
The outline for Unit 5

Unit 1. Introduction: The regression model. XXX

Unit 2. Estimation principles. XXX

Unit 3: Hypothesis testing principles. XXX

Unit 4: Heteroscedasticity in the regression model. XXX

Unit 5: Endogeneity of regressors.

5.1 Errors in variables.
5.2 Simultaneous equation bias.
5.3 Instrumental variables.
5.4 Testing for endogeneity.
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Measurement errors

• The dependent variable or the regressors can be measured with error.

• Thinking about the way economic data are reported, measurement error is
probably quite prevalent.

• For example, estimates of growth of GDP, inflation, etc. are commonly
revised several times. Why should the last revision necessarily be correct?

• Measurement errors in the dependent variable and the regressors have
important differences.
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Measurement errors - 2

Error of measurement of the dependent variable:

The data generating process is presumed to be

y∗ = Xβ + ε

y = y∗ + v

vt ∼ iid(0, σ2
v)

where y∗ is the unobservable true dependent variable, and y is what is observed.

We assume that ε and v are independent and that y∗ = Xβ + ε satisfies the
classical assumptions.
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Measurement errors - 3

Given this, we have
y + v = Xβ + ε

so

y = Xβ + ε− v

= Xβ + ω

ωt ∼ iid(0, σ2
ε + σ2

v)

• As long as v is uncorrelated with X, this model satisfies the classical
assumptions and can be estimated by OLS. Then, this type of measurement
error isn’t a problem.
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Measurement errors - 4

Error of measurement of the regressors:

The situation isn’t so good in this case. The DGP is:

yt = x∗′t β + εt

xt = x∗t + vt

vt ∼ iid(0,Σv)

where Σv is a K ×K matrix.

Now x∗ contains the true, unobserved regressors, and x is what is observed.

Again assume that v is independent of ε, and that the model y = X∗β + ε
satisfies the classical assumptions.
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Measurement errors - 5

Now we have

yt = (xt − vt)
′
β + εt

= x′tβ − v′tβ + εt

= x′tβ + ωt

The problem is that now there is a correlation between xt and ωt, since

E(xtωt) = E ((x∗t + vt) (−v′tβ + εt))

= −Σvβ

where
Σv = E(vtv

′
t) .
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Measurement errors - 6

Because of this correlation, the OLS estimator is biased and inconsistent.

In matrix notation, write the estimated model as y = Xβ + ω.

We have that

β̂ =
(

X ′X

n

)−1(
X ′y

n

)
and

plim

(
X ′X

n

)−1

= plim
(X∗′ + V ′) (X∗ + V )

n
= (QX∗ + Σv)

−1

since X∗ and V are independent, and

plim
V ′V

n
= lim E

1
n

n∑
t=1

vtv
′
t. = Σv
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Measurement errors - 7

Likewise,

plim

(
X ′y

n

)
= plim

(X∗′ + V ′) (X∗β + ε)
n

= QX∗β

so
plimβ̂ = (QX∗ + Σv)

−1
QX∗β

So we see that the least squares estimator is inconsistent when the regressors

are measured with error.

• A potential solution to this problem is the instrumental variables (IV)
estimator.
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Simultaneous equations

• Up until now our model is
y = Xβ + ε

where, for purposes of estimation we can treat X as fixed.

• This means that when estimating β we condition on X.

• When analyzing dynamic models, we’re not interested in conditioning on
X, as in the stochastic regressors case.

• Nevertheless, the OLS estimator obtained by treating X as fixed continues
to have desirable asymptotic properties even in that case.
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Simultaneous equations - Example

An example of a simultaneous equation system is a simple supply-demand
system:

Demand: qt = α1 + α2pt + α3yt + ε1t

Supply: qt = β1 + β2pt + ε2t

E
([

ε1t

ε2t

] [
ε1t ε2t

])
=

[
σ11 σ12

σ21 σ22

]
≡ Σ,∀t

The presumption is that qt and pt are jointly determined at the same time by
the intersection of these equations.

We’ll assume that yt is determined by some unrelated process.
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Simultaneous equations - Example - 2

It’s easy to see that we have correlation between regressors and errors. Solving
for pt :

α1 + α2pt + α3yt + ε1t = β1 + β2pt + ε2t

β2pt − α2pt = α1 − β1 + α3yt + ε1t − ε2t

pt =
α1 − β1

β2 − α2
+

α3yt

β2 − α2
+

ε1t − ε2t

β2 − α2

Now consider whether pt is uncorrelated with ε1t :

E(ptε1t) = E
{(

α1 − β1

β2 − α2
+

α3yt

β2 − α2
+

ε1t − ε2t

β2 − α2

)
ε1t

}
=

σ11 − σ12

β2 − α2

Because of this correlation, OLS estimation of the demand equation will be
biased and inconsistent. The same applies to the supply equation, for the same
reason.
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Simultaneous equations - Example - 3

• In this model, qt and pt are the endogenous varibles (endogs), that are
determined within the system.

• yt is an exogenous variable (exogs).

In order to clarify these concepts we need some notation:

B Suppose we group together current endogs in the G× 1. vector Yt.

B Group current and lagged exogs, as well as lagged endogs in the K × 1.
vector Xt.

B Stack the errors of the G equations into the error vector Et.
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Exogeneity

The model, with additional assumptions, can be written as

Y ′
t Γ = X ′

tB + E′
t

Et ∼ N(0,Σ),∀t
E(EtE

′
s) = 0, t 6= s

We can stack all n observations and write the model as

Y Γ = XB + E

E(X ′E) = 0(K×G)

vec(E) ∼ N(0,Ψ)

where Y is n×G, X is n×K, and E is n×G.
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Exogeneity - 2

• This system is complete, in that there are as many equations as endogs.

• Since there is no autocorrelation of the Et ’s, and since the columns of E
are individually homoscedastic, then

Ψ =


σ11In σ12In · · · σ1GIn

σ22In
...

. . . ...
σGGIn

 = In ⊗ Σ

• X may contain lagged endogenous and exogenous variables. These variables
are predetermined.

• We need to define what is meant by “endogenous” and “exogenous” when
classifying the current period variables.
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Exogeneity - 3

The model defines a data generating process. The model involves two sets of
variables, Yt and Xt, as well as a parameter vector

θ =
[

vec(Γ)′ vec(B)′ vec∗(Σ)′
]′

• In general, without additional restrictions, θ is a G2+GK+
(
G2 −G

)
/2+G

dimensional vector. This is the parameter vector that were interested in
estimating.

• In principle, there exists a joint density function for Yt and Xt, which
depends on a parameter vector φ. Write this density as

ft(Yt, Xt|φ, It)

where It is the information set in period t. This includes lagged Yt’s and
lagged Xt’s.
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Exogeneity - 4

• This density can be factored into the density of Yt conditional on Xt times
the marginal density of Xt :

ft(Yt, Xt|φ, It) = ft(Yt|Xt, φ, It)ft(Xt|φ, It)

• If not all parameters in φ affect both factors: φ1 indicates elements of φ
that enter into the conditional density and φ2 for parameters that enter into
the marginal. We have

ft(Yt, Xt|φ, It) = ft(Yt|Xt, φ1, It)ft(Xt|φ2, It)

• Recall that the model is

Y ′
t Γ = X ′

tB + E′
t

Et ∼ N(0,Σ),∀t
E(EtE

′
s) = 0, t 6= s
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Exogeneity - 5

Normality and lack of correlation over time imply that the observations are
independent, so we can write the log-likelihood function as the sum of likelihood
contributions of each observation:

lnL(Y |θ, It) =
∑n

t=1
ln ft(Yt, Xt|φ, It)

=
∑n

t=1
ln (ft(Yt|Xt, φ1, It)ft(Xt|φ2, It))

=
∑n

t=1
ln ft(Yt|Xt, φ1, It) +

∑n

t=1
ln ft(Xt|φ2, It)

Definition: Xt is weakly exogenous for θ (the original parameter vector) if
there is a mapping from φ to θ that is invariant to φ2. More formally, for an
arbitrary (φ1, φ2), θ(φ) = θ(φ1).
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Exogeneity - 6

Supposing that Xt is weakly exogenous, then the MLE of φ1 using the joint
density is the same as the MLE using only the conditional density

lnL(Y |X, θ, It) =
n∑

t=1

ln ft(Yt|Xt, φ1, It)

since the conditional likelihood doesn’t depend on φ2.

• With weak exogeneity, knowledge of the DGP of Xt is irrelevant for inference
on φ1, and knowledge of φ1 is sufficient to recover the parameter of interest,
θ. Since the DGP of Xt is irrelevant, we can treat Xt as fixed in inference.

• By the invariance property of MLE, the MLE of θ is θ(φ̂1),and this mapping
is assumed to exist in the definition of weak exogeneity.

• Of course, we’ll need to figure out just what this mapping is to recover θ̂
from φ̂1. This is the famous identification problem.
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Exogeneity - 7

• With lack of weak exogeneity, the joint and conditional likelihood functions
maximize in different places. For this reason, we can’t treat Xt as fixed in
inference. The joint MLE is valid, but the conditional MLE is not.

• In resume, we require the variables in Xt to be weakly exogenous if we are
to be able to treat them as fixed in estimation.

• Lagged Yt satisfy the definition, since they are in the conditioning
information set, e.g., Yt−1 ∈ It.

• Lagged Yt aren’t exogenous in the normal usage of the word, since their
values are determined within the model, just earlier on.

• Weakly exogenous variables include exogenous (in the normal sense)
variables as well as all predetermined variables.
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Instrumental Variables Estimation

Let’s consider the general problem of a linear regression model with correlation
between regressors and the error term:

y = Xβ + ε

ε ∼ iid(0, Inσ2)

E(X ′ε) 6= 0.

Consider some matrix W which is formed of variables uncorrelated with ε.
This matrix defines a projection matrix

PW = W (W ′W )−1W ′

so that anything that is projected onto the space spanned by W will be
uncorrelated with ε.
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Instrumental Variables Estimation - 2

Transforming the model with this projection matrix we get

PWy = PWXβ + PWε

or
y∗ = X∗β + ε∗

Now we have that ε∗ and X∗ are uncorrelated, since this is simply

E(X∗′ε∗) = E(X ′P ′
WPWε)

= E(X ′PWε)

and
PWX = W (W ′W )−1W ′X

is the fitted value from a regression of X on W. This is a linear combination
of the columns of W, so it must be uncorrelated with ε.

Econometrics



22

Instrumental Variables Estimation - 3

• This implies that applying OLS to the model

y∗ = X∗β + ε∗

will lead to a consistent estimator, given a few more assumptions.

• This is the generalized instrumental variables estimator.

• W is known as the matrix of instruments.

• The IV estimator is

β̂IV = (X ′PWX)−1X ′PWy
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Instrumental Variables Estimation - 4

β̂IV = (X ′PWX)−1X ′PW (Xβ + ε)

= β + (X ′PWX)−1X ′PWε

so

β̂IV − β = (X ′PWX)−1X ′PWε

=
(
X ′W (W ′W )−1W ′X

)−1
X ′W (W ′W )−1W ′ε

Now we can introduce factors of n to get

β̂IV−β =

((
X ′W

n

)(
W ′W

n

−1
)(

W ′X

n

))−1(
X ′W

n

)(
W ′W

n

)−1(
W ′ε

n

)

Econometrics



24

Instrumental Variables Estimation - 5

Assuming that each of the terms with a n in the denominator satisfies a LLN,
so that

• W ′W
n

p→ QWW , a finite pd matrix

• X′W
n

p→ QXW , a finite matrix with rank K (= cols(X) )

• W ′ε
n

p→ 0

then the plim of the rhs is zero, since we assume that W and ε are uncorrelated,
e.g., E(W ′

tεt) = 0.

Given these assumptions the IV estimator is consistent

β̂IV
p→ β.
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Instrumental Variables Estimation - 6

Furthermore, scaling by
√

n, we have

√
n
(
β̂IV − β

)
=

((
X ′W

n

)(
W ′W

n

)−1(
W ′X

n

))−1(
X ′W

n

)(
W ′W

n

)−1(
W ′ε√

n

)

Assuming that the far right term satisfies a CLT, so that

• W ′ε√
n

d→ N(0, QWWσ2)

then we get

√
n
(
β̂IV − β

)
d→ N

(
0, (QXWQ−1

WWQ′
XW )−1σ2

)
We need estimators for QXW , QWW and σ2.
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Instrumental Variables Estimation - 7

The estimators for QXW and QWW are the obvious ones.

An estimator for σ2 is

σ̂2
IV =

1
n

(
y −Xβ̂IV

)′ (
y −Xβ̂IV

)
.

This estimator is consistent following the proof of consistency of the OLS
estimator of σ2, when the classical assumptions hold.

The formula used to estimate the variance of β̂IV is

V̂ (β̂IV ) =
(
(X ′W ) (W ′W )−1 (W ′X)

)−1

σ̂2
IV
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Instrumental Variables Estimation - 8

The IV estimator is:

1. Consistent

2. Asymptotically normally distributed

3. Biased in general, since even though E(X ′PWε) = 0, E(X ′PWX)−1X ′PWε
may not be zero, since (X ′PWX)−1 and X ′PWε are not independent.

An important point is that the asymptotic distribution of β̂IV depends upon
QXW and QWW , and these depend upon the choice of W. The choice of
instruments influences the efficiency of the estimator.
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2SLS Estimation

When we have no information regarding cross-equation restrictions or the
structure of the error covariance matrix, one can estimate the parameters of a
single equation of the system without regard to the other equations:

In the first stage, each column of Y1 is regressed on all the weakly exogenous
variables in the system. The fitted values are

Ŷ1 = X(X ′X)−1X ′Y1

= PXY1 = XΠ̂1

The second stage substitutes Ŷ1 in place of Y1, and estimates by OLS.

The original model is

y = Y1γ1 + X1β1 + ε = Zδ + ε

and the second stage model is y = Ŷ1γ1 + X1β1 + ε.
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2SLS Estimation - 2

Since X1 is in the space spanned by X, PXX1 = X1, so we can write the
second stage model as

y = PXY1γ1 + PXX1β1 + ε ≡ PXZδ + ε

The OLS estimator applied to this model is

δ̂ = (Z ′PXZ)−1Z ′PXy

which is exactly what we get if we estimate using IV, with the reduced form
predictions of the endogs used as instruments. Note that if we define

Ẑ = PXZ =
[

Ŷ1 X1

]
so that Ẑ are the instruments for Z, then we can write

δ̂ = (Ẑ ′Z)−1Ẑ ′y
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2SLS Estimation - 3

The 2SLS varcov estimator is

V̂ (δ̂) =
(
Z ′Ẑ

)−1

σ̂2
IV

which can also be written as V̂ (δ̂) =
(
Ẑ ′Ẑ

)−1

σ̂2
IV .

Properties of 2SLS:

1. Consistent
2. Asymptotically normal
3. Biased when the mean exists (the existence of moments is a technical issue

we won’t go into here).
4. Asymptotically inefficient, except in special circumstances.
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The Hausman’s test

Consider the simple linear regression model yt = x′tβ + εt.

We assume that the functional form and the choice of regressors is correct,
but that the some of the regressors may be correlated with the error term.

For example, this will be a problem if

• if some regressors are endogenous,

• or some regressors are measured with error,

• or lagged values of the dependent variable are used as regressors and εt is
autocorrelated.
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The Hausman’s test - 2

The idea behind the Hausman’s test is the following: A pair of consistent
estimators converge to the same probability limit, while if one is consistent and
the other is not they converge to different limits.

If we accept that one is consistent (e.g., the IV estimator), but we are doubting
if the other is consistent (e.g., the OLS estimator), we might try to check if
the difference between the estimators is significantly different from zero.

Under the null hypothesis that they both consistent and CLT, we have

[
IK −IK

]  √
n
(
β̃ − β0

)
√

n
(
β̂ − β0

)  =
√

n
(
β̃ − β̂

)
,

will be asymptotically normally distributed as

√
n
(
β̃ − β̂

)
d→ N

(
0, V∞(β̃)− V∞(β̂)

)
.
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The Hausman’s test - 2

So,

n
(
β̃ − β̂

)′ (
V∞(β̃)− V∞(β̂)

)−1 (
β̃ − β̂

)
d→ χ2(ρ),

where ρ is the rank of the difference of the asymptotic variances.

A statistic that has the same asymptotic distribution is(
β̃ − β̂

)′ (
V̂ (β̃)− V̂ (β̂)

)−1 (
β̃ − β̂

)
d→ χ2(ρ).

This is the Hausman test statistic, in its original form.

The reason that this test has power under the alternative hypothesis is that
in that case the ”OLS” estimator will not be consistent, and will converge to
βA, say, where βA 6= β0. Then the mean of the asymptotic distribution of

vector
√

n
(
β̃ − β̂

)
will be β0−βA, a non-zero vector, so the test statistic will

eventually reject, regardless of how small a significance level is used.
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