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Economic restrictions

In many cases, economic theory suggests restrictions on the parameters of a
model. For example, a demand function is supposed to be homogeneous of
degree zero in prices and income. If we have a Cobb-Douglas model,

ln q = β0 + β1 ln p1 + β2 ln p2 + β3 lnm + ε,

then we need that

k0 ln q = β0 + β1 ln kp1 + β2 ln kp2 + β3 ln km + ε,

so, the only way to guarantee this for arbitrary k is to set

β1 + β2 + β3 = 0,

which is a parameter restriction.
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Linear restrictions - 1

The general formulation of linear equality restrictions is the model

y = Xβ + ε

Rβ = r

where R is a Q×K matrix, Q < K and r is a Q× 1 vector of constants.

• We assume R is of rank Q, so that there are no redundant restrictions.

• We also assume that ∃β that satisfies the restrictions: they aren’t infeasible.
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Linear restrictions - 2

Let’s consider how to estimate β subject to the restrictions Rβ = r. The most
obvious approach is to set up the Lagrangean

min
β

s(β) =
1
n

(y −Xβ)′ (y −Xβ) + 2λ′(Rβ − r).

The Lagrange multipliers are scaled by 2, which makes things less messy. The
fonc are

Dβs(β̂, λ̂) = −2X ′y + 2X ′Xβ̂R + 2R′λ̂ ≡ 0

Dλs(β̂, λ̂) = Rβ̂R − r ≡ 0,

which can be written as[
X ′X R′

R 0

] [
β̂R

λ̂

]
=

[
X ′y
r

]
.
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Linear restrictions - 3

We get [
β̂R

λ̂

]
=

[
X ′X R′

R 0

]−1 [
X ′y
r

]
.

So,[
β̂R

λ̂

]
=

[
(X ′X)−1 − (X ′X)−1R′P−1R (X ′X)−1 (X ′X)−1R′P−1

P−1R (X ′X)−1 −P−1

] [
X ′y
r

]

=

 β̂ − (X ′X)−1R′P−1
(
Rβ̂ − r

)
P−1

(
Rβ̂ − r

) 
=

[ (
IK − (X ′X)−1R′P−1R

)
P−1R

]
β̂ +

[
(X ′X)−1R′P−1r

−P−1r

]
where P = R(X ′X)−1R′.

Econometrics



6

Linear restrictions - 4

If the number of restrictions is small, we can impose them by substitution and
write

y = X1β1 + X2β2 + ε[
R1 R2

] [
β1

β2

]
= r

where R1 is Q × Q nonsingular. Supposing the Q restrictions are linearly
independent, one can always make R1 nonsingular by reorganizing the columns
of X. Then β1 = R−1

1 r −R−1
1 R2β2. Substitute this into the model

y = X1R
−1
1 r −X1R

−1
1 R2β2 + X2β2 + ε

y −X1R
−1
1 r =

[
X2 −X1R

−1
1 R2

]
β2 + ε

or with the appropriate definitions, yR = XRβ2 + ε.
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Linear restrictions - 5

This model satisfies the classical assumptions, supposing the restriction is true.
One can estimate by OLS. The variance of β̂2 is V (β̂2) = (X ′

RXR)−1
σ2

0 and

the estimator is V̂ (β̂2) = (X ′
RXR)−1

σ̂2 where one estimates σ2
0 in the normal

way, using the restricted model, i.e.,

σ̂2
0 =

(
yR −XRβ̂2

)′ (
yR −XRβ̂2

)
n− (K −Q)

To recover β̂1, use the restriction. To find the variance of β̂1, use the fact that
it is a linear function of β̂2, so

V (β̂1) = R−1
1 R2V (β̂2)R′

2

(
R−1

1

)′
= R−1

1 R2 (X ′
2X2)

−1
R′

2

(
R−1

1

)′
σ2

0
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Properties of the restricted estimator - 1

We have that

β̂R = β̂ − (X ′X)−1R′P−1
(
Rβ̂ − r

)
= β̂ + (X ′X)−1R′P−1r − (X ′X)−1R′P−1R(X ′X)−1X ′y

= β + (X ′X)−1X ′ε + (X ′X)−1R′P−1 [r −Rβ]

−(X ′X)−1R′P−1R(X ′X)−1X ′ε

β̂R − β = (X ′X)−1X ′ε

+ (X ′X)−1R′P−1 [r −Rβ]

− (X ′X)−1R′P−1R(X ′X)−1X ′ε

Mean squared error is

MSE(β̂R) = E(β̂R − β)(β̂R − β)′
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Properties of the restricted estimator - 2

Noting that the crosses between the second term and the other terms expect
to zero, and that the cross of the first and third has a cancellation with the
square of the third, we obtain

MSE(β̂R) = (X ′X)−1σ2

+ (X ′X)−1R′P−1 [r −Rβ] [r −Rβ]′P−1R(X ′X)−1

− (X ′X)−1R′P−1R(X ′X)−1σ2

So, the first term is the OLS covariance and

• If the restriction is true, the second term is 0, so we are better off. True
restrictions improve efficiency of estimation.

• If the restriction is false, we may be better or worse off, in terms of MSE,
depending on the magnitudes of r −Rβ and σ2.
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Testing: t-test

Suppose one has the model
y = Xβ + ε

and one wishes to test the single restriction H0 :Rβ = r vs. HA :Rβ 6= r .

Under H0, with normality of the errors,

Rβ̂ − r ∼ N
(
0, R(X ′X)−1R′σ2

0

)
so

Rβ̂ − r√
R(X ′X)−1R′σ2

0

=
Rβ̂ − r

σ0

√
R(X ′X)−1R′

∼ N (0, 1) .

The problem is that σ2
0 is unknown. One could use the consistent estimator

σ̂2
0 in place of σ2

0, but the test would only be valid asymptotically in this case.
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Testing: t-test - 2

Proposition 1:
N(0, 1)√

χ2(q)
q

∼ t(q) (1)

as long as the N(0, 1) and the χ2(q) are independent.

Proposition 2: If x ∼ N(µ, In) is a vector of n independent r.v.’s., then

x′x ∼ χ2(n, λ) (2)

where λ =
∑

i µ
2
i = µ′µ is the noncentrality parameter.

When a χ2 r.v. has the noncentrality parameter equal to zero, it is referred to
as a central χ2 r.v., and it’s distribution is written as χ2(n), suppressing the
noncentrality parameter.
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Testing: t-test - 3

Proposition 3: If the n dimensional random vector x ∼ N(0, V ), then
x′V −1x ∼ χ2(n).

Proof: Factor V −1 as PP ′ (this is the Cholesky factorization). Then consider
y = P ′x. We have

y ∼ N(0, P ′V P )
but

V PP ′ = In

P ′V PP ′ = P ′

so PV P ′ = In and thus y ∼ N(0, In). Thus y′y ∼ χ2(n) but

y′y = x′PP ′x = xV −1x.
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Testing: t-test - 4

A more general proposition which implies this result is

Proposition 4: If the n dimensional random vector x ∼ N(0, V ), then

x′Bx ∼ χ2(ρ(B)) (3)

if and only if BV is idempotent.

An immediate consequence is

Proposition 5: If the random vector (of dimension n) x ∼ N(0, I), and B is
idempotent with rank r, then

x′Bx ∼ χ2(r). (4)
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Testing: t-test - 5

Application:

ε̂′ε̂

σ2
0

=
ε′MXε

σ2
0

=
(

ε

σ0

)′

MX

(
ε

σ0

)
∼ χ2(n−K)

Proposition 6: If the random vector (of dimension n) x ∼ N (0, I), then Ax
and x′Bx are independent if AB = 0.

Now consider (remember that we have only one restriction in this case)

Rβ̂−r

σ0

√
R(X′X)−1R′√

ε̂′ε̂
(n−K)σ2

0

=
Rβ̂ − r

σ̂0

√
R(X ′X)−1R′

This will have t(n−K) distribution if β̂ and ε̂′ε̂ are independent.
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Testing: t-test - 6

But β̂ = β + (X ′X)−1X ′ε and (X ′X)−1X ′MX = 0, so

Rβ̂ − r

σ̂0

√
R(X ′X)−1R′

=
Rβ̂ − r

σ̂Rβ̂

∼ t(n−K)

In particular, for the commonly encountered test of significance of an individual
coefficient, for which H0 : βi = 0 vs. H0 : βi 6= 0 , the test statistic is

β̂i/σ̂β̂i ∼ t(n−K)

Note: the t− test is strictly valid only if the errors are normally distributed. If
one has nonnormal errors, one could use the above asymptotic result to justify

taking critical values from the N (0, 1) distribution, since t(n−K) d→ N (0, 1)
as n →∞. In practice, a conservative procedure is to take critical values from
the t distribution if nonnormality is suspected. This will reject H0 less often
since the t distribution is fatter-tailed than is the normal.
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Testing: F-test

The F test allows testing multiple restrictions jointly.

Proposition 7: If x ∼ χ2(r) and y ∼ χ2(s), then

x/r

y/s
∼ F (r, s) (5)

provided that x and y are independent.

Proposition 8: If the random vector (of dimension n) x ∼ N(0, I), then x′Ax
and x′Bx are independent if AB = 0.

Using these results, and previous results on the χ2 distribution, it is simple to
show that the following statistic has the F distribution:

F =

(
Rβ̂ − r

)′ (
R (X ′X)−1

R′
)−1 (

Rβ̂ − r
)

qσ̂2
∼ F (q, n−K).
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Testing: F-test - 2

A numerically equivalent expression is

(ESSR − ESSU) /q

ESSU/(n−K)
∼ F (q, n−K).

Note: The F test is strictly valid only if the errors are truly normally
distributed. The following tests will be appropriate when one cannot assume
normally distributed errors.
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Testing: Wald-test

The Wald principle is based on the idea that if a restriction is true, the
unrestricted model should “approximately” satisfy the restriction. Given that
the least squares estimator is asymptotically normally distributed:

√
n

(
β̂ − β0

)
d→ N

(
0, σ2

0Q
−1
X

)
then under H0 : Rβ0 = r, we have

√
n

(
Rβ̂ − r

)
d→ N

(
0, σ2

0RQ−1
X R′)

so by Proposition 5 we have

n
(
Rβ̂ − r

)′ (
σ2

0RQ−1
X R′)−1

(
Rβ̂ − r

)
d→ χ2(q)
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Testing: Wald-test - 2

Note that Q−1
X or σ2

0 are not observable.

The test statistic we use substitutes the consistent estimators. Use (X ′X/n)−1

as the consistent estimator of Q−1
X . With this, there is a cancellation of n′s,

and the statistic to use is(
Rβ̂ − r

)′ (
σ̂2

0R(X ′X)−1R′
)−1 (

Rβ̂ − r
)

d→ χ2(q)

• The Wald test is a simple way to test restrictions without having to estimate
the restricted model.

• Note that this formula is similar to one of the formulae provided for the F
test.
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Testing: Score-test

In some cases, an unrestricted model may be nonlinear in the parameters, but
the model is linear in the parameters under the null hypothesis. For example,
the model

y = (Xβ)γ + ε

is nonlinear in β and γ, but is linear in β under H0 : γ = 1.

Estimation of nonlinear models is a bit more complicated, so one might prefer
to have a test based upon the restricted, linear model. The score test is useful
in this situation.

• Score-type tests are based upon the general principle that the gradient vector
of the unrestricted model, evaluated at the restricted estimate, should be
asymptotically normally distributed with mean zero, if the restrictions are
true. The original development was for ML estimation, but the principle is
valid for a wide variety of estimation methods.
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Testing: Score-test - 2

We have seen that

λ̂ =
(
R(X ′X)−1R′)−1

(
Rβ̂ − r

)
= P−1

(
Rβ̂ − r

)
Given that √

n
(
Rβ̂ − r

)
d→ N

(
0, σ2

0RQ−1
X R′)

under the null hypothesis,

√
nλ̂

d→ N
(
0, σ2

0P
−1RQ−1

X R′P−1
)

or √
nλ̂

d→ N
(
0, σ2

0 lim n (nP )−1
RQ−1

X R′P−1
)

since the n’s cancel and inserting the limit of a matrix of constants changes
nothing.
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Testing: Score-test - 3

However,

lim nP = lim nR(X ′X)−1R′

= lim R

(
X ′X

n

)−1

R′

= RQ−1
X R′

So there is a cancellation and we get

√
nλ̂

d→ N
(
0, σ2

0 limnP−1
)

In this case,

λ̂′
(

R(X ′X)−1R′

σ2
0

)
λ̂

d→ χ2(q)

since the powers of n cancel. To get a usable test statistic substitute a
consistent estimator of σ2

0.
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Testing: Score-test - 4

• This makes it clear why the test is sometimes referred to as a Lagrange
multiplier test. It may seem that one needs the actual Lagrange multipliers
to calculate this. If we impose the restrictions by substitution, these are not
available. Note that the test can be written as(

R′λ̂
)′

(X ′X)−1R′λ̂

σ2
0

d→ χ2(q)

However, we can use the fonc for the restricted estimator:

−X ′y + X ′Xβ̂R + R′λ̂ = 0

to get that R′λ̂ = X ′(y −Xβ̂R) = X ′ε̂R. Substituting this into the above,

we get
ε̂′RX(X′X)−1X′ε̂R

σ2
0

d→ χ2(q) but this is simply ε̂′R
PX

σ2
0
ε̂R

d→ χ2(q).
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Testing: Score-test - 5

To see why the test is also known as a score test, note that the fonc for
restricted least squares

−X ′y + X ′Xβ̂R + R′λ̂ = 0

give us

R′λ̂ = X ′y −X ′Xβ̂R

and the rhs is simply the gradient (score) of the unrestricted model, evaluated
at the restricted estimator. The scores evaluated at the unrestricted estimate
are identically zero. The logic behind the score test is that the scores evaluated
at the restricted estimate should be approximately zero, if the restriction is
true. The test is also known as a Rao test, since P. Rao first proposed it in
1948.
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Testing: Likelihood ratio-type tests

The Wald test can be calculated using the unrestricted model. The score test
can be calculated using only the restricted model. The likelihood ratio test, on
the other hand, uses both the restricted and the unrestricted estimators. The
test statistic is

LR = 2
(
lnL(θ̂)− lnL(θ̃)

)
where θ̂ is the unrestricted estimate and θ̃ is the restricted estimate. To show
that it is asymptotically χ2, take a second order Taylor’s series expansion of
lnL(θ̃) about θ̂ :

lnL(θ̃) ' lnL(θ̂) +
n

2

(
θ̃ − θ̂

)′
H(θ̂)

(
θ̃ − θ̂

)
(note, the first order term drops out since Dθ lnL(θ̂) ≡ 0 by the fonc and we
need to multiply the second-order term by n since H(θ) is defined in terms of
1
n lnL(θ)) so

LR ' −n
(
θ̃ − θ̂

)′
H(θ̂)

(
θ̃ − θ̂

)
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Testing: Likelihood ratio-type tests - 2

As n → ∞,H(θ̂) → H∞(θ0) = −I(θ0), by the information matrix equality.
So

LR
a= n

(
θ̃ − θ̂

)′
I∞(θ0)

(
θ̃ − θ̂

)
We also have that

√
n

(
θ̂ − θ0

)
a= I∞(θ0)−1n1/2g(θ0).

An analogous result for the restricted estimator is:

√
n

(
θ̃ − θ0

)
a= I∞(θ0)−1

(
In −R′ (RI∞(θ0)−1R′)−1

RI∞(θ0)−1
)

n1/2g(θ0).

Combining the last two equations

√
n

(
θ̃ − θ̂

)
a= −n1/2I∞(θ0)−1R′ (RI∞(θ0)−1R′)−1

RI∞(θ0)−1g(θ0)
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Testing: Likelihood ratio-type tests - 3

So,

LR
a=

[
n1/2g(θ0)′I∞(θ0)−1R′

] [
RI∞(θ0)−1R′]−1

[
RI∞(θ0)−1n1/2g(θ0)

]
But since

n1/2g(θ0)
d→ N (0, I∞(θ0))

the linear function

RI∞(θ0)−1n1/2g(θ0)
d→ N(0, RI∞(θ0)−1R′).

We can see that LR is a quadratic form of this rv, with the inverse of its
variance in the middle, so

LR
d→ χ2(q).
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The asymptotic equivalence of LR, Wald and score tests

We have seen that the three tests all converge to χ2 random variables. In fact,
they all converge to the same χ2 rv, under the null hypothesis.

We’ll show that the Wald and LR tests are asymptotically equivalent. We have
seen that the Wald test is asymptotically equivalent to

W
a= n

(
Rβ̂ − r

)′ (
σ2

0RQ−1
X R′)−1

(
Rβ̂ − r

)
d→ χ2(q)

Using
β̂ − β0 = (X ′X)−1X ′ε

and
Rβ̂ − r = R(β̂ − β0)
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The asymptotic equivalence of LR, Wald and score tests - 2

We get

√
nR(β̂ − β0) =

√
nR(X ′X)−1X ′ε = R

(
X ′X

n

)−1

n−1/2X ′ε

Substitute this into Wald statistics we get

W
a= n−1ε′XQ−1

X R′ (σ2
0RQ−1

X R′)−1
RQ−1

X X ′ε

a= ε′X(X ′X)−1R′ (σ2
0R(X ′X)−1R′)−1

R(X ′X)−1X ′ε

a=
ε′A(A′A)−1A′ε

σ2
0

a=
ε′PRε

σ2
0

where PR is the projection matrix formed by the matrix X(X ′X)−1R′.

• Note that this matrix is idempotent and has q columns, so the projection
matrix has rank q.
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The asymptotic equivalence of LR, Wald and score tests - 3

Now consider the likelihood ratio statistic

LR
a= n1/2g(θ0)′I(θ0)−1R′ (RI(θ0)−1R′)−1

RI(θ0)−1n1/2g(θ0)

Under normality, we have seen that the likelihood function is

lnL(β, σ) = −n ln
√

2π − n lnσ − 1
2
(y −Xβ)′ (y −Xβ)

σ2
.

Using this,

g(β0) ≡ Dβ
1
n

lnL(β, σ)

=
X ′(y −Xβ0)

nσ2

=
X ′ε

nσ2
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The asymptotic equivalence of LR, Wald and score tests - 4

Also, by the information matrix equality:

I(θ0) = −H∞(θ0)

= lim−Dβ′g(β0)

= lim−Dβ′
X ′(y −Xβ0)

nσ2

= lim
X ′X

nσ2

=
QX

σ2

so
I(θ0)−1 = σ2Q−1

X
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The asymptotic equivalence of LR, Wald and score tests - 5

Substituting these last expressions into LR test statistics, we get

LR
a= ε′X ′(X ′X)−1R′ (σ2

0R(X ′X)−1R′)−1
R(X ′X)−1X ′ε

a=
ε′PRε

σ2
0

a= W

This completes the proof that the Wald and LR tests are asymptotically
equivalent. Similarly, one can show that, under the null hypothesis,

qF
a= W

a= LM
a= LR

Econometrics



33

The asymptotic equivalence of LR, Wald and score tests - 6

• The proof for the statistics except for LR does not depend upon normality of
the errors, as can be verified by examining the expressions for the statistics.

• The LR statistic is based upon distributional assumptions, since one can’t
write the likelihood function without them.

• However, due to the close relationship between the statistics qF and LR,
supposing normality, the qF statistic can be thought of as a pseudo-LR
statistic, in that it’s like a LR statistic in that it uses the value of the
objective functions of the restricted and unrestricted models, but it doesn’t
require distributional assumptions.

• The presentation of the score and Wald tests has been done in the context
of the linear model. This is readily generalizable to nonlinear models and/or
other estimation methods.
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Testing nonlinear restrictions

Testing nonlinear restrictions of a linear model is not much more difficult,
at least when the model is linear. Since estimation subject to nonlinear
restrictions requires nonlinear estimation methods, which are beyond the score
of this course, we’ll just consider the Wald test for nonlinear restrictions on a
linear model.

Consider the q nonlinear restrictions

r(β0) = 0.

where r(·) is a q-vector valued function. Write the derivative of the restriction
evaluated at β as

Dβ′r(β)
∣∣
β

= R(β)

Econometrics



35

Testing nonlinear restrictions - 2

We suppose that the restrictions are not redundant in a neighborhood of β0,
so that

ρ(R(β)) = q

in a neighborhood of β0. Take a first order Taylor’s series expansion of r(β̂)
about β0:

r(β̂) = r(β0) + R(β∗)(β̂ − β0)
where β∗ is a convex combination of β̂ and β0. Under the null hypothesis we
have

r(β̂) = R(β∗)(β̂ − β0)
Due to consistency of β̂ we can replace β∗ by β0, asymptotically, so

√
nr(β̂) a=

√
nR(β0)(β̂ − β0)

We’ve already seen the distribution of
√

n(β̂ − β0). Using this we get

√
nr(β̂) d→ N

(
0, R(β0)Q−1

X R(β0)′σ2
0

)
.
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Testing nonlinear restrictions - 3

Considering the quadratic form

nr(β̂)′
(
R(β0)Q−1

X R(β0)′
)−1

r(β̂)
σ2

0

d→ χ2(q)

under the null hypothesis. Substituting consistent estimators for β0,QX and
σ2

0, the resulting statistic is

r(β̂)′
(
R(β̂)(X ′X)−1R(β̂)′

)−1

r(β̂)

σ̂2

d→ χ2(q).

• This is known in the literature as the Delta method, or as Klein’s
approximation.

• Since this is a Wald test, it will tend to over-reject in finite samples. The
score and LR tests are also possibilities, but they require estimation methods
for nonlinear models, which aren’t in the scope of this course.
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Empirical comparison of LM, Wald and score tests

Example 1: Lets assume that the DGP satisfy a

lnC = β1 + β2 lnQ + β3 lnPL + β4 lnPF + β5 lnPK + ε

where the variables: are COST (C), OUTPUT (Q), PRICE OF LABOR (PL),
PRICE OF FUEL (PF ) and PRICE OF CAPITAL (PK).

The following restriction are imposed:

• It verify the property of HOD1, i.e.,
∑5

i=3 βi = 1.

• It verify the property of CRTS technology, i.e., γ = 1
βq

= 1

Compare the Wald and score tests.
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Empirical comparison of LM, Wald and score tests

Example 1 (cont.): HOD1.
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Empirical comparison of LM, Wald and score tests

Example 1 (cont.): CRTS.
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Empirical comparison of LM, Wald and score tests

Example 1 (cont.): Estimated sizes.
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