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1 Black-Scholes Formula

In this section we apply the theory of Stochastic Calculus to prove the well known Black-Scholes formula about the
option pricing of a stock asset whose price dynamics are modeled as a geometric Brownian Motion.

1.1 Financial Arbitrage

In finance one main assumption about the market is that the prices are determined by the principle of “no arbitrage
opportunity”.

Definition 1. An arbitrage opportunity is any circumstance where the simultaneous purchase and sale of the
related security is guaranteed to produce a risk-less profit.

According to this principle it follows that any two investments with identical payout streams must have the same
price.

If this were not true, one could take advantage of an arbitrage opportunity by buying the security at the lower
price and simultaneously selling it at the higher price. Being th payout streams equal, s/he could compensate the two
in-out payout flows such as to gain in a risk-less way an amount of money equal to the difference of the two prices.
By repeating this for a very large number of units of the same security s/he could become with no risk infinitely rich.

Therefore the principle of “no arbitrage opportunity” gives a practical way to determine the price of a new
financial instrument, such as for example an option. To see this assume we were able to replicate the new investment
by another one with known price and identical payout stream, then the financial instrument we want to value should
have necessarily the same price.

Before analyzing the Black-Scholes model we give two examples of replication that yield to pricing two simple
financial instruments: the “Forward Contracts” and the “Binomial Option”.

In what follows we are going to assume that the market is ideal, i.e. there are no transaction costs and the interest
rates are symmetric that means we can borrow and lend money at the same interest rates.

1.2 Forward Contract

Definition 2. A forward contract is an agreement to buy a commodity at a given future time T at a fixed price
K.

A Forward Contract obviously has a price, let us say F , and in the following we are going to make a replica of
this investment in order to determine the value of F .

The replicating portfolio consists in buying at time 0 one unit of the commodity, whose price is S(0) = S, and
selling e−r TK of bond (that is equivalent to borrowing a same amount of money). Calling V (0) the value of the
portfolio at time 0 (i.e. the amount of money we would get if we decided to sell it completely), and V (T ) its value
at time T we get the following comparison table

Time 0 Time T

Forward Contract F S(T )−K

Replicating Portfolio S − e−r TK S(T )−K

Notice that the value of the forward contract at time T is S(T ) − K, because we are required to buy at time
T the commodity at price K for a net gain of S(T ) − K. Equating the pay-out flows we immediately get that
F = S − e−r TK.
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1.3 Binomial Option

In this section we try to price an option assuming a simplified scenario where there exist only time 0 and time T
and two possible values for the future price of the stock at time T , say S(T ). The commodity, that to fix ideas
we suppose to be a stock, has price S(0) at time 0 and at time T it may have price SU with probability p or price
SD with probability 1 − p. The option, that costs an unknown quantity O, gives the right but not the obligation
to buy the stock at time T at a price K with SD < K < SU so that owning it has a worth of (S(T ) − K)+ with
(a)+ = max{0, a}.

The replicating portfolio again consists in buying at time 0 some units of the “underlying” (the stock), at price
S(0) = S, and some units of bond at price β(0) = β. Negative quantities of bond actually means that we sell units
of bond that is the same as borrowing money. Assuming that the quantities of stock and bond are unknown and
equal to a and b we have that the values of our portfolio in the present and the future are given by

V (0) = aS(0) + bβ(0) = aS(0) + bβ and V (T ) = aS(T ) + bβ(T ) = aS(T ) + b β er T .

Comparing with the values of owning the option we get the following resuming table

Time 0 Time T
UP - w.p. p DOWN - w.p. 1− p

Binomial Option O SU −K 0

Replicating Portfolio aS + b β aSU + b β er T aSD + b β er T

Equating the pay-out streams we get

a =
SU −K
SU − SD

and b = − SU −K
SU − SD

SD
β
e−r T

and therefore the binomial option has to be priced

O =
SU −K
SU − SD

[S − SD e−r T ].

1.4 Black-Scholes Model

The Black-Scholes model is a generalization of the binomial model, that assumes that the changes in the stock price
happen in continuous time. The model chosen for the price dynamics of the underlying is represented by the following
stochastic differential equation

dS(t) = µS(t) dt+ σ S(t) dB(t) (1)

where we assume that the price at time 0 is S(0) = S and where B(t) is the standard Brownian motion. As for the
bond, its dynamics are described by a deterministic ordinary differential equation, i.e.

dβ(t) = r β(t) dt,

whose solution is simply β(t) = β er t where we assumed β(0) = β.
The specific option we are considering has the property to give us the right but not the obligation, to buy the

underlying at fixed time T , called the execution time, at price K, called strike price. This financial instrument is
generally know as European Call Option.

In the same way as we did for the binomial model we assume that the replicating portfolio consists in holding at
time t a quantity a(t) of stock and a corresponding quantity b(t) of bonds. The value of the option at time 0 is the
unknown price O while its value at time T is (S(T )−K)+.

Since the payout stream of the option investment allows payment only at the beginning, O, and at the end
(S(T )−K)+, the replicating portfolio cannot allow in-out flow of money during the interval (0, T ). This means that
if we decide at time t to sell an amount of stock we hold, say da(t), the amount of money we would receive, S(t) da(t)
has to be fully invested in buying units of bonds db(t) for a total cost −β(t) db(t), such that

S(t) da(t) = −β(t) db(t). (2)
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Calling V (t) the value of the portfolio at time t we have that it is given by

V (t) = a(t)S(t) + b(t)β(t). (3)

By differentiating (3) we get

dV (t) = a(t) dS(t) + S(t) da(t) + β(t) db(t) + b(t) dβ(t) (4)

and using (2) we get the so called “self-financing condition”

dV (t) = a(t) dS(t) + b(t) dβ(t) (5)

that simply means that the changes in the value of the portfolio are not due to the conversions of stock units in bond
units but only to the changes of their market prices.

For the Black-Scholes model the following table shows the comparison between the value of holding an European
Call Option and the value of the replicating portfolio

Time 0 Time T

European Call Option O (S(T )−K)+

Replicating Portfolio V (0) V (T )

and we see that our problem reduces to determine the value of V (0) with the condition that V (T ) = (S(T )−K)+.
To find a solution V (t) to the SDE (5) we look for solution of kind V (t) = f(t, S(t)) for a given twice differentiable

function f(t, x).
Substituting this in (5) and using Itô formula we get

dV (t) = df(t, S(t)) = ft(t, S(t)) dt+ fx(t, S(t)) dS(t) +
1
2
fxx(t, S(t)) (dS(t))2.

Using (1) we get that (dS(t))2 = σ2 S2(t) dt and therefore after collecting terms we get

dV (t) = df(t, S(t)) = [ft(t, S(t)) + µ fx(t, S(t))S(t) +
1
2
fxx(t, S(t))σ2 S2(t)] dt+ σ fx(t, S(t))S(t) dB(t). (6)

Substituting the expression for dS(t) and dβ(t) in equation (5) we similarly get

dV (t) = [a(t)µS(t) + b(t) r β(t)] dt+ a(t)σ S(t) dB(t) (7)

and matching its coefficients with the ones of equation (6) we get

a(t) = fx(t, S(t)) (8)

b(t) =
1

r β(t)

[
ft(t, S(t)) +

1
2
fxx(t, S(t))σ2 S2(t)

]
(9)

Finally by substituting the above expression for a(t) and b(t) in equation (3) we get

f(t, S(t)) = S(t) fx(t, S(t)) +
1
r

[
ft(t, S(t)) +

1
2
fxx(t, S(t))σ2 S2(t)

]
with

f(T, S(T )) = (S(T )−K)+

and therefore the function we are looking for is the solution of the PDE

ft(t, x) = −1
2
σ2 x2 fxx(t, x)− r x fx(t, x) + r f(t, x) (10)

with terminal boundary condition
f(T, x) = k(x), (11)

with k(x) = (x−K)+.
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1.5 Solving the PDE

In this section we try to find the solution of the equation (10) that we shorty rewrite in the following way

ft = −1
2
σ2 x2 fxx − r x fx + r f, (12)

and with boundary condition (11).
First we change the terminal boundary condition into an initial condition by changing the time variable and using

τ(t) = T − t. We change also the space variable x by using the transformation y(x) = ln(x) that allows to get rid
of the factor terms x and x2. Define g(τ, y) = f(T − τ, ey), it follows that f(t, x) = g(T − t, ln(x)) such that the
following relations hold true

ft(t, x) = −gτ (τ(t), y(x)) and in short form ft = −gτ

fx(t, x) =
1
x
gy(τ(t), y(x)) fx =

1
x
gy

fxx(t, x) =
1
x2
gyy(τ(t), y(x))− 1

x2
gy(τ(t), y(x)) fxx =

1
x2
gyy −

1
x2
gy

In terms of g(τ, y) the differential equation (12) becomes

gτ =
1
2
σ2 gyy +

(
r − 1

2
σ2

)
gy − r g, (13)

and with initial boundary condition
g(0, y) = k(ey) = (ey −K)+. (14)

By letting h(τ, y) = eα τ+γ yg(τ, y) we have that

hτ = αh+ eα τ+γ ygτ

hy = γ h+ eα τ+γ ygy

hyy = 2 γ hy − γ2 h+ eα τ+γ ygyy

yielding to

eα τ+γ ygτ = hτ − αh
eα τ+γ ygy = hy − γ h
eα τ+γ ygyy = hyy − 2 γ hy − γ2 h.

Multiplying equation (13) on both sides by eα τ+γ y and using last expressions we finally get

hτ =
1
2
σ2 hyy +

[
r − 1

2
σ2 − γ σ2

]
hy +

[
α+

1
2
γ2 σ2 − γ

(
r − 1

2
σ2

)
− r
]
h

with initial boundary condition
h(0, y) = eγ y k(ey) = eγ y (ey −K)+.

Making the special choice of

γ∗ =
1
σ2

(
r − 1

2
σ2

)
α∗ = r +

1
2σ2

(
r − 1

2
σ2

)2

for the constants α and γ we finally obtain

hτ =
1
2
σ2 hyy (15)
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with initial boundary condition
h(0, y) = eγ

∗ y k(ey) = eγ
∗ y (ey −K)+. (16)

It is known [see the notes on the Backword Diffusion Equations about the (µ, σ)-BM, W (t)] that the solution of
the heat equation (15) is given by

h(τ, y) =
1√

2π σ2 τ

∫ +∞

−∞
h(0, x) e−

(y−x)2

2σ2τ dx =
∫ +∞

−∞
h(0, y − zσ

√
τ) dΦ(z) (17)

where Φ(z) = P{Z ≤ z} with Z ∼ N(0, 1) a standard Normal random variable.
Substituting back f(t, x) = e−α

∗ (T−t) x−γ
∗
h(T − t, ln(x)), after some algebraic manipulations we get

f(t, x) = xΦ
(

ln(x/K) + (r + 1
2σ

2)(T − t)
σ
√
T − t

)
−K e−r(T−t) Φ

(
ln(x/K) + (r − 1

2σ
2)(T − t)

σ
√
T − t

)
(18)

and therefore the price of the option will be

O = f(0, S) = S Φ
(

ln(S/K) + (r + 1
2σ

2)(T − t)
σ
√
T − t

)
−K e−r(T−t) Φ

(
ln(S/K) + (r − 1

2σ
2)(T − t)

σ
√
T − t

)
,

with S = S(0).
In addition thanks to the derivation did before we obtain as a side product also the way how to replicate the

option by using a portfolio made of the stock and the bond. Indeed the amount of stock units held at time t has to
be equal to

a(t) = fx(t, S(t)) = Φ
(

ln(S(t)/K) + (r + 1
2σ

2)(T − t)
σ
√
T − t

)
and the units of bonds

b(t) = −K
β
e−r T Φ

(
ln(S(t)/K) + (r − 1

2σ
2)(T − t)

σ
√
T − t

)
.
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