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1. Introduction

Does data network traffic behave statistically
like telephone network traffic?

Action:

• Stop assuming the two types of networks behave the same.

• Start checking.

Initially at Bellcore (now Telcordia) and later at AT&T Labs-Research,
and Boston University and . . . high resolution measurements (data)
were collected. Usually the data consisted of counts of bits, bytes,
packets etc per unit time (eg millisecond). This could then be aggre-
gated to coarser time scales. For example

• . . . • . . .
• 10 seconds • 1 second

• 10 milliseconds • 1 millisecond
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Significant examples:

• LAN’s and WAN’s

– Willinger et al. (1997)

– Duffy et al. (1993)

– Leland et al. (1993)

– Willinger et al. (1995)

• WWW traffic (BU)

– Crovella and Bestavros (1996),

– Crovella and Bestavros (1997).

Measurements on data networks exhibit features surprising by the stan-
dards of classical queueing and telephone network models. These are
called

• invariants

which is to networks what

• stylized facts

are to finance.
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2. Stylized facts

1. Heavy tails abound for such things as

• file sizes,

• transmission rates,

• durations (file transfers, connection lengths).

(See Arlitt and Williamson (1996); Leland et al. (1994); Maulik
et al. (2002); Resnick (2003); Resnick and Rootzén (2000); Will-
inger (1998); Willinger and Paxson (1998); Willinger et al. (1998).)

Reminder: a random variable X has a heavy tail if

P [X > x] ∼ x−αL(x), α > 0, x→∞,

and think of L(x) as constant if you do not know slow variation.

• Tail exhibits power law decay.

• Limited moments:

E(|X|α+δ) =∞, δ > 0.

• If 1 < α < 2, no variance!
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2. The number of bits or packets per slot exhibits long range dependence
across time slots (eg, Leland et al. (1993); Willinger et al. (1995).
There is also a perception of self-similarity as the width of the
time slot varies across a range of time scales exceeding a typical
round trip time.

Note: A stationary process {Xn} possesses long range dependence
if dependence between variables decays slowly as the gap between
the variables increases:

|Corr(X0, Xh)| ≤ (const)h−β, 0 < β < 1.

3. Network traffic is bursty with rare but influential periods of very
high transmission rates punctuating typical periods of modest ac-
tivity.

• Bursty is a somewhat ill defined concept associated with heavy
tailed transmissions rates.

• Introduces peak loads to the network.

• Associated with large files transmitted over fast links.

4. Additional truism: Traffic at a heavily loaded link per unit time
(eg, 1 hour) is normally distributed provided the link is subject to
a high degree of aggregation across users .
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3. Broad Issues (BI’s)

BI-1: Role of statistics and applied probability:

• Statistics: Empirically identify phenomena and properties of
the data so as to better understand what network data in the
wild should look like. Less emphasis on prediction than in
traditional time series analysis.

– Examples: Identify presence of heavy tails, long range
dependence, self-similarity;

– Understand different statistical properties of various ap-
plications and protocols (ftp, http, mail, streaming au-
dio).

• Applied probability: Build models which explain relations and
explain empirically observed phenomena.

– Example: Sizes of files stored on a server follows Pareto
power law tail which causes long range dependence.

Pardigm: Heavy tails cause long range dependence.

– Build models of end user behavior which allow construc-
tion of simulation tools to study effect of tweaking proto-
cols.
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– Explain perceived asymptotic normality of quantity of
traffic at heavily loaded hub.

BI-2: Problem of time scales: Can Applied Math, Operations Research,
Applied Prob & Statistics make contributions to data network
analysis and planning in Internet time.

• Developers have short attention spans and little patience with
outsider’s toys.

• Two year time horizon to write a PhD thesis and really under-
stand something is ridiculously long time horizon for industry.

• Pessimists view: the best the mathy community can do is
to cause paradigm shifts with explanations which may lag
behind developments.

• Start-up mentality.

– Take the money and run mentality.

– “Anyone who gets a PhD does not understand economics .”

– Long development time for a project means other people
are earning.
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4. An approach to modeling: Infinite source Poisson
model

Instead of passing bits, imagine pouring liquid. Suppose sessions char-
acterized by

• Session initiation times are {Γk} where

{Γk} ∼ homogeneous Poisson on (−∞,∞), rate λ.

• Sequence of iid marks independent of {Γk}: Each Poisson point
Γk receives a mark which characterizes input characteristics:

(Sk, Dk, Rk) = (file, duration, rate ),

where
Sk = DkRk.

All three quantities are often empirically seen to be marginally
heavy tailed:

P [S > x] ∼x−αSLαS
(x)

P [D > x] ∼x−αDLαD
(x)

P [R > x] ∼x−αRLαR
(x),

with (usually) 1 < αS, αR, αD < 2.
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Examples of mark (Sk, Dk, Rk) structures:

– Early simple models assumed constant input rates,

Rk = 1

so that total input rate at time t is

M(t) = # active sources at time t.

– Random but constant rates Rk during the transmission inter-
val. (Can even make rate time varying.) Possibly,

∗ (S,D) jointly heavy tailed.

∗ (R, S) satisfies the conditional extreme value (CEV) model
in which

R− β(t)

α(t)

∣∣∣S > t

has a limit distribution approximation for large t and S
is heavy tailed (Das and Resnick, 2011).

∗ S ⊥⊥ R (Hernández-Campos et al., 2005) ?

∗ D ⊥⊥ R (Maulik et al., 2002)..

∗ Mixture of the previous 2 cases.

∗ Some asymptotic form of independence. (Danger: Hard
to do mathematical modeling without actual indepen-
dence.)
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– Why is it difficult to decide on the the joint distribution of
(S,D,R)? Statistical studies are inclusive since

∗ Different types of data analyzed.

· file sizes

· response

· connections

· session of packets

∗ Different amalgamation and segmentation rules. Eg, clus-
ter packets into same session if

· packets have same

(source ip addr, destination ip addr)

and arrive within 2 seconds of each other.

· packets have same

(source ip addr, destination ip addr)

and same

(source port #, same destination port #)

and arrive within 2 seconds of each other.

∗ Different applications might have different statistical char-
acteristics (streaming media vs http).
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∗ Different protocols (TCP vs UDP) might have different
statistical characteristics.

· TCP, being subject to a control, tends to produce light
tailed flows.

· UDP (eg, streaming, voip) produces more heavy tailed
flows.

– Different distributional assumptions lead to radically different
model predictions. Not surprising.
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• Fluid input models for cumulative input in time (a, b]:

A(a, b] = total work inputted in time interval(a, b].

– Process approximation to cumulative input.

∗ Large time scale approximation

d− lim
T→∞

A(0, T t]− b(T )

a(T )
= X(t),

where possible limits include (Kaj and Taqqu, 2008; Mikosch
et al., 2002; Taqqu et al., 1997)

· fractional Brownian motion (Gauss marginals, lrd)

· stable Lévy motion (heavy tailed marginals, sii, ss)

· BUT: not easy to find agreement with these approxi-
mate models and data (Guerin et al., 2003)

∗ Small time scale approximations (D’Auria and Resnick,
2006, 2008) : Block time into small time slots (kδ, (k+1)δ]
and consider as δ → 0

{A(kδ, (k + 1)δ], k ∈ N}.

depending on the interaction of input rates and tails. Will
need λ = λ(δ) ↑ ∞ (a la heavy traffic limit theorems).
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· Small time scale approximation results dependent on
distributional assumptions on (S,D,R). Either

D-limit is approximately highly correlated

normal random variables or

D-limit is approximately highly dependent

stable infinite variance random variables.

· Compute dependence measure across different slots.
Models predict lrd for {A(kδ, (k + 1)δ], k ∈ N}
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4.1. Summary: Stylized facts and small time scale approximation

Stylized Facts S ⊥⊥ R Model D ⊥⊥ R Model

1. Heavy tails Built in Built in

2. P [A(0, δ] > x] ∼ x−(αR+αS), x−αR ,
fixed δ; x→∞ fixed δ; x→∞

3. LRD across slots Cov(k) ∼ cF̄
(0)
S (k); EDM(k) ∼ cF̄

(0)
D (k);

fixed δ; k →∞ fixed δ; k →∞

4. Cum traffic/slot
(A(0, δ]− (ctering(δ))

a(δ)

(A(0, δ]− (ctering(δ))

b(δ)

is N(0, 1)?
d
≈ N(0, 1)

d
≈ XαR

(·)

For more, ask Bernardo.
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5. Some Technical Points

Tech Pt 1: Identify in the data (connections, flows, packets, ses-
sions) a subset of points that can be modelled as Poisson time
points and validate the choice.

• Quick & dirty (Q&D) solution: Check if interpoint distances
are iid (sample acf almost 0) and exponentially distributed
(qq-plots).

• Q&D Rules of Thumb:

– Behavior of lots of humans acting independently is often
well modelled by a Poisson process.

– Starting times of machine triggered downloads cannot be
modelled as Poisson process.

Example: UCB: Inter-arrival times of requests in http sessions via
telephone modem (last century).
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Tech Pt 2: Heavy tails: A rv X has a heavy (right) tail if

P [X > x] ∼ x−α, x→∞.

Notes

• 0 < α < 1: Very heavy: mean & variance infinite.

• 1 < α < 2: Heavy: Frequent case where mean finite but
variance is infinite.

• α > 2: Heavy with finite variance: Typical of financial data.

• For large x,

P [logX > x] ∼ e−αx, x→∞.

So inference can be based on exponential density and thresh-
olding techniques to account for the distribution following this
law only for large x.

• For many purposes, do not need to know the whole distribu-
tion but just the tail.

Example: BU data: Influential study from mid ’90’s: File sizes
downloaded in a web session.
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Figure: Sizes of www downloads; BU experiment: QQ-plot and
Hill plot.
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Tech Pt 3. Checking for independence.

• Q&D method 1: Standard time series method checks if sam-
ple correlation function

ρ̂(h) =

∑n−h
i=1 (Xi − X̄)(Xi+h − X̄)∑n

i=1(Xi − X̄)2
, h = 1, 2, . . . ,

is close to identically 0.

How to put meaning to phrase close to 0? If

– If finite variances, Bartlett’s formula provides asymptotic
normal theory.

– If heavy tailed, Davis and Resnick formula provides asymp-
totic distributions for ρ̂(h).

• Q&D method 2: If data heavy tailed, take a function of the
data (say the log) to get lighter tail and test. (But this may
obscure the importance of large values.)

• Q&D method 3: Subset method. Split data into (say) 2 sub-
sets. Plot acf of each half separately. If iid, pics should look
same.
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Example: UNC connection data. Data contains 173604 con-
nection vectors ordered by the connection initiation times. Clus-
ters are obtained by considering only the connection start times
ordered as they appeared in time on the UNC link and arbitrarily
using a time threshold of 5 milliseconds to separate clusters. This
yields 16417 clusters.

Do the cluster heads look Poisson?
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Tech Pt 4. Is the data stationary? Usually not and there are, for
example, diurnal cycles. (There is only so much Red Bull (Jolt,
Coke, . . . ) that a human can consume.)

• Q&D Coping Method: Take a slab of the copius data which
looks stationary.

• Usually there is too much data. (!!??)

– Unpleasant truth:

Making the data set sufficiently large allows one to
reject any hypothesis.

• Rule of thumb: With high resolution data, don’t take more
than 4 hours. Depending on the data, it can be a couple of
minutes; eg connection data.

• Should we try to model the cycles?

But: Cornell hourly traffic between 1-4pm show buildup for the
day. So have trend within day.
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Tech Pt 5. Long range dependence. A stationary L2 sequence
{ξn, n ≥ 1} has long-range dependence if

Cov(ξn, ξn+h) ∼ h−β, h→∞

for 0 < β < 1.

How to test? Q&D method: The sample acf should not → 0
quickly as the lag increases.

EXAMPLE: CompanyX–packet counts per unit time on Compa-
nyX’s WAN (including trans-Atlantic traffic).
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6. How do heavy tails cause long range depen-
dence?

Assume infinite source Poisson model with

Rk = 1 ⇒ Sk = Dk.

1 < α = αS < 2, F̄S ∈ RV−α, F̄S(x) = x−α`(x).

Recall

M(t) = # active sources at time t,

= total input rate at time t,

= analogue of packet count per unit time.

Background and warmup:

For each fixed t, M(t) is a Poisson random variable.

Why? When 1 < αS < 2, M(·) has a stationary version. Assume∑
k

εΓk
= PRM(λdt)

on R. Then

ξ :=
∑
k

ε(Γk,Dk) = PRM(λdt× FS)
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on R× [0,∞) and

M(t) =
∑
k

1[Γk≤t<Γk+Dk]

=ξ({(s, l) : s ≤ t < s+ l} = ξ(B)

t

B

s

l

is Poisson with mean

E
(
ξ({(s, l) : s ≤ t < s+ l}

)
=

∫ t

s=−∞
F̄S(t− s)λds = λµS
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The process {M(t), t ∈ R} is stationary with covariance function

Cov(M(t),M(t+ s))

=Cov
(
ξ(A1) + ξ(A2), ξ(A2) + ξ(A3)

)
and because ξ(A1) ⊥⊥ ξ(A3), this is

t      t+s

A1

A3

A2

=Cov
(
ξ(A2), ξ(A2)

)
=Var

(
ξ(A2)

)
=E
(
ξ(A2)

)
=

∫ t

u=−∞
λdu F̄S(t+ s− u)

=λ

∫ ∞
s

F̄S(v)dv

∼λsF̄S(s) · c = c′s−(α−1)`(s).

The slow decay of the covariance as a function of the lag s char-
acterizes long range dependence. �
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