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The likelihood function

Suppose we have a sample of size n of the random vectors y and z. Suppose
the joint density of Y =

(
y1 . . . yn

)
and Z =

(
z1 . . . zn

)
is

characterized by a parameter vector ψ0 :

fY Z(Y, Z, ψ0).

This density can be factored as

fY Z(Y, Z, ψ0) = fY |Z(Y |Z, θ0)fZ(Z, ρ0).

The likelihood function is just this density evaluated at other values ψ

L(Y, Z, ψ) = f(Y, Z, ψ), ψ ∈ Ψ,

where Ψ is a parameter space.
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The likelihood estimator

The maximum likelihood estimator of ψ0 is the value of ψ that maximizes the
likelihood function, usually denoted by ψ̂:

ψ̂ = arg max fY Z(Y, Z, ψ0) = arg max fY |Z(Y |Z, θ0)fZ(Z, ρ0).

Note that if θ0 and ρ0 share no elements, then the maximizer of the conditional
likelihood function fY |Z(Y |Z, θ) with respect to θ is the same as the maximizer
of the overall likelihood function fY Z(Y, Z, ψ) = fY |Z(Y |Z, θ)fZ(Z, ρ), for the
elements of ψ that correspond to θ.

In this case, the variables Z are said to be exogenous for estimation of θ,
and we may more conveniently work with the conditional likelihood function
fY |Z(Y |Z, θ) for the purposes of estimating θ0.
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• If the n observations are independent, the likelihood function can be written
as

L(Y |Z, θ) =
n∏

t=1

ft(yt|zt, θ),

where the ft can be of different form.

• If this is not possible, we can always factor the likelihood into contributions
of observations, by using the fact that a joint density can be factored into
the product of a marginal and conditional (iteratively):

L(Y, θ) = f(y1|z1, θ)f(y2|y1, z2, θ)f(y3|y1, y2, z3, θ) · · · f(yn|y1,y2, . . . yt−n, zn, θ).
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To simplify notation, define xt = {y1, y2, ..., yt−1, zt}, i.e., it contains
exogenous and predetermined endogenous variables.

Now the likelihood function can be written as

L(Y, θ) =
n∏

t=1

f(yt|xt, θ)

The criterion function can be defined as the average log-likelihood function:

sn(θ) =
1
n

lnL(Y, θ) =
1
n

n∑
t=1

ln f(yt|xt, θ).

The maximum likelihood estimator may thus be defined equivalently as

θ̂ = arg max sn(θ).
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Example 1: Bernoulli trials.

Suppose that we are flipping a coin that may be biased, so the probability of
a heads may not be 0.5.

May be we’re interested in estimating the probability of heads. Let y =
1(heads) be a binary variable that indicates whether or not a heads is
observed.

The outcome of a toss is a Bernoulli random variable:

fY (y, p0) = py
0 (1− p0)

1−y if y ∈ {0, 1}
= 0 if y /∈ {0, 1}

So a representative term that enters to the likelihood function is:

fY (y, p) = py (1− p)1−y

and
ln fY (y, p) = y ln p+ (1− y) ln (1− p) .
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The derivative of this is:

∂ ln fY (y, p)
∂p

=
y

p
− (1− y)

(1− p)

=
y − p

p (1− p)
.

Averaging this over a sample of size n gives:

∂sn(p)
∂p

=
1
n

n∑
i=1

yi − p

p (1− p)
.

Setting to zero and solving gives:

p̂ = ȳ.

So it’s easy to calculate the MLE of p0 in this case.
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Now imagine that we had a bag full of bent coins, each bent around a sphere
of a different radius and we might suspect that the probability of a heads
could depend upon the radius, v.g., pi ≡ p(xi, β) = (1 + exp(−x′iβ))−1 where

xi =
[

1 ri
]′

.

Now
∂pi(β)
∂β

= pi (1− pi)xi,

so

∂ ln fY (y, β)
∂β

=
y − pi

pi (1− pi)
pi (1− pi)xi

= (yi − p(xi, β))xi.

So the derivative of the average log likelihood function is now a set of nonlinear
equations in the two unknown elements of β. There is no explicit solution for
the two elements that set the equations to zero. This is common situation
with ML estimators.
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Consistency of MLE

Assumptions:

Compact parameter space: θ ∈ Θ, an open bounded subset of <K.
Maximization is over Θ, which is compact.

This implies that θ is an interior point of the parameter space Θ.

Uniform convergence: sn(θ) u.a.s→ limn→∞Eθ0sn(θ) ≡ s∞(θ, θ0),∀θ ∈ Θ.

This requires that almost sure convergence holds for all possible parameter
values.

Continuity: sn(θ) is continuous in θ, ∀θ ∈ Θ. This implies that s∞(θ, θ0) is
continuous in θ.

Identification: s∞(θ, θ0) has a unique maximum in its first argument.
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Consistency of MLE - 2

First, θ̂n certainly exists, since a continuous function has a maximum on a
compact set.

Second, for any θ 6= θ0: E
[
ln
(

L(θ)
L(θ0)

)]
≤ ln

(
E
[

L(θ)
L(θ0)

])
, by Jensen’s

inequality (ln (·) is a concave function).

Jensen’s inequality: If f is concave then E[f(X)] ≤ f(E[X])
and if f is convex then E[f(X)] ≥ f(E[X]).

Now, the expectation on the RHS is

E
[
L(θ)
L(θ0)

]
=
∫

L(θ)
L(θ0)

L(θ0)dy = 1,

since L(θ0) is the density function of the observations.
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Consistency of MLE - 3

Therefore, since ln(1) = 0,

E
[
ln
(
L(θ)
L(θ0)

)]
≤ 0,

or
E [sn (θ)] − E [sn (θ0)] ≤ 0.

Taking limits, we obtain

s∞(θ, θ0)− s∞(θ0, θ0) ≤ 0

except on a set of zero probability (by the uniform convergence assumption).

By the identification assumption there is a unique maximizer, then the
inequality is strict if θ 6= θ0:

s∞(θ, θ0)− s∞(θ0, θ0) < 0,∀θ 6= θ0, a.s.
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Consistency of MLE - 4

Suppose that θ∗ is a limit point of θ̂n (any sequence from a compact set has
at least one limit point). Since θ̂n is a maximizer, independent of n, we must
have

s∞(θ∗, θ0)− s∞(θ0, θ0) ≥ 0.

These last two inequalities imply that

θ∗ = θ0, a.s.

Thus there is only one limit point, and it is equal to the true parameter value
with probability one. In other words,

lim
n→∞

θ̂ = θ0, a.s.
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The score function

Differentiability: Assume that sn(θ) is twice continuously differentiable in a
neighborhood of θ0, at least when n is large enough.

To maximize the log-likelihood function, we take derivatives:

gn(Y, θ) = Dθsn(θ)

=
1
n

n∑
t=1

Dθ ln f(yt|xx, θ)

≡ 1
n

n∑
t=1

gt(θ).

This is the score vector. Note that the score function has Y as an argument,
which implies that it is a random function.
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The score function - 2

The ML estimator θ̂ sets the derivatives to zero:

gn(θ̂) =
1
n

n∑
t=1

gt(θ̂) ≡ 0.

We will show that Eθ [gt(θ)] = 0, ∀t:

Eθ [gt(θ)] =
∫

[Dθ ln f(yt|xt, θ)]f(yt|x, θ)dyt

=
∫

1
f(yt|xt, θ)

[Dθf(yt|xt, θ)] f(yt|xt, θ)dyt

=
∫
Dθf(yt|xt, θ)dyt.
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The score function - 3

Under some regularity conditions on the boundedness of Dθf , we can switch
the order of integration and differentiation, by the dominated convergence
theorem:

Eθ [gt(θ)] = Dθ

∫
f(yt|xt, θ)dyt

= Dθ 1 = 0

where we use the fact that the integral of the density is 1.

• So Eθ[gt(θ)] = 0 : the expectation of the score vector is zero.

• This hold for all t, so it implies that Eθ[gn(Y, θ)] = 0.
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Asymptotic normality of MLE

Again, assuming that sn(θ) is twice continuously differentiable.

Taking a first order Taylor’s series expansion of g(Y, θ̂) about the true value
θ0 :

0 ≡ g(θ̂) = g(θ0) + (Dθ′g(θ∗))
(
θ̂ − θ0

)
or with appropriate definitions

H(θ∗)
(
θ̂ − θ0

)
= −g(θ0),

where θ∗ = λθ̂ + (1− λ)θ0, 0 < λ < 1.

Assume H(θ∗) is invertible. So

√
n
(
θ̂ − θ0

)
= −H(θ∗)−1

√
ng(θ0)
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Asymptotic normality of MLE - 2

Now consider H(θ∗). This is

H(θ∗) = Dθ′g(θ∗)

= D2
θsn(θ∗)

=
1
n

n∑
t=1

D2
θ ln ft(θ∗),

where the notation

D2
θsn(θ) ≡ ∂2sn(θ)

∂θ∂θ′
.

Given that this is an average of terms, it should usually be the case that this
satisfies a strong law of large numbers (SLLN).

The usual wording is: Under some regularity conditions ...
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Asymptotic normality of MLE - 3

Since we know that θ̂ is consistent, and since θ∗ = λθ̂ + (1 − λ)θ0, we have

that θ∗
a.s.→ θ0.

Also, by the above differentiability assumption, H(θ) is continuous in θ. Given
this, H(θ∗) converges to the limit of it’s expectation:

H(θ∗) a.s.→ lim
n→∞

E
(
D2

θsn(θ0)
)

= H∞(θ0) <∞

This matrix converges to a finite limit.

Re-arranging orders of limits and differentiation, which is legitimate given
regularity conditions, we get

H∞(θ0) = D2
θ lim

n→∞
E (sn(θ0))

= D2
θs∞(θ0, θ0).
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Asymptotic normality of MLE - 4

We’ve already seen that

s∞(θ, θ0) < s∞(θ0, θ0)

i.e., θ0 maximizes the limiting objective function.

Since there is a unique maximizer, and by the assumption that sn(θ) is twice
continuously differentiable (which holds in the limit), then H∞(θ0) must be
negative definite, and therefore of full rank.

Therefore the previous inversion is justified, asymptotically, and we have

√
n
(
θ̂ − θ0

)
+H∞(θ0)−1

√
ng(θ0)

a.s.→ 0.
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Asymptotic normality of MLE - 5

Now consider
√
ng(θ0). This is

√
ngn(θ0) =

√
nDθsn(θ)

=
√
n

n

∑n

t=1
Dθ ln ft(yt|xt, θ0)

=
1√
n

∑n

t=1
gt(θ0).

Supposing that the CLT applies: See assumptions in previous class.

I∞(θ0)−1/2
√
ngn(θ0)

d→ N [0, IK]

where

I∞(θ0) = lim
n→∞

Eθ0

(
n [gn(θ0)] [gn(θ0)]

′) = lim
n→∞

Varθ0

(√
ngn(θ0)

)
.
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Asymptotic normality of MLE - 6

This can also be written as

√
ngn(θ0)

d→ N [0, I∞(θ0)] .

• I∞(θ0) is known as the information matrix.

• Finally, we get

√
n
(
θ̂ − θ0

)
a∼ N

[
0,H∞(θ0)−1I∞(θ0)H∞(θ0)−1

]
.

The MLE estimator is asymptotically normally distributed.
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Definition 1: An estimator θ̂ of a parameter θ0 is
√
n-consistent and

asymptotically normally distributed if

√
n
(
θ̂ − θ0

)
d→ N (0, V∞)

where V∞ is a finite positive definite matrix.

Definition 2: An estimator θ̂ of a parameter θ0 is asymptotically unbiased if

lim
n→∞

Eθ(θ̂) = θ.

Estimators that are CAN are asymptotically unbiased, though not all consistent
estimators are asymptotically unbiased.

Example 2: Consider the estimator θ̂ =
{
θ0 with probability 1− 1

n
n with probability 1

n

.
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The information matrix equality

We will show that H∞(θ) = −I∞(θ). Let ft(θ) be short for f(yt|xt, θ)

1 =
∫
ft(θ)dy, so

0 =
∫
Dθft(θ)dy =

∫
(Dθ ln ft(θ)) ft(θ)dy

Now differentiate again:

0 =
∫ [

D2
θ ln ft(θ)

]
ft(θ)dy +

∫
[Dθ ln ft(θ)]Dθ′ft(θ)dy

= Eθ

[
D2

θ ln ft(θ)
]
+
∫

[Dθ ln ft(θ)] [Dθ′ ln ft(θ)] ft(θ)dy

= Eθ

[
D2

θ ln ft(θ)
]
+ Eθ [Dθ ln ft(θ)Dθ′ ln ft(θ)]

= Eθ [Ht(θ)] + Eθ [gt(θ)gt(θ)′]
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The information matrix equality - 2

Now sum over n and multiply by 1
n

Eθ
1
n

∑n

t=1
[Ht(θ)] = −Eθ

[
1
n

∑n

t=1
[gt(θ)] [gt(θ)′]

]

The scores gt and gs are uncorrelated for t 6= s, since for t > s,
ft(yt|y1, ..., yt−1, θ) has conditioned on prior information, so what was random
in s is fixed in t.

This allows us to write

Eθ [H(θ)] = −Eθ [ng(θ)g(θ)′]

since all cross products between different periods expect to be zero.

Finally take limits, we get

H∞(θ) = −I∞(θ).

Econometrics



25

The information matrix equality - 3

This holds for all θ, in particular, for θ0. Using this,

√
n
(
θ̂ − θ0

)
a.s.→ N

[
0,H∞(θ0)−1I∞(θ0)H∞(θ0)−1

]
simplifies to √

n
(
θ̂ − θ0

)
a.s.→ N

[
0, I∞(θ0)−1

]
To estimate the asymptotic variance, we need estimators of H∞(θ0) and
I∞(θ0). We can use

Î∞(θ0) = n
n∑

t=1

gt(θ̂)gt(θ̂)′

Ĥ∞(θ0) = H(θ̂).
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The information matrix equality - 4

From this we see that there are alternative ways to estimate V∞(θ0) that are
all valid. These include

V̂∞(θ0) = −Ĥ∞(θ0)
−1

V̂∞(θ0) = Î∞(θ0)
−1

V̂∞(θ0) = Ĥ∞(θ0)
−1
Î∞(θ0)Ĥ∞(θ0)

−1

These are known as the inverse Hessian, outer product of the gradient (OPG)
and sandwich estimators, respectively.

The sandwich form coincides with the covariance estimator of the quasi-ML
estimator.
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The Cramér-Rao lower bound

Theorem 1: The limiting variance of a CAN estimator of θ0, say θ̃, minus the
inverse of the information matrix is a positive semidefinite matrix.

Proof: Since the estimator is CAN, it is asymptotically unbiased, so

lim
n→∞

Eθ(θ̃ − θ) = 0

Differentiate wrt θ′ :

Dθ′ lim
n→∞

Eθ(θ̃ − θ) = lim
n→∞

∫
Dθ′

[
f(Y, θ)

(
θ̃ − θ

)]
dy = 0.

Noting that Dθ′f(Y, θ) = f(θ)Dθ′ ln f(θ), we can write

lim
n→∞

∫ (
θ̃ − θ

)
f(θ)Dθ′ ln f(θ)dy + lim

n→∞

∫
f(Y, θ)Dθ′

(
θ̃ − θ

)
dy = 0.
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The Cramér-Rao lower bound - 2

Now note that Dθ′

(
θ̃ − θ

)
= −IK, and

∫
f(Y, θ)(−IK)dy = −IK. With this

we have

lim
n→∞

∫ (
θ̃ − θ

)
f(θ)Dθ′ ln f(θ)dy = IK.

We get

lim
n→∞

∫ √
n
(
θ̃ − θ

)√
n

1
n

[Dθ′ ln f(θ)]︸ ︷︷ ︸ f(θ)dy = IK

Note that the bracketed part is just the transpose of the score vector, g(θ), so
we can write

lim
n→∞

Eθ

[√
n
(
θ̃ − θ

)√
ng(θ)′

]
= IK
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The Cramér-Rao lower bound - 3

This means that the covariance of the score function with
√
n
(
θ̃ − θ

)
, for θ̃

any CAN estimator, is an identity matrix. Using this, suppose the variance of√
n
(
θ̃ − θ

)
tends to V∞(θ̃). Therefore,

V∞

( √
n
(
θ̃ − θ

)
√
ng(θ)

)
=
[
V∞(θ̃) IK
IK I∞(θ)

]
.

Since this is a covariance matrix, it is positive semi-definite. Therefore, for any
K -vector α,

[
α′ −α′I−1

∞ (θ)
] [ V∞(θ̃) IK

IK I∞(θ)

] [
α

−I∞(θ)−1α

]
≥ 0.
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The Cramér-Rao lower bound - 4

This simplifies to

α′
(
V∞(θ̃)− I−1

∞ (θ)
)
α ≥ 0.

Since α is arbitrary, V∞(θ̃)− I∞(θ) is positive semi-definite. �

This means that I−1
∞ (θ) is a lower bound for the

asymptotic variance of a CAN estimator.

Definition 3: Given two CAN estimators of a parameter θ0, say θ̃ and θ̂, θ̂
is asymptotically efficient with respect to θ̃ if V∞(θ̃) − V∞(θ̂) is a positive
semi-definite matrix.

A direct proof of asymptotic efficiency of an estimator is infeasible, but if one
can show that the asymptotic variance is equal to the inverse of the information
matrix, then the estimator is asymptotically efficient.

In particular, the MLE is asymptotically efficient.
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MLE - Summary

• Consistent.

• Asymptotically normal (CAN).

• Asymptotically efficient.

• Asymptotically unbiased.

This is for general MLE: we haven’t specified the distribution or the
linearity/nonlinearity of the estimator.
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Method of Moments

The OLS estimator can be thought as a method of moments estimators.

Assuming weak exogeneity, E[xxxtεt] = 0, we have

E

[
1
n

n∑
t=1

xxxtεt

]
= E

[
X′εεε

n

]
= 0.

The idea of the MM estimator is to choose the estimator such that the
empirical counterpart hold:

X′ε̂εε
n = 0

X′(yyy−Xβ̂ββ)
n = 0

β̂ββ = (X′X)−1X′yyy

MM provides another interpretation to OLS estimator.
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Method of Moments - 2

Imposing other (or more) moment restrictions. Why not?

Example 3: Suppose that X follows a χ2
θ0

distribution and θ0 is the parameter
of interest.

• Using the first moment equation E[X] = θ0, we obtain: θ̂1 = n−1
∑n

i=1 xi.

• Using the second moment equation E[X2] = θ20 + 2θ0, we obtain:

θ̂2 = −1 +

√√√√1 + n−1

n∑
i=1

x2
i .

Notice that n−1
∑n

i=1 xi and n−1
∑n

i=1 x
2
i are (by LLN) consistent estimators

of θ0 and θ20 + 2θ0, so θ̂1 and θ̂2 are consistent estimators of θ0.
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Example 3: Compare by simulation the efficiency of estimators θ̂1 and θ̂2.

Lets MATLAB works ...

1. Generate m samples of size n of a χ2
10.

2. Estimate the degree of freedom using θ̂1 and θ̂2.

3. Estimate the bias of these estimators.

4. Estimate the variance of these estimators.

5. Estimate the mean squared errors.
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Example 3: A histogram of n = 1000 observations:

0 5 10 15 20 25 30
0

50

100

150

200

250

Random numbers from a χ2
10

Sample mean = 10.016
Sample variance = 18.0178
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Example 3: Bias, variance and MSE. estimation.

Bias:
0.0005 -0.0038

Variance:
0.0160 0.0212

MSE:
0.0160 0.0212
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Example 3: Bias, variance and MSE as a function of n.
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Generalized Method of Moments

Definition 4: The GMM estimator of the K -dimensional parameter vector θ0,
is defined by

θ̂ ≡ arg min
Θ

sn(θ) ≡ mn(θ)′Wnmn(θ),

where

mn(θ) =
1
n

n∑
t=1

mt(θ)

is a g-vector, g ≥ K, with Eθm(θ) = 0 (the moment restriction), and Wn

converges almost surely to a finite g × g symmetric positive definite matrix
W∞.

Example 3 (bis): Combine θ1 and θ2 restrictions to get a GMM estimator.

Lets MATLAB works ...
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Example 3: Bias, variance and MSE as a function of n.
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