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Introduction

One of the assumptions we’ve made up to now is that

εt ∼ IID(0, σ2).

Now we’ll investigate the consequences of nonidentically and/or dependently
distributed errors. We’ll assume strong exogeneity. The model is

y = Xβ + ε

E(ε|X) = 0

V (ε|X) = Σ

where Σ is a general symmetric positive definite matrix.
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Introduction - 2

• The case where Σ is a diagonal matrix gives uncorrelated, nonidentically
distributed errors. This is known as heteroscedasticity.

• The case where Σ has the same number on the main diagonal but nonzero
elements off the main diagonal gives identically dependently distributed
errors. This is known as autocorrelation.

• The general case combines heteroscedasticity and autocorrelation. This is
known as “nonspherical” disturbances.
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Effects of nonspherical disturbances on the OLS estimator

The least square estimator β̂ = (X ′X)−1X ′y:

• Is unbiased, as before.

• The variance of β̂, supposing X is nonstochastic, is

E
[
(β̂ − β)(β̂ − β)′

]
= E

[
(X ′X)−1X ′εε′X(X ′X)−1

]
= (X ′X)−1X ′ΣX(X ′X)−1

Due to this, any test statistic that is based upon σ̂2 or the probability limit

σ̂2 is invalid.

In particular, the formulas for the t, F, χ2 based tests given above do not
lead to statistics with these distributions.
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• β̂ is still consistent.

• If ε is normally distributed, then, conditional on X

β̂ ∼ N
(
β, (X ′X)−1X ′ΣX(X ′X)−1

)
• Without normality, and unconditional on X we still have

√
n
(
β̂ − β

)
=

√
n(X ′X)−1X ′ε =

(
X ′X

n

)−1

n−1/2X ′ε

Define the limiting variance of n−1/2X ′ε as

lim
n→∞

E
(

X ′εε′X

n

)
= Ω

so we obtain
√

n
(
β̂ − β

)
d→ N

(
0, Q−1

X ΩQ−1
X

)
.
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The GLS estimator

Suppose Σ were known.

Then one could form the Cholesky decomposition

PP ′ = Σ−1

We have PP ′Σ = In so P ′ (PΣP ′) = P ′, which implies that P ′ΣP = In

Consider the model
P ′y = P ′Xβ + P ′ε,

or,
y∗ = X∗β + ε∗.

The variance of ε∗ = P ′ε is E(P ′εε′P ) = P ′ΣP = In
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The GLS estimator - 2

Therefore, the model

y∗ = X∗β + ε∗

E(ε∗) = 0

V (ε∗) = In

E(X∗′ε∗) = 0

satisfies the classical assumptions (with modifications to allow stochastic
regressors and nonnormality of ε). The GLS estimator is simply OLS applied
to the transformed model:

β̂GLS = (X∗′X∗)−1X∗′y∗

= (X ′PP ′X)−1X ′PP ′y

= (X ′Σ−1X)−1X ′Σ−1y
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The GLS estimator - 3

The GLS estimator is unbiased in the same circumstances under which the
OLS estimator is unbiased. For example, assuming X is nonstochastic

E(β̂GLS) = E
{
(X ′Σ−1X)−1X ′Σ−1y

}
= E

{
(X ′Σ−1X)−1X ′Σ−1(Xβ + ε

}
= β.

The variance of the estimator, conditional on X can be calculated using

β̂GLS = (X∗′X∗)−1X∗′y∗

= (X∗′X∗)−1X∗′ (X∗β + ε∗)

= β + (X∗′X∗)−1X∗′ε∗
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The GLS estimator - 4

So

E
{(

β̂GLS − β
)(

β̂GLS − β
)′}

= E
{
(X∗′X∗)−1X∗′ε∗ε∗′X∗(X∗′X∗)−1

}
= (X∗′X∗)−1X∗′X∗(X∗′X∗)−1

= (X∗′X∗)−1

= (X ′Σ−1X)−1

Either of these last formulas can be used.

• All the previous results regarding the desirable properties of the OLS
estimators hold, when dealing with the transformed model.

• Tests are valid, using the previous formulas, as long as we substitute X∗ in
place of X. Furthermore, any test that involves σ2 can set it to 1. This is
preferable to re-deriving the appropriate formulas.
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The GLS estimator - 5

• The GLS estimator is more efficient than the OLS estimator. This is a
consequence of the Gauss-Markov theorem, since the GLS estimator is based
on a model that satisfies the classical assumptions but the OLS estimator
is not.

• As one can verify by calculating fonc, the GLS estimator is the solution to
the minimization problem

β̂GLS = arg min(y −Xβ)′Σ−1(y −Xβ)

so the metric Σ−1 is used to weight the residuals.
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Feasible GLS

The problem is that Σ isn’t known usually, so this estimator isn’t available.

• Consider the dimension of Σ : it’s an n× n matrix with
(
n2 − n

)
/2 + n =(

n2 + n
)
/2 unique elements.

• The number of parameters to estimate is larger than n and increases faster
than n. There’s no way to devise an estimator that satisfies a LLN without
adding restrictions.

• The feasible GLS estimator is based upon making sufficient assumptions
regarding the form of Σ so that a consistent estimator can be devised.
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Feasible GLS - 2

Suppose that we parameterize Σ as a function of X and θ, where θ may
include β as well as other parameters, so that

Σ = Σ(X, θ).

If we can consistently estimate θ, we can consistently estimate Σ, as long as
Σ(X, θ) is a continuous function of θ (by the Slutsky theorem).

In this case,
Σ̂ = Σ(X, θ̂)

p→ Σ(X, θ)

If we replace Σ in the formulas for the GLS estimator with Σ̂, we obtain the
FGLS estimator.

The FGLS estimator shares the same asymptotic properties as GLS.
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Feasible GLS - 3

In practice, the usual way to proceed is:

1. Define a consistent estimator of θ. This is a case-by-case proposition,
depending on the parameterization Σ(θ).

2. Form Σ̂ = Σ(X, θ̂)

3. Calculate the Cholesky factorization P̂ = Chol(Σ̂−1).

4. Transform the model using

P̂ ′y = P̂ ′Xβ + P̂ ′ε

5. Estimate using OLS on the transformed model.
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OLS with heteroscedastic consistent varcov estimation

Eicker (1967) and White (1980) showed how to modify test statistics to
account for heteroscedasticity of unknown form.

The OLS estimator has asymptotic distribution

√
n
(
β̂ − β

)
d→ N

(
0, Q−1

X ΩQ−1
X

)
Recall that we defined limn→∞E

(
X′εε′X

n

)
= Ω.

This matrix has dimension K × K and can be consistently estimated,
even if we can’t estimate Σ consistently. The consistent estimator, under
heteroscedasticity but no autocorrelation is

Ω̂ =
1
n

n∑
t=1

x′txtε̂
2
t
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OLS with heteroscedastic consistent varcov estimation - 2

One can then modify the previous test statistics to obtain tests that are valid
when there is heteroscedasticity of unknown form.

For example, the Wald test for H0 : Rβ − r = 0 would be

n
(
Rβ̂ − r

)′(
R

(
X ′X

n

)−1

Ω̂
(

X ′X

n

)−1

R′

)−1 (
Rβ̂ − r

)
a∼ χ2(q)
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Detecting heteroscedasticity

Goldfeld-Quandt’s test:

The sample is divided in to three parts, with n1, n2 and n3 observations, where
n1 + n2 + n3 = n. The model is estimated using the first and third parts of
the sample, separately, so that β̂1 and β̂3 will be independent.

Then we have
ε̂1′ε̂1

σ2
=

ε1′M1ε1

σ2

d→ χ2(n1 −K)

and
ε̂3′ε̂3

σ2
=

ε3′M3ε3

σ2

d→ χ2(n3 −K)

so
ε̂1′ε̂1/(n1 −K)
ε̂3′ε̂3/(n3 −K)

d→ F (n1 −K, n3 −K).
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Detecting heteroscedasticity - 2

Goldfeld-Quandt’s test: (cont.)

• The motive for dropping the middle observations is to increase the difference
between the average variance in the subsamples, supposing that there exists
heteroscedasticity. This can increase the power of the test.

• On the other hand, dropping too many observations will substantially
increase the variance of the statistics ε̂1′ε̂1 and ε̂3′ε̂3.

• A rule of thumb, based on Monte Carlo experiments is to drop around 25%
of the observations.

• If one doesn’t have any ideas about the form of the heteroscedasticity
the test will probably have low power since a sensible data ordering isn’t
available.
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Detecting heteroscedasticity - 3

White’s test:

When one has little idea if there exists heteroscedasticity, and no idea of its
potential form, the White test is a possibility.

The idea is that if there is homoscedasticity, then E(ε2
t |xt) = σ2,∀t, so that

xt or functions of xt shouldn’t help to explain E(ε2
t ).

The test works as follows:

1. Since εt isn’t available, use the consistent estimator ε̂t instead.

2. Regress
ε̂2

t = σ2 + z′tγ + vt

where zt is a P -vector. zt may include some or all of the variables in xt, as
well as other variables. White’s original suggestion was to use xt, plus the
set of all unique squares and cross products of variables in xt.
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Detecting heteroscedasticity - 4

White’s test: (cont.)

3. Test the hypothesis that γ = 0. The qF statistic in this case is

qF =
P (ESSR − ESSU) /P

ESSU/ (n− P − 1)

and dividing both numerator and denominator by ESSR = TSSU , we get

qF = (n− P − 1)
R2

1−R2
.

Note that this is the R2 of the artificial regression used to test for
heteroscedasticity, not the R2 of the original model.

An asymptotically equivalent statistic, under the null of no heteroscedasticity
is

nR2 a∼ χ2(P ).
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