Comments

February $24^{\text {th }}, 2011$

1 Sum of independent random variables

Given two independent random variables X and Y, with distribution functions $F_{X}(x)=\operatorname{Pr}\{X \leq x\}$ and $F_{Y}(y)=\operatorname{Pr}\{Y \leq y\}$ if we define $Z=X+Y$, the distribution function $F_{Z}(z)$ is the given by

$$
\begin{align*}
F_{Z}(z)=\operatorname{Pr}\{Z \leq z\}=\operatorname{Pr}\{X+Y \leq z\} & =\int_{-\infty}^{\infty} \operatorname{Pr}\{X+Y \leq z \mid X=x\} d F_{X}(x) \\
& =\int_{-\infty}^{\infty} \operatorname{Pr}\{Y \leq z-x \mid X=x\} d F_{X}(x) \\
& \stackrel{\text { ind }}{=} \int_{-\infty}^{\infty} \operatorname{Pr}\{Y \leq z-x\} d F_{X}(x) \\
& =\int_{-\infty}^{\infty} F_{Y}(z-x) d F_{X}(x) \tag{1}
\end{align*}
$$

And if we define the convolution operator $F * G(t)$ that given two distribution functions $F(t), G(t)$ is equal to

$$
F * G(t)=\int_{-\infty}^{\infty} F(t-s) d G(s)
$$

we get that

$$
F_{Z}(z)=F_{Y} * F_{X}(z) .
$$

You can check that $F * G(t)=G * F(t)$ by a simple change of variable or simply noting that $Z=X+Y=$ $Y+X$.

2 Positive random variables

Assuming now that $X, Y \geq 0$, we have that $F_{X}(x)=0$ for $x<0$ and also $F_{Y}(y)=0$ for $y<0$. Note that we admit $F_{X}(0)>0$ and $F_{Y}(0)>0$. In this case equation (1) becomes

$$
\begin{equation*}
F_{Z}(z)=\int_{0}^{z} F_{Y}(z-x) d F_{X}(x)=\int_{0}^{z} F_{X}(z-y) d F_{Y}(y) \tag{2}
\end{equation*}
$$

still it is valid that $F_{Z}(z)=F_{Y} * F_{X}(z)=F_{X} * F_{Y}(z)$ that now reduces to the expression (2).

2.1 Laplace transforms

Assume that X has Laplace transform $\phi_{X}(s)=\tilde{F}_{X}(s)=\mathbb{E}\left[e^{s X}\right]$, and in the same way Y has Laplace transform $\phi_{Y}(s)=\tilde{F}_{Y}(s)=\mathbb{E}\left[e^{s Y}\right]$, then it follows that $Z=X+Y$ has Laplace transform $\phi_{Z}(s)=\tilde{F}_{Z}(s)$ given by

$$
\begin{aligned}
\tilde{F}_{Z}(s) & =\mathbb{E}\left[e^{s Z}\right]=\mathbb{E}\left[e^{s(X+Y)}\right]=\mathbb{E}\left[e^{s X} e^{s Y}\right] \\
& \stackrel{\text { ind }}{=} \mathbb{E}\left[e^{s X}\right] \mathbb{E}\left[e^{s Y}\right]=\tilde{F}_{X}(s) \tilde{F}_{Y}(s)
\end{aligned}
$$

Last equation expresses the fact that the Laplace transform translates the convolution operator to a product operator, i.e.

$$
\mathcal{L}(F * G)(s)=\mathcal{L}(F)(s) \mathcal{L}(G)(s)
$$

where we denoted by $\mathcal{L}(F)(s)$ the Laplace-Stieltjes transform of the distribution function $F(t)$, i.e.

$$
\mathcal{L}(F)(s)=\int_{0}^{\infty} e^{-s t} d F(t)
$$

3 Sum of i.i.d. positive random variables

Assume to have two i.i.d. random variables X_{1} and X_{2} with common distribution function $F_{X}(x)$. Now $Y=X_{1}+X_{2}$ has distribution function

$$
F_{Y}(y)=F_{X} * F_{X}(y)=F_{X}^{* 2}(y)
$$

known also has 2-fold convolution of $F_{X}(x)$. In general if $Z=\sum_{i=1}^{n} X_{i}$ with X_{i} i.i.d. and with common distribution $F_{X}(x)$, then the distribution of Z is given by the n-th convolution of $F_{X}(x)$, i.e.

$$
F_{Z}(z)=F_{X}^{* n}(z)
$$

with $F_{X}^{* n}(z)=F_{X}^{*(n-1)} * F_{X}(z)$, that in the transformed domain corresponds to

$$
\phi_{Z}(s)=\tilde{F}_{Z}(s)=\left(\tilde{F}_{X}(s)\right)^{n}
$$

4 Excercises

1. Assume X_{1} and X_{2} i.i.d uniformly distributed between $[0,1]$, compute the distribution function of $Y=$ $X_{1}+X_{2}$. Compute its Laplace transform as well.
2. Assume X_{n} i.i.d exponential random variables with parameter $\lambda>0$. Compute the distribution of $Z=\sum_{i=1}^{n} X_{i}$. Do you recognize this distribution? Compute its Laplace transform as well.
3. If $\left.\Phi_{(} z\right)$ is the CDF of a standard Normal random variable. What would be its n-th fold convolution?
