

t
∈ [0,1]c

]
=cν∗

(
[0,x]c

)
,
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some c > 0 and for all points x ∈ [0,∞)\{0} which are continuity
points of ν∗([0, ·]c).

2. ∃ a function b(t) → ∞ and a Radon measure ν∗ on E such that
in M+(E)

tP
[ Z

b(t)
∈ ·
] v→ ν∗, t→∞.

3. ∃ a pm S(·) on ℵ and b(t)→∞ such that

tP[
( R
b(t)

,Θ
)
∈ ·] v→ cνα × S

in M+(
(
(0,∞]× ℵ

)
, where c > 0.

Notes:

• Can replace function b(t) by sequence b(n).

• v→ means vague convergence defined as follows: Let M+(E) be
the Radon measures on E. (Radon means the measure is finite
on relatively compact sets.) M+(E) can be metrized by vague
convergence: Let µn(·), n ≥ 0 be measures in M+(E). Then

µn
v→ µ0
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iff

µn(f) :=

∫
E

fdµn →
∫
E

fdµ =: µ(f) (n→∞)

for all non-negative, continuous functions with compact support
on E.

• Generally, vague convergence can be reduced to convergence of
measures on a class of rectangles suited to the compact sets of E.
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These conditions imply:

for any sequence k = k(n)→∞ such that n/k →∞ we have

4. In M+

(
E
)
,

1

k

n∑
i=1

εZi/b(n
k ) ⇒ ν (*)

1

k

n∑
i=1

ε(Ri/b(n/k),Θi) ⇒ (cνα × S). (**)

and (4) is equivalent to any of (1)–(3), provided k(·) satisfies
k(n) ∼ k(n+ 1).

Ignore fact b(·) unknown:
→ LHS of Eqn (*) is a consistent estimator of ν.
→ From (**), consistent estimator of S is∑n

i=1 ε(Ri/b(n/k),Θi)[1,∞]× ·)∑n
i=1 εRi/b(n/k)[1,∞]

.

We need the following:

Let C be a closed cone in Rd
+; that is,

x ∈ C ⇒ tx ∈ C, ∀t > 0.
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The random vector Z ∈ Rd
+ has a distribution tail which

is regularly varying on C with limit measure νC(·) if for
nice sets A ⊂ C we have

tP [
Z

t
∈ A]→ vC(A).

Example: C = (0,∞].
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2.5. Statististical difficulty.

• This formulation is good for theory but bad for applications.

• Being able to norm each component by the same b(t) means
marginal tails are the same–almost never happens in practice.
Multivariate data from a distribution with heavy tailed marginals,
never have the same α’s.

– Set
Z = (Z(1), . . . , Z(d)).

Norming each component with the same b(t) means

P[Z(i) > x] ∼ cijP[Z(j) > x], x→∞.

and if cij > 0, then the tail index of Z(i) and Z(j) are the
same.

• Not true in practice. And what is the dependence structure?

• Examples:

– Absolute returns Xchr vs USD of (FR, JAP).

– (Size of document downloaded, download time); etc.
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Absolute log-returns forex 2 Eurpean currencies (prior to Euro)

• Daily absolute log-
returns of French
franc vs German mark
against the USD.

• Jan 1971 – Feb 1994.

• 6041 days.

abs(diff(log(xchr$France)))

ab
s(

di
ff(
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g(
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hr

$G
er

m
an

y)
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AbsRet(FR) vs AbsRet(Ger)

• Daily absolute log-
returns of the Japanese
yen vs the German
mark.

• Jan 1971 – Feb 1994.

• 6041 days.

abs(diff(log(xchr$Japan)))
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Boston Univ http request data: size, download rate, duration.

BU: duration vs rate (l); size vs rate (c); size vs duration (r).

α α̂size α̂rate α̂duration

estimated value 1.15 1.13 1.4

Table 1: Tail parameter estimates.
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2.5.1. More flexibility.

A more flexible defn of a multivariate heavy tail is: ∃ b(i)
n → ∞ for

i = 1, . . . , d and ∃ Radon ν such that

nP[
(Z(i)

b
(i)
n

, i = 1, . . . , d
)
∈ · ]→ ν(·). (3)

Theorem. Suppose Z ∼ F and Z(i) ∼ F(i). If (3) and

nP[
Z(i)

b
(i)
n

∈ · ]→ ναi
(·), ναi

(x,∞] = x−αi , x > 0, αi > 0, ∀i,

then

nF∗(n· ) = nP
[( 1

1−F(i)(Z
(i))

n
, i = 1, . . . , d

)
∈ ·
]
→ ν∗(·)

where ν∗ is standard ; that is, Radon and

ν∗(tA) = t−1ν∗(A).

Note if for i = 1, . . . , d

1− F(i)(x) ∼ x−αi , x→∞,
then

nP
[((Z(i))αi

n
, i = 1, . . . , d

)
∈ ·
]
→ ν∗(·).
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2.5.2. How to get the standard case in practice:

(a) Simple minded. Hope (assume, pray) 1 − F(i)(x) ∼ x−αi for all i
and then power up. (Slow variation hard (impossible?) to detect
in practice and this works reasonably.)

BUT: Must estimate α’s. (Ouch!)

(b) Use ranks method.

BUT: Lose independence among observations.
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2.6. Significance of the limit measure.

The limit measure ν∗ controls the (asymptotic) dependence structure.

2.6.1. Asymptotic independence.

The distribution F of Z possesses the property of asymptotic indepen-
dence if

1. ν∗
(
(0,∞)

)
= 0 so that ν∗ concentrates on the axes;

OR

2. S concentrates on {ei, i = 1, . . . , d}.

For d = 2 this means

P[Z(2) > t|Z(1) > t] =
P[Z(2) > t, Z(1) > t]

P[Z(1) > t]

→(const)ν∗

(
1,∞

]
= 0.
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Remarks:

• The probability of both components being large is negligible.

• The concept was invented to answer the following query: Let
{Zj, j ≥ 1} be iid, non-negative random vectors in Rd

+ with com-
mon distribution F . The necessary and sufficient condition for
there to exist b(n)→∞ such that

P [
n∨
i=1

Z
(l)
i

b(n)
≤ x(l), l = 1, . . . , d]→ G(x)

is 1− F is multivariate regularly varying with the original defini-
tion. The necessary and sufficient condition for G to be a product
distribution is asymptotic independence.

2.6.2. Asymptotic dependence.

The distribution F of Z1 possesses the property of asymptotic depen-
dence if

1. ν∗ concentrates on {t 1
‖1‖ : t > 0}, the diagnonal line,

or

2. S concentrates on { 1
‖1‖}.
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Means:

•
P[Z(2) > t|Z(1) > t]→ 1.

•
G(x) = G(∧di=1x

(i)),

the distribution of a random vector all of whose componenets are
equal.

2.7. Examples

2.7.1. UNC

UNC HTTP response data for (size, rate) for Wednesday afternoons,
1-5:00 pm, April 2001.
Steps:

• Transform (size,rate) data using rank method.

• Convert to polar coordinates.

• Keep 2000 pairs with biggest radius vector.

• Compute density estimate for angular measure S.
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2.7.2. The Auckland-II trace

(http://pma.nlanr.net/traces/long/auck2.html) a collection of long
GPS-synchronized IP header traces captured at the University of Auck-
land Internet uplink since 1999.

• Connection level data characterized by packet headers.

• connection = 5 tuple (source ip, dest ip, source port, dest port,
protocol)

• Amalgamate the data into clusters in hopes that cluster heads are
approx Poisson.

– No unique way to do this.

– One proposal:

∗ Organize packets into e2e streams–packets with same ip
source and destination. Con: ignores application.

∗ Create sessions by clustering e2e streams according to the
rule that 2 consecutive packets part of the same cluster if
time separation between them is below a threshold.

∗ For a session, compute total payload (S), duration (D)
and then (average) rate (R)

http://pma.nlanr.net/traces/long/auck2.html


Intro Risks

Regular variation

EV marginals

Asy Indep

Directions

HRV

HDA

General

Final

Title Page

JJ II

J I

Page 27 of 70

Go Back

Full Screen

Close

Quit

●●●●●●●●●●●●●●●●
●●●●●●●

●●●●
●●●●
●●●
●●
●●
●●
●●
●●
●●
●●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●●
●●
●●
●●
●●●●
●●●●●●●●●●●●●●●●●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●
●●●●●
●●●●
●●●
●●●
●●
●●
●●
●●
●●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●●
●●
●●●
●●●●●●●●●●●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

0.0 0.5 1.0 1.5 2.0

0.
0

0.
5

1.
0

1.
5

density.default(x = theta[rad > 1])

theta

an
gu

la
r 

m
ea

su
re

 d
en

si
ty

Figure 1: k=1500, Angular measure S,R; length=54343
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3. General EV marginals

3.1. Asymptotic method for risk estimation

• As in one dimension, in d-dimensions, estimating probabilities of
risk regions beyond the range of the data requires an assumption
that enables extrapolation.

• Preparation: Interpret operations on vectors componentwise: For
x and y vectors in Rd:

– x ∨ y = (xi ∨ yi, i = 1, . . . , d).

– x ∧ y = (xi ∧ yi, i = 1, . . . , d).

– x + y = (xi + yi, i = 1, . . . , d).

– xy = (xyii , i = 1, . . . , d).

– And for vectors x(j), j = 1, . . . , n

n∨
m=1

x(m) =
( n∨
m=1

x1(m), . . . ,
n∨

m=1

xd(m)
)
.
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• Usual assumption to allow extrapolation beyond the range of the
data: X is in the (multivariate) domain of attraction (DOA) of
an extreme value distribution; ie, ∃ ai(n) > 0, bi(n) ∈ R, i =
1, . . . , d;n ≥ 1 such that if {X(m),m ≥ 1} are iid copies of X,
then

P
[ n∨
m=1

X(m)− b(n)

a(n)
≤ x

]
=
(
P
[Xi − bi(n)

ai(n)
≤ xi, i = 1, . . . , d

])n
→ G(x)

where G is a multivariate EV distribution with non-degenerate
marginals . Equivalently, take logs, use − log z ∼ (1− z) as z → 1
and

n
(

1− P
[Xi − bi(n)

ai(n)
≤ xi, i = 1, . . . , d

])
→ − logG(x)

and this extends to a probability statement about more general
sets than just (−∞,x]c:

nP [
X − b(n)

a(n)
∈ · ]→ ν(·) (DOA)

where
ν(−∞,x]c = − logG(x).



Intro Risks

Regular variation

EV marginals

Asy Indep

Directions

HRV

HDA

General

Final

Title Page

JJ II

J I

Page 30 of 70

Go Back

Full Screen

Close

Quit

• Tip of the iceberg: If one is determined to use asymptotic methods
and R is the risk region, (DOA) yields a method to estimate the
risk probability:

P [X ∈ R] = P
[X − b(n)

a(n)
∈ R− b(n)

a(n)

]
≈ 1

n
ν̂
(R− b̂

â

)
.

Note: need R−b(n)
a(n)

to be relatively compact for the asymptotics to

work.

• The multivariate condition (DOA) implies one dimensional marginals
are in a univariate doa. There is a standardized version of (DOA)
which expresses the condition as multivariate regular variation on
E := [0,∞] \ {0}: Set

Ui(x) =
1

P [Xi > x]

and
X∗ =

(
Ui(Xi), i = 1, . . . , d

)
.

Then marginal convergence in (DOA) to non-degenerate EV dis-
tributions plus (DOA) is equivalent to

nP [
X∗

n
∈ · ]→ ν∗(·) (StandRegVarE)
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on E = [0,∞] \ {0} where for t > 0,

ν∗(t·) = t−1ν∗(·).

This is just transformation to Pareto scale.

Why this works: Take (DOA) and examine the ith marginal conver-
gence:

n(1−P [Xi−bi(n) ≤ ai(n)xi])→ − logGi(xi), (Gi = ith marginal of G),

or
n/Ui(ai(n)xi + bi(n))→ − logGi(xi)

or
Ui(ai(n)xi + bi(n))

n
→ 1

− logGi(xi)
.

Take inverses: For y > 0,

U←i (ny)− bi(n)

ai(n)
→
( 1

− logGi

)←
(y) =: ψi(y).
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So for y > 0, if X satisfies (DOA),

nP ([
X∗

n
≤ y]c) =nP ([Ui(Xi) ≤ nyi, i = 1, . . . , d]c)

=nP ([Xi ≤ U←i (nyi), i = 1, . . . , d]c)

=nP ([
Xi − bi(n)

ai(n)
≤ U←i (nyi)− bi(n)

ai(n)
, i = 1, . . . , n]c)

→ν
((
−∞, (ψi(yi), i = 1, . . . , d)

]c)
=ν∗

(
(0,y]c

)
.

From this we get

nP [
X∗

n
∈ A]→ ν∗(A)

for nice sets A.

Note since
ν(−∞,x]c) = − logG(x),

we have that typically ν (and hence ν∗ is an measure with infinite
mass.

3.1.1. Summary.

(DOA) can be standardized to become (StandRegVarE) using marginal
(copula-like) transformations.
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4. Curse of asymptotic independence

• If in (DOA), the limit G is a product

G(x) =
d∏
i=1

Gi(xi), (AsyIndep)

we say X possesses asymptotic independence.

• Reason for the name asymptotic independence: The limit is a
product. But X may not appear very independent (see example
below). Warning: in many ways and for many people this name
is an unfortunate choice.

• Unintended consequence of asymptotic independence: (AsyIndep)
⇒

ν({x : xi > yi(0), xy > yj(0)}) = 0,

for all 1 ≤ i < j ≤ d and thus such a model has no risk contagion
since we estimate

P [ two or more components of X are large simultaneously ] ≈ 0.

Reason: For d = 2, suppose X1, X2 are asymptotically indepen-
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dent so

nP ([X1 ≤ a1(n)x1 + b1(n),X2 ≤ a2(n)x2 + b2(n)]c)

→ − logG1(x1) +− logG2(x2). (4)

Also, {
nP ([X1 ≤ a1(n)x1 + b1(n)]c)→ − logG1(x1),

nP ([X1 ≤ a2(n)x2 + b2(n)]c)→ − logG2(x2).
(5)

Subtract: (4)-(5), do a little set algebra and conclude

nP ([X1 > a1(n)x1 + b1(n), X2 > a2(n)x2 + b2(n)]c)→ 0.

• In standardized form: (StandRegVarE)+(AsyIndep) mean when
d = 2,

ν∗
(
E0

)
= ν∗

(
(0,∞]

)
= 0,

and ν∗ concentrates on the positive axes through 0.

• What to do?
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4.1. How common is (AsyIndep)?

Recall data examples for (size, rate). Also:

• For d = 2: If X satisfies (DOA) and X1 ⊥⊥ X2 then X possesses
(AsyIndep).

• If X = (X1, . . . , Xd) is Gaussian with

corr(Xi, Xj) = ρ(i, j) < 1,

then X possesses (AsyIndep) (Sibuya, 1960). Here the marginals
of X are Gaussian and

G(x) =
d∏
i=1

exp{−e−xi}.

• So using the Gaussian dependence copula means you are exposed
to (AsyIndep) and lack of risk contagion.

• Let U ∼ U(0, 1) and define

X =
( 1

U
,

1

1− U

)
.

Since 1/U and 1/(1−U) cannot be simultaneously large, X pos-
sesses (AsyIndep). The marginals of X are Pareto and

G(x) = exp{−(x−1
1 + x−1

2 )}, x > 0.
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5. Strategy and Directions

(AsyIndep) + (StandRegVarE)
implies the limit measure ν∗(·) in
Pareto scale concentrates on the
axes through 0.

Hint: Consider the complement of
the support of ν∗ and seek a lower
order regular variation on this new
set.

Since ν∗ concentrates on axes and
puts zero mass on interior of quad-
rant, seek (hidden) regular varia-
tion on the interior E0 = (0,∞]
with index < 1. This would allow
non-zero estimate of

P [X > x].
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Example. For d = 2: If X = (X1, X2) and X1 ⊥⊥ X2, X1, X2 iid with

P [Xi > y] = y−1, y > 1.

Then for x1 > 0, x2 > 0, as n→∞

nP [Xi > nxi]→ x−1
i , i = 1, 2,

nP [X1 > nx1, X2 > nx2] =
(
nP [X1 > nx1]

)
P [X2 > nx2]→ 0,

so X is regularly varying on E with index 1 and limit measure concen-
trating on the axes, and

nP [X1 >
√
nx1, X2 >

√
nx2]→ 1

x1x2

, x1 > 0, x2 > 0,

so X is regularly varying on E0 with index 2 and limit measure giving
positive mass to (x,∞].

Conclude for this example:

• X is regularly varying on E = [0,∞]\{0} with index 1 and limit
measure concentrating on lines through {0}, and giving zero mass
to (0,∞].

• X is regularly varying on E0 = (0,∞] with index 2 and the limit
measure gives positive mass to (0,∞].
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Summary:

Lesson: If the support (eg, axes) of the limit measure is less than the
full space (eg, E):

• peel away the support (axes);

• look for extreme value behavior on what’s left (eg, E \ {axes} =
E0).
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5.1. Directions to pursue

Antecedents: Das et al. (2011); Draisma et al. (2004); Heffernan and
Resnick (2005); Ledford and Tawn (1996, 1997); Maulik and Resnick
(2005); Mitra and Resnick (2011a,b); Resnick (2002)

1. Hidden regular variation (HRV)

(a) HRV for d = 2.

(b) HRV for d > 2. Possibly seek regular variation on a pro-
gression of decreasing of cones. Must decide how to specify
sequence of cones.

2. Hidden domain of attraction (HDA):

• X satisfies (DOA) so that X∗ satisfies (StandRegVarE).

• (AsyIndep) holds so limit measure ν∗(·) for X∗ concentrates
on the axes through 0.

• However extreme value behavior other than regular variation
holds in the interior of the state space. Eg, ∨di=1X

∗
i has a

regularly varying distribution but ∧di=1X
∗
i has a distribution

in a one dimensional domain of attraction other than Fréchet.
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3. What is the unit sphere? The con-
ventional unit sphere may not be
compact.

Eg: The L1 unit sphere is not
closed.
What plays the role of the polar
coordinate transform

x 7→
(
‖x‖, x

‖x‖

)
and the spectral distribution.

4. More general unifying theory: Seek lower order regular variation
on complement of support of the limit measure.

• Asymptotic full dependence: limit measure concentrates on
the diagonal. Remove diagonal and seek regular variation on
what is left. Do we need a new theory?

• What is the unit sphere? What takes the place of the trans-
formation to polar coordinates?

• What topology is appropriate? What are the bounded sets.
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5. Estimation?

• Non-parametric approach: Does the rank transform uncover
all the hidden structure?

• What sub-cones do we examine?

• How to automate in high dimensions?

• How should we infer the support of the limit measure?
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6. Hidden Regular Variation

6.1. d = 2

Suppose X = (X1, X2) satisfies (DOA) and

Ui(x) =
1

P [Xi > x]
, X∗ =

(
U1(X1), U2(X2)

)
.

So X∗ satisfies (StandRegVarE) on E = [0,∞] \ {0}; ie,

nP [
X∗

n
∈ · ]→ ν∗(·).

X∗ has hidden regular variation on E0 = (0,∞]2 if in addition to
(StandRegVarE):

• There is a measure ν∗0(·) on E0; and a

• There is a sequence b0(n)→∞ such that b0(n)/n→ 0; and

• On E0

nP [
X∗

b0(n)
∈ · ]→ ν∗0(·). (HRV E0)
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• Q: What sets can we insert in (HRV E0)?

• A: Sets bounded away from the deleted points; ie, sets bounded
away from the axes. These are sets in a neighborhood of ∞.

Consequences

• Because b0(n) = o(n), X∗ and hence X must have (AsyIndep).

• For some α0 ≥ 1,
b0(n) ∈ RV1/α0 .

• Hence

– Distribution tail of max is regularly varying:

P [X∗1 ∨X∗2 > x] ∈ RV−1,

and

– Distribution tail of min is regularly varying:

P [X∗1 ∧X∗2 > x] ∈ RV−α0 .

This provides a strategy for detection.
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Example 1: X∗ = (X1, X2), X1 ⊥⊥ X2 and

P [Xi > x] = x−1, x > 1, i = 1, 2.

Then α0 = 2. Consider X1, . . . ,X5000 iid.

5000 pairs of iid pareto;

α = 1; α0 = 2.

Hill plot for minima of
components.

Conclude: Maybe it is
possible to detect HRV.
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Example 2: UNC Wed (S,R): Response data where S is size of re-
sponse and R is average transmission rate= size/(download time). Re-
call angular measure density plot seemed to indicate asymptotic inde-
pendence.

• Need non-standard
model.

• Standardize using rank
method.

• QQ plot of minimum
component of rank
transformed data us-
ing 1000 upper order
statistics for UNC Wed
(S,R).

• Method yields α = 1
and estimated α̂0 =
1.6.

• Conclude: For d = 2,
detection might be pos-
sible

*****************************************************************************************************
******************************************************************************************
*************************************************************************
*********************************************************
********************************************************
*****************************************************************************

***************************************************
****************************
*************************************
***************************************************

*************************************
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**************************************

*******************************************
******************************
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Example 3: Risk calculations.
Simulate data: {((X1(n), X2(n)); 1 ≤ n ≤ 5000} iid where

• X1(n) ⊥⊥ X2(n) for
each n;

• X1(n) ∼ Par(1),

X2(n) ∼ Par(2).

• Estimate the risk
probability (exact
value=0.001)

P [X1 > 100, X2 >
√

10]

with spectral distri-
bution estimator for
HRV.

• Conclude: At least in
nice cases, this can
work.
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Hidden regular variation (continued)

6.2. d > 2:

One way to proceed (Mitra and Resnick, 2011b).
Recall E = [0,∞]d \ {0}. For x = (x1, . . . , xd) ∈ E, and l = 1, . . . , d,
let

x(l) = lth largest component of x1, . . . , xd,

E(l) ={x ∈ E : x(l) > 0}.

So

E(1) ={x ∈ E : ∨di=1xi > 0}
=E,

E(2) ={x ∈ E : x(2) > 0}
={x ∈ E : at least 2 components positive },

etc and
E(1) ⊃ E(2) ⊃ · · · ⊃ E(d).
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Def. Assume X∗ = (X∗1 , . . . , X
∗
d) satisfies (StandRegVarE) with limit

measure ν∗(·) on E and scaling function b1(n) = n. For l > 1, X∗ has
HRV on E(l) if

1. For some l > j ≥ 1 (nb. j = 1 is ok), X∗ is regularly varying on
E(j) with scaling function bj(n) and limit measure ν(j)(·) 6≡ 0, on
E(j) with

ν(j)(E(l)) = 0, ν(j)(E(l−1)) > 0,

AND

2. X∗ is regularly varying on E(l) with scaling function bl(n) and
limit measure ν(l)(·) 6≡ 0 on E(l) and

bj(n)/bl(n)→∞.

Note ∃α(j) ≤ α(l) and

ν(j)(c·) = c−α(j)ν(j)(·) ν(l)(c·) = c−α(l)ν(l)(·),

so the regular variation is of lower order on the smaller cone E(l) (which
makes it hidden).
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Example show:

• Could have HRV on each subcone E(l), l = 2, . . . , d.

• For d = 3, could have

– Regular variation on E = E(1) without asmptotic indepen-
dence (AsyIndep).

– No HRV on E(2) but HRV on E(3).

– ν∗(E(1)) = ν∗(E(2)) =∞, ν∗(E(3)) = 0.

• For d = 3 could have

– X∗ has regular variation on E with (AsyIndep).

– HRV holds on E(2).

– No HRV on E(3).

• For d = 3 possible that

– X∗ has regular variation on E.

– HRV exists on E(2) but not on E(3) but yet X∗ has regular
variation on E(3).

– (AsyIndep) holds but ν(2)(E(3)) > 0.
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7. Hidden Domain of attraction (HDA)

(Mitra and Resnick, 2011a)
Recall: Example 1: Let U ∼ U(0, 1) and define

X =
( 1

U
,

1

1− U

)
.

Properties:

• X satisfies (StandRegVarE) on E = [0,∞]2 \ {0}.

• X possesses (AsyIndep).

• X1 ∧X2 ≤ 2 so X cannot have HRV.

BUT

• X1 ∧ X2 ≤ 2 belongs to the doa of the (reversed) Weibull EV
distribution;

• A property akin to HRV holds on a cone but . . .

• the cone is not a subcone of E).
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Blood and guts:

For {(x1, x2) ∈ (−∞,∞]2 : x1 + x2 ≤ 0}, and large n,

nP
[
n(X1 − 2) > x1, n(X2 − 2) > x2

]
=nP

[
1− 1

2 + x2/n
< U <

1

2 + x1/n

]
=n
( 1

2 + x1/n
−
(
1− 1

2 + x2/n

))
=
n

2

(
−x1 + x2

2n
+O(

1

n2

)
→− (x1 + x2)/4 (n→∞),

and if x1 + x2 ≥ 0,

nP
[
n(X1 − 2) > x1, n(X2 − 2) > x2

]
→ 0.

Hmmmm! Suggests concept of hidden domain of attraction (HDA):
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7.1. HDA: Standard case; d = 2.

Suppose d = 2 and X = (X1, X2) satisfies

• X1
d
= X2.

• (DOA) holds with bn = (bn, bn) = bn1 and an = (an, an) = an1
with an > 0 and

nP [
X − bn1

an
∈ ·]→ ν(·),

on [−∞,∞]2 \ {−∞} or [0,∞]2 \ {0}.

• (AsyIndep) holds:

e−ν([∞,x]c) = G1(x1)G2(x2),

and additionally,

• there exist positive scaling and real centering constants {cn} and
{dn} and a non-zero measure ν0 on a cone E0 = (0,∞] or (−∞,∞]
such that

nP [(X − dn1)/cn ∈ · ]→ν0(·) (n→∞). (ConvE0)

Then X possesses standard case HDA.
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Notes:

1. It is not necessarily the case that the cone E0 ⊂ E. For

X =
( 1

U
,

1

1− U

)
,

we have

E = [0,∞] \ {0}, E0 = {x ∈ (−∞,∞] : x1 + x2 ≤ 0.}.

2. For standard HDA, bothX1∨X2 andX1∧X2 are in one-dimensional
EV doa’s with EV parameters γ and γ0. Since X1∨X2 ≥ X1∧X2,
γ ≥ γ0.
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3. Since X1 ∧X2 is in a doa, set

U∧(x) =
1

P [X1 ∧X2 > x]
.

Then (ConvE0) can be expressed as standard regular variation on
(0,∞]:

nP

[(
U∧(X1)

n
,
U∧(X2)

n

)
∈ ·
]
→ν̃0(·),

where ν̃0(·) is obtained from ν0(·) and satisfies

ν̃0(c·) = c−1ν̃0(·), c > 0. (homog)

(homog) allows disintegration of ν̃0(·) as a product measure in
the correct coordinate system and permits definition of a spectral
measure.
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4. Suppose X1

d

6= X2 but X satisfies (DOA). Standardize:

Ui(x) =
1

P [Xi > x]
, i = 1, 2

and set
X∗ = (X∗1 , X

∗
2 ) = (U1(X1), U2(X2).

Since X satisfies (DOA), X∗ satisfies (StandRegVarE). Assume
also (AsyIndep). Can now apply the HDA definition to X∗:

• Ask if there exist positive scaling and real centering constants
{cn} and {dn} and a non-zero measure ν∗0 on a cone E0 such
that (ConvE0) holds with X∗ replacing X.

• If so, set

U∗∧(x) =
1

P [X∗1 ∧X∗2 > x]
,

and then set

X∗∗ = (U∗∧(X∗1 ), U∗∧(X∗2 ) =
(
U∗∧ ◦ U1(X1), U∗∧ ◦ U2(X2)

)
• Conclude:

– The distribution of X∗ is standard regularly varying on
[0,∞] \ {0} and (AsyIndep) holds.

– X∗∗ has a distribution standard regularly varying on (0,∞].

– Ingenuity may be required to do estimation.
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8. General approach.

(Das et al., 2011)
Compare and contrast the two situations thought to be at opposite
ends of the spectrum for regularly varying distributions when d = 2.

1. Asymptotic inde-
pendence: limit measure
ν(·) concentrates on axes
through 0. Limit G is a
product.

2. Asymptotic full de-
pendence: limit measure
ν(·) concentrates on the di-
agonal. Limit random vec-
tor for maxima has equal
components.
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• In both cases, the limit measure has a support far smaller than
E = [0,∞] \ {0}.

– For HRV, remove support and seek a regular variation prop-
erty on the complement of the support (0,∞] (when d = 2).

– Standard case regular variation implies limit measure ν∗(·)
has scaling property:

ν∗(c·) = c−1ν∗(·), c > 0,

which implies

support ν∗ = closed cone.

• This suggests unifying both asymptotic independence and asymp-
totic full dependence and . . . under one theory:

– Identify support of the limit measure ν∗(·).
– Seek lower order regular variation on the complement of the

support.



Intro Risks

Regular variation

EV marginals

Asy Indep

Directions

HRV

HDA

General

Final

Title Page

JJ II

J I

Page 58 of 70

Go Back

Full Screen

Close

Quit

8.1. Regular variation on cones.

Abandon the one point uncompactification of the positive quadrant;
exclude lines through ∞. Suppose F ⊂ C ⊂ [0,∞) are closed cones
containing 0 and define

O = C \ F.
→ The random vector X ∈ C has a distribution with a regularly
varying tail on O if ∃ b(t) ↑ ∞ and measure ν 6≡ 0 on O such that

tP [
X

b(t)
∈ · ]→ ν(·), on O.

Let F1 be another closed cone containing 0 and set

O1 = C \ (F ∪ F1).

→ The random vector X ∈ C has a distribution with hidden regular
variation on O1 if there is regular variation on O AND if ∃ b1(t) ↑ ∞
and a measure ν1(·) 6≡ 0 on O1 such that

tP [
X

b1(t)
∈ · ]→ ν1(·), on O1,

AND
b(t)/b1(t)→∞

(which makes the behavior on O1 hidden).
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Examples for d = 2:

1. Regular variation on the positive quadrant with(AsyIndep):

C = [0,∞), F = {0}, O = C \ F = [0,∞) \ {0}.

HRV on (0,∞):

F1 ={(x, 0) : x > 0} ∪ {(0, x) : x > 0},
O1 =C \ (F ∪ F1) = [0,∞) \ {0} ∪ {lines through 0}

=(0,∞).
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2. Regular variation on the positive quadrant with conditional ex-
treme value (CEV) model:

C =[0,∞), F = {0},
O =C \ F = [0,∞) \ {0}.

CEV on Du:

F1 ={(x, 0) : x > 0},
O1 =C \ (F ∪ F1)

=[0,∞) \
(
{0} ∪ {(x, 0) : x > 0}

)
=[0,∞)× (0,∞)

=:Du.

E E⊓

E= E0
0

0

0

0

∞ ∞

∞ ∞

Figure 1. The different cones in 2-dimensions

1
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3. Asymptotic full dependence:

Regular variation on [0,∞)\{0} with limit
measure concentrating on diagonal.

C =[0,∞), F = {0},
O =C \ F = [0,∞) \ {0}.

Remove diagonal:

F1 ={(x, x) : x > 0},
O1 =C \ (F ∪ F1)

=[0,∞) \ {(x, x) : x ≥ 0}
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Example 3 (continued): Asymptotic full dependence.

Suppose X = (X1, X2) is regularly varying on [0,∞) \ {0} with
asymptotic full dependence so the limit measure ν(· concentrates on
{(x, x) : x > 0}. Suppose

Xi = one period loss of financial instrument Ii.

Construct the portfolio:

• Buy one unit of I1. (Go long.)

• Sell one unit of I2. (Go short.)

One period loss for the portfolio is

L = X1 −X2

and for large x, seek
P [X1 −X2 > x].
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Under asymptotic full de-
pendence, limit measure
concentrates on the line
{(x, x) : x > 0} so we
estimate probability as 0:

P̂ [X1 −X2 > x] = 0.

Conclude: A more general
theory has applicability.

x

∞

0
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8.2. Consequences:

• Need for a more general theory of HRV which covers

– Asymptotic independence.

– Asymptotic full dependence.

– Other cases where the support of limit measure is strictly
smaller than the state space.

• If doing HRV estimation of the probability of the blue region under
asymptotic full dependence:

– Remove diagonal.

– But: then the blue region is not relatively compact if include
lines through ∞ in state space.

– ⇒ need to remove lines through ∞ and use different topology
[Hult and Lindskog (2006)].

– Demise of the one-point uncompactification?
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8.3. Polar coordinate transform and unit spheres:

• A limit measure ν for standard regular variation on cone O satis-
fies the scaling property:

ν(c·) = c−1ν(·).

• If T : O 7→ (0,∞)× A is a bijection x 7→ (r,a) satisfying

T (cx) = (cr,a),

then the scaling property of ν(·) translates to a disintegration
property in the new coordinates:

ν ◦ T−1(dr, da) = r−2dr S(da)

is a product measure on (0,∞)× A and

S(·) := ν ◦ T−1
(
(1,∞)× (·)

)
is the spectral measure. Would like T−1

(
(1,∞) × (·)

)
to be rela-

tively compact and then S is a finite (probability) measure.

Examples:

– [0,∞) \ {0}: Set T (x) = (‖x‖,x/‖x‖) and A is the (conven-
tional) unit sphere which is compact:

A = {x ∈ [0,∞) : ‖x‖ = 1}.
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– (0,∞):

The transformation in the
previous item does not lead
to a relatively compact unit
sphere.

so use

T (x) = (x1 ∧ x2,
x

x1 ∧ x2

).

The new unit sphere

A = {x ∈ (0,∞) : x1∧x2 = 1},

being bounded away from 0
is relatively compact and so
is

T−1
(
(1,∞)×(·)

)
= {x ∈ (0,∞) : x1∧x2 ≥ 1}.
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– O = C \ F for closed cones C, F. Set

T (x) =
(
dist(x,F),

x

dist(x,F)

)
, x ∈ O.

Then
{x ∈ O : dist(x,F) ≥ 1}

is bounded away from the deleted F and is relatively compact
and

A := {x ∈ O : dist(x,F) = 1}
serves as a unit sphere.

Example: F is the diagonal.
Unit sphere is parallel lines
to the diagonal.

∞

0
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9. Final remarks.

• Practical?

– Limitations of asymptotic methods: rates of convergence?

– Instead of estimating a risk probability as 0, estimate is a
very small number.

• Need for more formal inference for estimation including confidence
statements.

• General HRV technique requires knowing the support of the limit
measure. Estimate support?

• High dimension problems? How to sift through different possible
subcones?

• How to go from standard to more realistic non-standard case; still
some inference problems.
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