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1 The Renewal Equation

The renewal equation is an important integral equation that appears often in Renewal Theory. Its expression is given
by

Z(t) = H(t) +

∫ t

0

Z(t− s)F (s), t ≥ 0 (1)

with Z(t), H(t) and F (t) general functions defined for t ≥ 0. Usually the functions F (t) and H(t) are known and
the task is to look for a function Z(t) that satisfies equation (1) for all t ≥ 0.

Remembering that the convolution Z ∗ F (t) of two functions defined on R+, Z(t) and F (t), is given by

Z ∗ F (t) =

∫ t

0

Z(t− s)F (ds)

the renewal equation can be expressed also in the following alternative form

Z(t) = H(t) + Z ∗ F (t).

In addition, since it is known that the Laplace transform of a convolution is given by the product of the Laplace
transforms of the convoluted functions, i.e L[Z ∗F ](s) = L[Z](s) · L[F ](s), equation (1) is equivalent to the following

Z̃(s) = H̃(s) + Z̃(s) F̃ (s),

where we denoted by Z̃(s) = L[Z](s), F̃ (s) = L[F ](s) and H̃(s) = L[G](s) the Laplace transforms of Z(t), F (t) and
H(t) respectively.

Solving for Z̃(s) we get that the Laplace transform of the solution function Z(t) in (1) is given by

Z̃(s) =
H̃(s)

1− F̃ (s)
. (2)

Since the Laplace transform uniquely characterizes the transformed function, the unique solution of the renewal
equation (1) is given by the inverse transform of (2), i.e. Z(t) = L−1[Z̃](t).

Noticing that

1

1− F̃ (s)
=

∞∑
n=0

F̃ (s)
n

we get directly that

Z(t) = L−1[Z̃](t) = L−1
[

H̃

1− F̃

]
(t) = H ∗

∞∑
n=0

F ∗n(t), (3)

where we denoted by F ∗(n+1)(t) = F ∗n ∗ F (t), for n ≥ 0, having defined F ∗0(t) ≡ 1.

Example 1. Let N(t) be a renewal process with general inter renewal time τ whose distribution is denoted by
F (t) = P{τ ≤ t}. It is known that the renewal function m(t) = E[N(t)] can be expressed in the following form

m(t) =

∞∑
n=1

F ∗n(t) = F ∗
∞∑
n=0

F ∗n(t),

therefore it is solution of the following renewal equation

m(t) = F (t) +m ∗ F (t).
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Example 2. Let ND(t) be a delayed renewal process with general inter renewal time τ whose distribution is denoted
by F (t) = P{τ ≤ t} and with H(t) being the distribution of the initial delay. Then the delayed renewal function
mD(t) = E[ND(t)] has the following known expression

mD(t) = H ∗
∞∑
n=1

F ∗n(t),

therefore it is solution of the following renewal equation

m(t) = H(t) +m ∗ F (t).

2 Ruin Probability in the Cramér-Lundberg risk model

Consider the Cramér-Lundberg risk model. It models the simplified dynamics of the risk reserve, U(t), of an
insurance company. It is assumed that the risk reserve increases linearly from the initial capital U(0) = u, thanks
to the incoming premium flow rate, c > 0. In addition claims are supposed to come according to a homogeneous
Poisson Process with parameter λ > 0 and the claims’ sizes are assumed to be independent random variables, Rn,
generally distributed with common distribution function G(r) = P{R ≤ r}.

Formally the model is described by the following relation

U(t) = U(0) + c t−
N(t)∑
n=1

Rn (4)

where N(t) denotes the Poisson counting process.
An important random variable associated to this model is the Ruin epoch, T ∗, that is defined as the first moment

the process assumes non-positive values, i.e.

T ∗ = inf{t ≥ 0, U(t) < 0}.

We assume that T ∗ takes value +∞ over the event {U(t) ≥ 0, t ≥ 0} that may have positive probability, and therefore
it is interesting to ask for the probability, p(u), of the set {T ∗ < ∞|U(0) = u}, that is called the Ruin probability
under the assumption that the initial capital is equal to u ≥ 0. In formulas

p(u) = P{T ∗ <∞|U(0) = u} = Pu{T ∗ <∞}.

In the following we compute the complement probability

Z(u) = 1− p(u) = Pu{T ∗ =∞} = Pu{U(t) ≥ 0, t ≥ 0},

that is the probability that the insurance company never incurs in ruin during its infinite lifetime.

Proposition 1. The probability Z(u) is solution of the following renewal equation

Z(t) = Z(0) + Z ∗ F (t) (5)

where the function F (t) = λ
c

∫ t
0
Ḡ(r) dr.

Proof. Conditioning on the pair (T1, R1), where T1 is the time of occurrence of the first claim, and R1 is its size we
have that

Z(u) = Pu{U(t) ≥ 0, t ≥ 0} =

∫ ∞
0

∫ ∞
0

Pu{U(t) ≥ 0, t ≥ 0|(T1, R1) = (s, r)}λ e−λ s dsG(dr), (6)

where we used the fact that the first arrival time T1 is equal to the first inter arrival time and, as such, exponentially
distributed with parameter λ > 0. The behavior of the risk reserve process can be described in the following way

U(t) = U(0) + c t 0 ≤ t < T1

U(T1) = U(0) + c T1 −R1

U(t+ T1) = U(T1) + c t−
N(t+T1)∑
n=2

Rn t ≥ 0.
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Noticing that
{N(t+ T1)− 1}t≥0 =d {N(t)}t≥0

we immediately have that
{U(t+ T1)|U(T1) = u}t≥0 =d {U(t)|U(0) = u}t≥0

for any u ∈ R, where =d denotes equality in distribution.
Assuming that u ≥ 0, w.p.1 U(t) ≥ 0 for 0 ≤ t < T1, and therefore it follows that

Pu{U(t) ≥ 0, t ≥ 0|(T1, R1) = (s, r)} = Pu{U(t+ T1) ≥ 0, t ≥ 0|(T1, R1) = (s, r)}
= Pu{U(t+ T1) ≥ 0, t ≥ 0|U(T1) ≥ 0, (T1, R1) = (s, r)}
· Pu{U(T1) ≥ 0|(T1, R1) = (s, r)}

= Pu+c s−r{U(t) ≥ 0, t ≥ 0} 1{u+ c s− r ≥ 0}
= Z(u+ c s− r) 1{u+ c s− r ≥ 0},

that substituted in (6) gives

Z(u) =

∫ ∞
0

∫ ∞
0

Z(u+ c s− r) 1{u+ c s− r ≥ 0}λ e−λ s dsG(dr)

=

∫ ∞
0

∫ u+c s

0

Z(u+ c s− r)λ e−λ s dsG(dr)

=

∫ ∞
0

λ e−λ s
[∫ u+c s

0

Z(u+ c s− r) G(dr)

]
ds

using the change of variable t = u+ c s, we get

=

∫ ∞
u

λ

c
e−λ

t−u
c

[∫ t

0

Z(t− r)G(dr)

]
dt

Multiplying both sizes for e−
λ
c u we finally get

Z(u) e−
λ
c u =

λ

c

∫ ∞
u

e−
λ
c t

[∫ t

0

Z(t− r)G(dr)

]
dt

that shows that Z(u) is differentiable and indeed deriving it with respect to u and simplifying, we get

Z ′(u) =
λ

c
Z(u)− λ

c

∫ u

0

Z(u− r)G(dr) =
λ

c
Z(u) +

λ

c

∫ u

0

Z(u− r) Ḡ(dr) (7)

Integrating equation (7) on [0, t] we get

Z(t)− Z(0) =

∫ t

0

Z ′(u) du =
λ

c

∫ t

0

Z(u) du+
λ

c

∫ t

0

∫ u

0

Z(u− r) Ḡ(dr) du (8)

and setting

h(r) =


∫ t−r
0

Z(u)du r ≤ t

0 r ≥ t
we can rewrite equation (8) in the following way

Z(t)− Z(0) =
λ

c
h(0) +

λ

c

∫ t

0

h(r) Ḡ(dr)

=
λ

c
h(0) +

λ

c
h(r) Ḡ(r)

∣∣∣t
0
− λ

c

∫ t

0

Ḡ(r)h′(r) dr

= −λ
c

∫ t

0

Ḡ(r)h′(r) dr
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and having that h′(r) = −Z(t− r) 1{r ≤ t} we finally obtain

Z(t) = Z(0) +
λ

c

∫ t

0

Z(t− r) Ḡ(r) dr

from that the result follows.

Proposition 2. Assuming c > λ ρ, the ruin probability p(u) is given by

p(u) = 1− (1− p(0))

∞∑
n=0

F ∗n(t), (9)

where the function F (t) = λ
c

∫ t
0
Ḡ(r) dr, ρ = E[R] =

∫∞
0
Ḡ(r) dr and

p(0) =
λ ρ

c
. (10)

Proof. From (3) and (5) with H(t) ≡ Z(0) we immediately get

Z(u) = Z(0)

∞∑
n=0

F ∗n(t).

Therefore we need only to compute Z(0). Applying the theorem on the Renewal Reward processes it follows that

lim
t→∞

c t−
∑N(t)
n=1 Rn
t

= c− λ ρ

and having c > λ ρ, we obtain that

c t−
N(t)∑
n=1

Rn → +∞ a.s.

Therefore m = inf{c t−
∑N(t)
n=1 Rn, t ≥ 0} is a well defined random variable and

Z(u) = P{u+m ≥ 0} = P{Au}

where Au = {ω ∈ Ω : m(ω) ≥ −u}.
Since Au′ ⊂ Au′′ when u′ ≤ u′′, we have that Au is an increasing sequence of sets and from the continuity property

(∗) of the probability

Z(∞) = lim
u↑∞

Z(u) = lim
u↑∞

P{Au}
∗
= P{ lim

u↑∞
Au} = P{Ω} = 1.

Therefore using bounded convergence theorem in (5) we have that

1 = Z(0) + F (∞)

because Z(t)→ 1 as t→∞ and therefore Z ∗ F (t)→ F (∞) as t→∞ with F (∞) = λ ρ/c.
Since p(0) = 1− Z(0) the result follows.

3 Waiting time distribution in a M/G/1 queue

Let Wn denote the waiting time of the customer n that arrives at time Tn, departs at time Dn and whose service
time is σn. Call also τn = Tn − Tn−1 the inter-arrival time between the (n− 1)-th and the n-th customers.

Obviously Dn = Tn +Wn + σn and the waiting time of the (n+ 1)-th customer is given by

Wn+1 =

{
Dn − Tn+1 if Tn+1 ≤ Dn

0 if Tn+1 > Dn
(11)
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that can be shortly rewritten as

Wn+1 = (Dn − Tn+1)+ = (Wn + σn + Tn − Tn+1)+ = (Wn + σn − τn+1)+ = (Wn +Xn)+ (12)

with (a)+ = max{a, 0} and Xn = σn − τn+1. Obviously the sequence {Xn}n≥0 are iid and we assume that at time 0
there is a customer entering in the system with service request σ0 ≥ 0 and waiting time W0 ≥ 0.

Letting S0 = 0 and Sn =
∑n−1
k=0 Xk, for n > 0, be the free random walk, we have the following important result

Proposition 3. The solution of the so called Lindley’s recursion rule

Wn+1 = (Wn +Xn)+, n ≥ 0 (13)

is equal in distribution to
Wn+1 =d max{W0 + Sn+1,Mn} (14)

where =d means equality in distribution and Mn = max{Sk, 0 ≤ k ≤ n}.

Proof. First we prove that

Wn+1 = max{W0 + Sn+1, Sn+1 − S1, Sn+1 − S2, . . . , Sn+1 − Sn, 0}. (15)

Indeed last equation is valid for n = 0 since

W1 = (W0 +X0)+ = (W0 + S1)+ = max{W0 + S1, 0}.

Now assuming that it is valid for n ≥ 0 we have that

Wn+2 = (Wn+1 +Xn+1)+

= (max{W0 + Sn+1, Sn+1 − S1, Sn+1 − S2, . . . , Sn+1 − Sn, 0}+Xn+1)+

= (max{W0 + Sn+1 +Xn+1, Sn+1 +Xn+1 − S1, Sn+1 +Xn+1 − S2, . . . , Sn+1 +Xn+1 − Sn, Xn+1})+

= (max{W0 + Sn+2, Sn+2 − S1, Sn+2 − S2, . . . , Sn+2 − Sn, Sn+2 − Sn+1})+

= max{W0 + Sn+2, Sn+2 − S1, Sn+2 − S2, . . . , Sn+2 − Sn, Sn+2 − Sn+1, 0}.

In addition we have that

(Sn+1 − S1, Sn+1 − S2, . . . , Sn+1 − Sn, 0) =

(
n∑
k=1

Xk,

n∑
k=2

Xk, . . . ,

n∑
k=n

Xk, 0

)

=d

(
n−1∑
k=0

Xk,

n−2∑
k=0

Xk, . . . ,

0∑
k=0

Xk, 0

)
= (Sn, Sn−1, . . . , S1, S0)

and therefore
max{Sn+1 − S1, Sn+1 − S2, . . . , Sn+1 − Sn, 0} =d Mn. (16)

From (15) and (16) we finally get
Wn+1 =d max{W0 + Sn+1,Mn}

and the result follows.

Proposition 4. Assuming that E[X] < 0 in the limit as n→∞ the stationary distribution of the waiting time will
be distributed as M = supn≥0{Sn}, i.e.

W∞ =d M.

Proof. From the LLN

lim
n→∞

Sn
n

= E[X] < 0

we get that Sn → −∞ a.s. as n→∞, and therefore M is a well defined random variable. In addition W0+Sn → −∞
as well and therefore max{W0 + Sn,Mn} ∼Mn →M as n→∞, that gives the result.
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3.1 Relation between the waiting time distribution and the ruin probability

Proposition 5. Assuming that the general interval between two customers τ is distributed as c τ∗, with τ∗ the general
interval between two claims and that the general claim size, R, is distributed as the general service time σ, then

P{W∞ ≤ u} = 1− p(u).

Proof. From the definition of Z(u) we have that

Z(u) = Pu{U(t) ≥ 0, t ≥ 0} = Pu{inf
t≥0

U(0) + c t−
N(t)∑
n=1

Rn ≥ 0} = P{inf
t≥0

c t−
N(t)∑
n=1

Rn ≥ −u}

= P{− inf
t≥0

c t−
N(t)∑
n=1

Rn ≤ u} = P{sup
t≥0

N(t)∑
n=1

Rn − c t ≤ u}

= P{sup
n≥1

(

n∑
k=1

Rk − c Tk)+ ≤ u} = P{sup
n≥1

(

n∑
k=1

(Rk − c τ∗k ))+ ≤ u}

= P{sup
n≥1

Sn ≤ u} = P{M ≤ u}

where M = supn≥0 Sn, with Sn =
∑n
k=1(Rk − c τ∗k ) and S0 = 0.

The result follows applying Proposition 3 having Rn − c τ∗n =d σn − τn+1 and p(u) = 1− Z(u).
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