The outline for Unit 2

Unit 1. Introduction: The regression model.
Unit 2. Estimation principles.
2.1 Ordinary Least Squares.
2.2 Maximum Likelihood.
2.3 Method of Moments.

Addendum A. A brief revision of asymptotic theory.
Addendum B. Estimating the OLS estimator's distribution using bootstrap.
Unit 3: Hypothesis testing principles.
Unit 4: Heteroscedasticity in the regression model.
Unit 5: Endogeneity of regressors.

The outline for today

Addendum A. A brief revision of asymptotic theory.

2.1 Ordinary Least Squares.

- Small samples properties.
- Asymptotic properties.

Recommended readings: Chapter 6 of Creel (2006) and Chapter 9 of Greene (2000).

To learn more: Chapters I to V of Halbert White (1984) Asymptotic theory for econometrician, Academic Press, Inc.

A brief revision of asymptotic theory

- Convergence in probability \rightsquigarrow Weak consistency.
- Almost sure convergence \rightsquigarrow Strong consistency.
- Complete convergence.
- Convergence in mean \rightsquigarrow LLN.
- Convergence in distribution \rightsquigarrow CLT.
- Stochastic orders.

Convergence in probability

Definition 1: Let $\left\{b_{n}(\omega)\right\}$ be a sequence of real-valued random variables. If there exists a real-valued random variable $b(\omega)$ such that for every $\varepsilon>0$,

$$
\operatorname{Pr}\left\{\left|b_{n}(\omega)-b(\omega)\right|<\varepsilon\right\} \rightarrow 1 \text { as } n \rightarrow \infty
$$

then we say that $\left\{b_{n}(\omega)\right\}$ converges in probability to b.

Example 1: Let $\left\{b_{n}(\omega)\right\}$ a sequence s.t. $\operatorname{Pr}\left\{b_{n}(\omega)=1\right\}=\frac{1}{n}$ and $\operatorname{Pr}\left\{b_{n}(\omega)=\right.$ $0\}=1-\frac{1}{n}$, then

$$
b_{n} \xrightarrow{p} 0 .
$$

Other frequent notation is $P \lim b_{n}=b$.

Almost sure convergence

Definition 2: Let $\left\{b_{n}(\omega)\right\}$ be a sequence of real-valued random variables. If there exists a real-valued random variable $b(\omega)$ such that

$$
\operatorname{Pr}\left\{\omega: b_{n}(\omega) \rightarrow b(\omega)\right\}=1,
$$

then we say that $\left\{b_{n}(\omega)\right\}$ converges almost surely to b.
Proposition 1: Let $\left\{b_{n}(\omega)\right\}$ be a sequence of real-valued r.v. and $b(\omega)$ a real-valued r.v., $b_{n} \xrightarrow{\text { a.s. }} b$ iff for every $\varepsilon>0$,

$$
\lim _{n} \operatorname{Pr}\left\{\omega: \sup _{m \geq n}\left|b_{m}(\omega)-b(\omega)\right|>\varepsilon\right\}=0 .
$$

Example 2: Let $\left\{b_{n}(\omega)\right\}$ a sequence s.t. $\operatorname{Pr}\left\{b_{n}(\omega)=1 / n\right\}=\frac{1}{2}$ and $\left.\overline{\operatorname{Pr}\left\{b_{n}(\omega)\right.}=-1 / n\right\}=\frac{1}{2}$, then

$$
b_{n} \xrightarrow{\text { a.s. }} 0 .
$$

Almost sure and in probability convergence - 1

Proposition 2: Let $\left\{b_{n}(\omega)\right\}$ be a sequence of real-valued r.v. and $b(\omega)$ a real-valued r.v., such that $\left\{b_{n}(\omega)\right\}$ converges almost surely to b, then $\left\{b_{n}(\omega)\right\}$ converges in probability to b.

Proof: Without lost of generality we can assume that $b=0$. So, if $b_{n} \xrightarrow{\text { a.s. }} 0$, for every $\varepsilon>0$ and $\delta>0$ we can choose an $n_{0}=n_{0}(\varepsilon, \delta)$ s.t.

$$
\operatorname{Pr}\left\{\bigcap_{n=n_{0}}^{\infty}\left|b_{n}\right| \leq \varepsilon\right\} \geq 1-\delta
$$

then, for $n>n_{0}$ we have

$$
\operatorname{Pr}\left\{\left|b_{n}\right| \leq \varepsilon\right\} \geq \operatorname{Pr}\left\{\bigcap_{n=n_{0}}^{\infty}\left|b_{n}\right| \leq \varepsilon\right\} \geq 1-\delta
$$

and this implies that $b_{n} \xrightarrow{p} 0$.

Almost sure and in probability convergence - 1

But the reciprocal isn't true.

Example 3: For every positive integer n we can find two integer m and k s.t. $n=2^{k}+m$ and $0 \leq m<2^{k}$. Let $\left\{b_{n}(\omega)\right\}$ a sequence defined by

$$
b_{n}(\omega)=\left\{\begin{array}{cl}
2^{k} & \text { if } m / 2^{k} \leq \omega \leq(m+1) / 2^{k} \\
0 & \text { otherwise }
\end{array}\right.
$$

then

$$
\operatorname{Pr}\left\{b_{n}=2^{k}\right\}=\frac{1}{2^{k}} \quad \text { and } \quad \operatorname{Pr}\left\{b_{n}=0\right\}=1-\frac{1}{2^{k}} .
$$

So, in this example, $b_{n} \xrightarrow{p} 0$ but $b_{n} \xrightarrow{\text { a.s. }} 0$ since the limit of $b_{n}(\omega)$ does not exist for any ω.

Complete convergence

Definition 3: Let $\left\{b_{n}(\omega)\right\}$ be a sequence of real-valued random variables. If there exists a real-valued random variable $b(\omega)$ such that

$$
\sum_{n=1}^{\infty} \operatorname{Pr}\left\{\omega:\left|b_{n}(\omega)-b(\omega)\right|>\delta\right\}<\infty
$$

for every $\delta>0$, then we say that $\left\{b_{n}(\omega)\right\}$ converges completely to b.
Proposition 3: Let $\left\{b_{n}(\omega)\right\}$ be a sequence of real-valued r.v. and $b(\omega)$ a real-valued r.v., such that $\left\{b_{n}(\omega)\right\}$ converges completely to b, then $\left\{b_{n}(\omega)\right\}$ converges almost surely to b.
$\xrightarrow{\text { Proof: }} b_{n} \xrightarrow{\text { a.s. }} b$ iff for every $\delta>0$,

$$
\lim _{n} \operatorname{Pr}\left\{\omega: \sup _{m \geq n}\left|b_{n}(\omega)-b(\omega)\right|>\delta\right\}=0
$$

But,

$$
\begin{aligned}
& \qquad \operatorname{Pr}\left\{\omega: \sup _{m \geq n}\left|b_{m}(\omega)-b(\omega)\right|>\delta\right\}=\operatorname{Pr}\left\{\omega: \bigcup_{m \geq n}\left|b_{m}(\omega)-b(\omega)\right|>\delta\right\} \\
& \qquad \operatorname{Pr}\left\{\omega: \bigcup_{m \geq n}\left|b_{m}(\omega)-b(\omega)\right|>\delta\right\} \leq \sum_{m=n}^{\infty} \operatorname{Pr}\left\{\omega:\left|b_{m}(\omega)-b(\omega)\right|>\delta\right\}, \\
& \text { and this sum has limit } 0 \text { since }\left\{b_{n}(\omega)\right\} \text { converges completely to } b . \square
\end{aligned}
$$

Exercise: Show that the reciprocal isn't true.
Hint: Remember that the condition $\lim _{n} a_{n}=0$ is only a necessary condition for the convergence of series $\sum_{n=1}^{\infty} a_{n}$.

Convergence in r th mean

Definition 4: Let $\left\{b_{n}(\omega)\right\}$ be a sequence of real-valued random variables and r be a positive real number. If there exists a real-valued random variable $b(\omega)$ such that

$$
\mathrm{E}\left[\left|b_{n}-b\right|^{r}\right] \rightarrow 0 \text { as } n \rightarrow \infty,
$$

then we say that $\left\{b_{n}(\omega)\right\}$ converges in r th mean to b.

Proposition 4: Let $\left\{b_{n}(\omega)\right\}$ be a sequence of real-valued r.v. and $b(\omega)$ a real-valued r.v., such that $\left\{b_{n}(\omega)\right\}$ converges in r th mean to b, then $\left\{b_{n}(\omega)\right\}$ converges in probability to b.

Proof: Using the generalized Chebyshev inequality,

$$
\operatorname{Pr}\left\{\left|b_{n}-b\right| \geq \varepsilon\right\} \leq \frac{\mathrm{E}\left[\left|b_{n}-b\right|^{r}\right]}{\varepsilon^{r}}
$$

Convergence in r th mean

But the reciprocal isn't true.

Example 3 (bis): Notice that

$$
\mathrm{E}\left[\left|b_{n}-b\right|^{r}\right]=\left(2^{k}\right)^{r} \frac{1}{2^{k}}+0^{r}\left(1-\frac{1}{2^{k}}\right)=2^{k(r-1)},
$$

which tends to $\left\{\begin{array}{ll}0 & \text { if } r<1 \\ 1 & \text { if } r=1 \\ \infty & \text { if } r>1\end{array}\right.$,
then, $\left\{b_{n}\right\}$ does not converge in r th mean for $r \geq 1$.

Laws of Large Numbers

Definition 5: Let $\left\{b_{n}(\omega)\right\}$ be a sequence of real-valued random variables such that $\mathrm{E}\left[b_{n}\right]=\mu_{n}<\infty$ and $\bar{b}_{n}=n^{-1} \sum_{i=1}^{n} b_{i}$ be the sample mean. If, the sequence $\left\{\bar{b}_{n}-\mathrm{E}\left[\bar{b}_{n}\right]\right\}$ converge in probability to 0 , then we say that the $\left\{b_{n}(\omega)\right\}$ satisfy a Weak Laws of Large Numbers (WLLN).

Definition 6: Let $\left\{b_{n}(\omega)\right.$ \} be a sequence of real-valued random variables such that $\mathrm{E}\left[b_{n}\right]=\mu_{n}<\infty$ and $\bar{b}_{n}=n^{-1} \sum_{i=1}^{n} b_{i}$ be the sample mean. If, the sequence $\left\{\bar{b}_{n}-\mathrm{E}\left[\bar{b}_{n}\right]\right\}$ converge almost surely to 0 , then we say that the $\left\{b_{n}(\omega)\right\}$ satisfy a Strong Laws of Large Numbers (SLLN).

Weak Laws of Large Numbers - 1

Theorem 1: Let $\left\{b_{n}(\omega)\right\}$ be a sequence of real-valued independent r.v. such that:
(a) The r.v. in the sequence are identically distributed.
(b) b_{n} has finite mean and finite variance.

Then, $\left\{b_{n}(\omega)\right\}$ satisfy the WLLN.
Proof: Since the b_{i} are i.i.d., then $\mathrm{E}\left[b_{i}\right]=\mu_{i}=\mu$ and $\operatorname{Var}\left(b_{i}\right)=\sigma_{i}^{2}=\sigma^{2}$. Therefore,

$$
\mathrm{E}\left[\bar{b}_{n}\right]=\mu \quad \text { and } \quad \operatorname{Var}\left(\bar{b}_{n}\right)=\frac{\sigma^{2}}{n}
$$

Its only rest to use the Chebyshev inequality.

Weak Laws of Large Numbers - 2

Theorem 2 (Chebyshev): Let $\left\{b_{n}(\omega)\right\}$ be a sequence of real-valued independent r.v. such that their variance are bounded, i.e., there is a $c>0$ finite s.t.:

$$
\operatorname{Var}\left(b_{n}\right)=\sigma_{n}^{2} \leq c, \text { for every } n,
$$

then $\left\{b_{n}(\omega)\right\}$ satisfy the WLLN.
Proof: Similar to Theorem 1, but noticing that

$$
\operatorname{Var}\left(\bar{b}_{n}\right)=\frac{\sum_{i=1}^{n} \sigma_{n}^{2}}{n^{2}} \leq \frac{c}{n}
$$

Here, we don't required the i.d. assumption.

Weak Laws of Large Numbers - 3

Theorem 3 (Markov): Let $\left\{b_{n}(\omega)\right\}$ be a sequence of real-valued r.v. such that

$$
\lim _{n} \operatorname{Var}\left(\bar{b}_{n}\right)=0,
$$

then $\left\{b_{n}(\omega)\right\}$ satisfy the WLLN.
Proof: Again the Chebyshev inequality.

Theorem 4 (Khintchine): Let $\left\{b_{n}(\omega)\right\}$ be a sequence of real-valued independent r.v. such that:
(a) The r.v. in the sequence are identically distributed.
(b) b_{n} has finite mean.

Then, $\left\{b_{n}(\omega)\right\}$ satisfy the WLLN.

Weak Laws of Large Numbers - 4

Theorem 5 (Gnedenko): Let $\left\{b_{n}(\omega)\right\}$ be a sequence of real-valued r.v. such that $\mathrm{E}\left[b_{i}\right]=\mu_{i}$. The sequence $\left\{b_{n}(\omega)\right\}$ satisfy the WLLN iff

$$
\lim _{n} \mathrm{E}\left[\frac{\left(\bar{b}_{n}-\mathrm{E}\left[\bar{b}_{n}\right]\right)^{2}}{1+\left(\bar{b}_{n}-\mathrm{E}\left[\bar{b}_{n}\right]\right)^{2}}\right]=0
$$

An strong result but difficult to apply it.

Strong Laws of Large Numbers - 1

Kolmogorov inequality: Let $\left\{b_{n}(\omega)\right\}$ be a sequence of real-valued independent r.v. such that $\mathrm{E}\left[b_{n}\right]=\mu_{n}$ and $\operatorname{Var}\left(b_{n}\right)=\sigma_{n}^{2}<\infty$. Then, for every $\delta>0$,

$$
\operatorname{Pr}\left\{\bigcup_{k=1}^{n}\left\{\left|S_{k}-\mathrm{E}\left[S_{k}\right]\right| \geq \delta V_{n}\right\}\right\} \leq \frac{1}{\delta^{2}}
$$

where $S_{n}=\sum_{k=1}^{n} b_{k}$ and $V_{n}^{2}=\operatorname{Var}\left(S_{n}\right)$.
Theorem 6 (Kolmogorov): Let $\left\{b_{n}(\omega)\right\}$ be a sequence of real-valued independent r.v. such that $\mathrm{E}\left[b_{n}\right]=\mu_{n}, \operatorname{Var}\left(b_{n}\right)=\sigma_{n}^{2}<\infty$ and

$$
\sum_{n=1}^{\infty} \frac{\sigma_{n}^{2}}{n^{2}}<\infty
$$

then $\left\{b_{n}(\omega)\right\}$ satisfy the SLLN.

Strong Laws of Large Numbers - 2

Theorem 7 (Khintchine): Let $\left\{b_{n}(\omega)\right\}$ be a sequence of real-valued independent r.v. such that:
(a) The r.v. in the sequence are identically distributed.
(b) b_{n} has finite mean μ

Then, $\left\{b_{n}(\omega)\right\}$ satisfy the SLLN.

Proof: The proof is slightly long but it use two interesting elements:

- The truncation technique.
- The Borel-Cantelli lemma.

Without lost of generality we can assume that $\mu=0$.
We construct two sequences of r.v. $\left\{a_{n}\right\}$ and $\left\{c_{n}\right\}$ s.t.:

$$
a_{n}=\left\{\begin{array}{lr}
1 & \text { with probability } \rho_{n} \\
-1 & \text { with probability } 1-\rho_{n}
\end{array},\right.
$$

and the $\left\{a_{n}\right\}$ are independent and independent respect to the $\left\{b_{n}\right\}$.

$$
c_{n}= \begin{cases}b_{n} & \text { if }\left|b_{n}\right| \leq n \\ n a_{n} & \text { if }\left|b_{n}\right|>n\end{cases}
$$

then, $\left|c_{n}\right|=\min \left(\left|b_{n}\right|, n\right)$.
Moreover, we can find a ρ_{n} such that $\mathrm{E}\left[c_{n}\right]=0$:

$$
\mathrm{E}\left[c_{n}\right]=\text { To what? }
$$

So,

$$
\sum_{n=1}^{\infty} \operatorname{Pr}\left\{c_{n}=b_{n}\right\}=\sum_{n=1}^{\infty} \operatorname{Pr}\left\{\left|b_{n}\right|>n\right\}
$$

and

$$
\begin{aligned}
& \operatorname{Pr}\left\{\left|b_{1}\right|>1\right\}=\operatorname{Pr}\left\{1<\left|b_{1}\right| \leq 2\right\}+\operatorname{Pr}\left\{2<\left|b_{1}\right| \leq 3\right\}+\cdots \\
& \operatorname{Pr}\left\{\left|b_{2}\right|>2\right\}=\operatorname{Pr}\left\{2<\left|b_{2}\right| \leq 3\right\}+\operatorname{Pr}\left\{3<\left|b_{1}\right| \leq 4\right\}+\cdots
\end{aligned}
$$

but the b_{n} are i.i.d., then we can write:

$$
\begin{aligned}
\sum_{n=1}^{\infty} \operatorname{Pr}\left\{\left|b_{n}\right|>n\right\} & =\sum_{n=1}^{\infty} n \operatorname{Pr}\{n<|b| \leq n+1\} \\
& \leq \sum_{n=1}^{\infty} \int_{n<|x| \leq n+1}|x| d F(x)=\int_{\mathbb{R}}|x| d F(x)<\infty
\end{aligned}
$$

Borel-Cantelli Lemma: Let $\left\{A_{n}\right\}$ be a sequence of random events. If $\sum_{n=1}^{\infty} \operatorname{Pr}\left\{A_{n}\right\}<\infty$, then $\operatorname{Pr}\left\{\limsup A_{n}\right\}=0$.

By Borel-Cantelli Lemma we have:

$$
\operatorname{Pr}\left\{\bigcap_{m=1}^{\infty} \bigcup_{n \geq m}^{\infty}\left\{c_{n} \neq b_{n}\right\}\right\}=0
$$

or equivalently,

$$
\operatorname{Pr}\left\{\bigcup_{m=1}^{\infty} \bigcap_{n \geq m}^{\infty}\left\{c_{n}=b_{n}\right\}\right\}=1
$$

Then, the truncation c_{n} is a.s. equal to b_{n} for a sufficiently large m.
The remaining is to prove that c_{n} has finite second moment and the Kolmogorov theorem's condition:

$$
\sum_{n=1}^{\infty} \frac{\mathrm{E}\left[c_{n}^{2}\right]}{n^{2}}<\infty
$$

in order to conclude that $\left\{c_{n}\right\}$ satisfy a SLLN.

Convergence in distribution or in law

Definition 7: Let $\left\{b_{n}(\omega)\right\}$ be a sequence of real-valued random variables such that with distribution function $\left\{F_{n}\right\}$. If $F_{n}(z) \rightarrow F(z)$ as $n \rightarrow \infty$ for every continuity point z of F and F is the distribution function of a random variable b, then we say that $\left\{b_{n}(\omega)\right\}$ converge in distribution to b.

Example 4: Let $\left\{F_{n}\right\}$ be a sequence of distribution functions such that,
$F_{n}(z)=\left\{\begin{array}{cl}0 & \text { if } z<0 \\ x^{n} & \text { if } 0 \leq z \leq 1 . \\ 1 & \text { if } z \geq 1\end{array}\right.$. So, $F_{n}(x) \rightarrow F(x)=$? for every x, then $b_{n} \xrightarrow{d}$?

Example 5: Let $\left\{F_{n}\right\}$ be a sequence of distribution functions such that, $F_{n}(z)=\left\{\begin{array}{ll}0 & \text { if } z<n \\ 1 & \text { if } z \geq n\end{array}\right.$, i.e., the r.v. b_{n} is concentrated on n. Then $F_{n}(x) \rightarrow F(x)=0$ for every x, then: What we can concluded?

Convergence in distribution - 2

Proposition 5: Let $\left\{b_{n}(\omega)\right\}$ be a sequence of real-valued r.v., $b(\omega)$ a real-valued r.v. and let be f_{n} and f its densities functions such that $f_{n}(x) \rightarrow f(x)$ as $n \rightarrow \infty$ for almost all x. Then, $\left\{b_{n}(\omega)\right\}$ converges in law to b.

Proof: Exercise.

Proposition 6: Let $\left\{b_{n}(\omega)\right\}$ be a sequence of real-valued r.v., $b(\omega)$ a real-valued r.v. and let be φ_{n} and φ its characteristic functions such that $\varphi_{n}(t) \rightarrow \varphi(t)$ as $n \rightarrow \infty$ for all t and φ is continuous at $t=0$. Then, $\left\{b_{n}(\omega)\right\}$ converges in law to b.

Proof: Is more that an exercise.

In probability and in law convergence - 1

Proposition 7: Let $\left\{b_{n}(\omega)\right\}$ be a sequence of real-valued r.v. and $b(\omega)$ a real-valued r.v., such that $\left\{b_{n}(\omega)\right\}$ converges in probability to b, then $\left\{b_{n}(\omega)\right\}$ converges in law to b.

Proof: Let

$$
\begin{aligned}
A_{n} & =\left\{b_{n} \leq z\right\}=\left\{b_{n} \leq z, b \leq y\right\} \cup\left\{b_{n} \leq z, b>y\right\} \\
& \subset\{b \leq y\} \cup\left\{b_{n} \leq z, b>y\right\}
\end{aligned}
$$

then

$$
F_{n}(z) \leq F(y)+\operatorname{Pr}\left\{b_{n} \leq z, b>y\right\} .
$$

If $y>z$ then

$$
\operatorname{Pr}\left\{b_{n} \leq z, b>y\right\} \leq \operatorname{Pr}\left\{\left|b_{n}-b\right|>y-z\right\} .
$$

Using that $b_{n} \xrightarrow{p} b$, we have $\operatorname{Pr}\left\{\left|b_{n}-b\right|>y-z\right\} \rightarrow 0$

$$
\begin{gathered}
\Longrightarrow F_{n}(z)-F(y) \leq \operatorname{Pr}\left\{\left|b_{n}-b\right|>y-z\right\} \rightarrow 0 \\
\Longrightarrow \limsup F_{n}(z) \leq F(y) .
\end{gathered}
$$

Analogously, we obtain $\liminf F_{n}(z) \geq F(x)$ for $x<z$.
Then,

$$
F(x) \leq \liminf F_{n}(z) \leq \limsup F_{n}(z) \leq F(y)
$$

Finally, letting $y \downarrow z$ and $x \uparrow z$, since z is a continuity point of F, we obtain that $F(y) \downarrow F(z)$ and $F(x) \uparrow F(z)$.

In probability and in law convergence - 2

The reciprocal isn't true.

Example 6: Let $\left\{b_{n}\right\}$ a sequence of independent and identically distributed r.v. and let b a r.v. such that the joint distribution is give by the following table:

$b: b_{n}$	0	1	Marginal
0	0	0.5	0.5
1	0.5	0	0.5
Marginal	0.5	0.5	1

Notice that $\operatorname{Pr}\left\{\left|b_{n}-b\right|>0.5\right\}=1$, then $\left\{b_{n}\right\}$ does not converge in probability to b.

But $b_{n} \xrightarrow{d} b$ since both has the same distribution function.

In probability and in law convergence - 2

The asymptotic equivalence lemma: Let $\left\{a_{n}(\omega)\right\}$ and $\left\{b_{n}(\omega)\right\}$ be two sequences of real-valued r.v. and $b(\omega)$ a real-valued r.v., such that $\left\{a_{n}-b_{n}(\omega)\right\}$ converges in probability to 0 and $\left\{b_{n}(\omega)\right\}$ converges in law to b, then $\left\{a_{n}(\omega)\right\}$ converges in law to b.

Proof:

$$
\begin{aligned}
\operatorname{Pr}\left\{a_{n} \leq x\right\}= & \operatorname{Pr}\left\{b_{n} \leq x+b_{n}-a_{n}\right\} \\
= & \operatorname{Pr}\left\{b_{n} \leq x+b_{n}-a_{n}, b_{n}-a_{n} \leq \varepsilon\right\}+ \\
& +\operatorname{Pr}\left\{b_{n} \leq x+b_{n}-a_{n}, b_{n}-a_{n}>\varepsilon\right\} \\
\leq & \operatorname{Pr}\left\{b_{n} \leq x+\varepsilon\right\}+\operatorname{Pr}\left\{b_{n}-a_{n}>\varepsilon\right\}
\end{aligned}
$$

So,

$$
\limsup \operatorname{Pr}\left\{a_{n} \leq x\right\} \leq \liminf \operatorname{Pr}\left\{b_{n} \leq x+\varepsilon\right\}
$$

Analogously, we obtain $\lim \inf \operatorname{Pr}\left\{a_{n} \leq x\right\} \geq \lim \sup \operatorname{Pr}\left\{b_{n} \leq x-\varepsilon\right\}$.
Its only rest to make $\varepsilon \downarrow 0$ and to use that x is a continuity point.

Central Limit Theorem - 1

Definition 8: Let $\left\{b_{n}(\omega)\right\}$ be a sequence of real-valued random variables such that with finite mean and variance. If the sequence $a_{n}=\frac{\sum_{i=1}^{n} b_{i}-\mathrm{E}\left[\sum_{i=1}^{n} b_{i}\right]}{\operatorname{Var}\left(\sum_{i=1}^{n} b_{i}\right)^{(1 / 2)}}$ converge in law to $\mathcal{N}(0,1)$, then we say that $\left\{b_{n}(\omega)\right\}$ obeys a central limit theorem.

Levy-Lindeberg theorem: Let $\left\{b_{n}(\omega)\right\}$ be a sequence of i.i.d. real-valued random variables with finite mean, μ, and finite variance, σ^{2}. Then $\left\{b_{n}(\omega)\right\}$ obeys a central limit theorem.

Proof: Its based on the Taylor expansion of the characteristic functions, $\varphi_{b_{k}-\mu}(t)=E\left[\exp \left(i t\left(b_{k}-\mu\right)\right)\right]$,

$$
\varphi_{b_{k}-\mu}(t)=1-\frac{t^{2} \sigma^{2}}{2}+o\left(t^{2}\right)
$$

where the $o\left(t^{2}\right)$ is the same for all b_{k} since they are i.d. random variables.

Since the $\left\{b_{n}(\omega)\right\}$ are i.i.d. we have $\mathrm{E}\left[\sum_{i=1}^{n} b_{i}\right]=\mu$ and $\operatorname{Var}\left(\sum_{i=1}^{n} b_{i}\right)=\sigma^{2}$. Then,

$$
\begin{aligned}
\varphi_{a_{n}}(t) & =E\left[\exp \left(i t \sum_{k=1}^{n} \frac{b_{k}-\mu}{\sigma \sqrt{n}}\right)\right] \\
& =\prod_{k=1}^{n} E\left[\exp \left(i t \frac{b_{k}-\mu}{\sigma \sqrt{n}}\right)\right] \\
& =\varphi_{b_{k}-\mu}\left(\frac{t}{\sigma \sqrt{n}}\right) \\
& =\left(1-\frac{t^{2} \sigma^{2}}{2 \sigma^{2} n}+o\left(t^{2}\right)\right)^{n} \rightarrow e^{-\frac{t^{2}}{2}} \\
& =\left(1-\frac{t^{2}}{2}+o\left(t^{2}\right)\right)^{n} \rightarrow e^{-\frac{t^{2}}{2}}
\end{aligned}
$$

which is the characteristic function of a $N(0,1)$.

Example 7 (De Moivre's theorem): Let $\left\{b_{n}\right\}$ a sequence of independent and identically $\operatorname{Bernoulli}(p)$ distributed r.v. then

$$
\frac{\sum_{k=1}^{n} b_{k}-n p}{\sqrt{n p(1-p)}} \xrightarrow{d} \mathcal{N}(0,1) .
$$

Liapunov theorem: Let $\left\{b_{n}(\omega)\right\}$ be a sequence of independent realvalued random variables with zero mean and finite variance, σ_{n}^{2}. If the $\lim \sup \frac{E\left[\left|b_{n}\right|^{3}\right]}{s_{n}^{3}}=0$, where $s_{n}^{2}=\sum_{k=1}^{n} \sigma_{k}^{2}$, then

$$
\frac{\sum_{k=1}^{n} b_{k}}{s_{n}} \xrightarrow{d} \mathcal{N}(0,1) .
$$

Lindeberg theorem: Let $\left\{b_{n}(\omega)\right\}$ be a sequence of independent real-valued random variables with finite mean, μ_{k}, and finite variance, σ_{k}^{2}. Let F_{k} be the distribution function of b_{k}. If for every $\varepsilon>0$ the Lindeberg condition

$$
\frac{1}{s_{n}} \sum_{k=1}^{n} \int_{\left|x-\mu_{k}\right| \geq \varepsilon s_{n}}\left(x-\mu_{k}\right) d F_{k}(x) \rightarrow 0 \text { as } n \rightarrow \infty
$$

is satisfy, then

$$
\frac{\sum_{k=1}^{n} b_{k}-\sum_{k=1}^{n} \mu_{k}}{s_{n}} \xrightarrow{d} \mathcal{N}(0,1) .
$$

Stochastic orders - 1

Definition 9: The sequence $\left\{b_{n}(\omega)\right\}$ is at most of order n^{λ} almost surely, if there exist a $O(1)$ non-stochastic sequence sequence $\left\{a_{n}\right\}$ such that

$$
n^{-\lambda} b_{n}-a_{n} \xrightarrow{\text { a.s. }} 0
$$

Notation: $O_{\text {a.s. }}\left(n^{\lambda}\right)$

$$
O_{a . s .}(1) \text { is called almost surely bounded }
$$

Definition 10: The sequence $\left\{b_{n}(\omega)\right\}$ is of order smaller than n^{λ} almost surely, if

$$
n^{-\lambda} b_{n} \xrightarrow{\text { a.s. }} 0
$$

Notation: $o_{\text {a.s. }}\left(n^{\lambda}\right)$

Stochastic orders - 2

Definition 11: The sequence $\left\{b_{n}(\omega)\right\}$ is at most of order n^{λ} in probability, if there exist a $O(1)$ non-stochastic sequence sequence $\left\{a_{n}\right\}$ such that

$$
n^{-\lambda} b_{n}-a_{n} \xrightarrow{p} 0
$$

Notation: $O_{p}\left(n^{\lambda}\right)$

$$
O_{p}(1) \text { is called bounded in probability }
$$

Definition 12: The sequence $\left\{b_{n}(\omega)\right\}$ is of order smaller than n^{λ} almost surely, if

$$
n^{-\lambda} b_{n} \xrightarrow{\text { a.s. }} 0
$$

$$
\text { Notation: } o_{p}\left(n^{\lambda}\right)
$$

Stochastic orders - Properties

Proposition 8: Let $\left\{a_{n}(\omega)\right\}$ and $\left\{b_{n}(\omega)\right\}$ be two sequences of real-valued r.v.
(a) If $\left\{a_{n}(\omega)\right\}$ is $O_{\text {a.s. }}\left(n^{\lambda}\right)$ and $\left\{b_{n}(\omega)\right\}$ is $O_{\text {a.s. }}\left(n^{\mu}\right)$, then $\left\{a_{n}(\omega) b_{n}(\omega)\right\}$ is $O_{\text {a.s. }}\left(n^{\lambda+\mu}\right)$ and $\left\{a_{n}(\omega)+b_{n}(\omega)\right\}$ is $O_{\text {a.s. }}\left(n^{\kappa}\right)$, where $\kappa=\max (\lambda, \mu)$.
(b) If $\left\{a_{n}(\omega)\right\}$ is $o_{\text {a.s. }}\left(n^{\lambda}\right)$ and $\left\{b_{n}(\omega)\right\}$ is $o_{\text {a.s. }}\left(n^{\mu}\right)$, then $\left\{a_{n}(\omega) b_{n}(\omega)\right\}$ is $o_{\text {a.s. }}\left(n^{\lambda+\mu}\right)$ and $\left\{a_{n}(\omega)+b_{n}(\omega)\right\}$ is $o_{\text {a.s. }}\left(n^{\kappa}\right)$, where $\kappa=\max (\lambda, \mu)$.
(c) If $\left\{a_{n}(\omega)\right\}$ is $O_{\text {a.s. }}\left(n^{\lambda}\right)$ and $\left\{b_{n}(\omega)\right\}$ is $o_{\text {a.s. }}\left(n^{\mu}\right)$, then $\left\{a_{n}(\omega) b_{n}(\omega)\right\}$ is $o_{a . s .}\left(n^{\lambda+\mu}\right)$ and $\left\{a_{n}(\omega)+b_{n}(\omega)\right\}$ is $O_{a . s .}\left(n^{\kappa}\right)$, where $\kappa=\max (\lambda, \mu)$.

Proposition 8 holds for in probability orders

Proposition 9: Let $\left\{b_{n}(\omega)\right\}$ be a sequence of real-valued r.v. and b be a r.v., such that $b_{n} \xrightarrow{d} b$, then $b_{n}=O_{p}(1)$.

Asymptotic properties of the least squares estimator

Consistency:

$$
\begin{aligned}
\hat{\beta} & =\left(X^{\prime} X\right)^{-1} X^{\prime} y \\
& =\left(X^{\prime} X\right)^{-1} X^{\prime}(X \beta+\varepsilon) \\
& =\beta_{0}+\left(X^{\prime} X\right)^{-1} X^{\prime} \varepsilon \\
& =\beta_{0}+\left(\frac{X^{\prime} X}{n}\right)^{-1} \frac{X^{\prime} \varepsilon}{n}
\end{aligned}
$$

$\left(\frac{X^{\prime} X}{n}\right)^{-1}$: By assumption $\lim _{n \rightarrow \infty}\left(\frac{X^{\prime} X}{n}\right)=Q_{X} \Rightarrow \lim _{n \rightarrow \infty}\left(\frac{X^{\prime} X}{n}\right)^{-1}=$
Q_{X}^{-1}, since the inverse of a nonsingular matrix is a continuous function of the elements of the matrix.
$\frac{X^{\prime} \varepsilon}{n}$

$$
\frac{X^{\prime} \varepsilon}{n}=\frac{1}{n} \sum_{t=1}^{n} x_{t} \varepsilon_{t}
$$

Each $x_{t} \varepsilon_{t}$ has expectation zero, so $\mathrm{E}\left(\frac{X^{\prime} \varepsilon}{n}\right)=0$.
The variance of each term is $\operatorname{Var}\left(x_{t} \epsilon_{t}\right)=x_{t} x_{t}^{\prime} \sigma^{2}$.
As long as these are finite, and given a technical condition, the Kolmogorov SLLN applies, so

$$
\frac{1}{n} \sum_{t=1}^{n} x_{t} \varepsilon_{t} \xrightarrow{\text { a.s. }} 0 .
$$

This implies that $\hat{\beta} \xrightarrow{\text { a.s. }} \beta_{0}$.

Asymptotic properties of the LSE - 2

Normality:

$$
\begin{aligned}
\hat{\beta} & =\beta_{0}+\left(X^{\prime} X\right)^{-1} X^{\prime} \varepsilon \\
\hat{\beta}-\beta_{0} & =\left(X^{\prime} X\right)^{-1} X^{\prime} \varepsilon \\
\sqrt{n}\left(\hat{\beta}-\beta_{0}\right) & =\left(\frac{X^{\prime} X}{n}\right)^{-1} \frac{X^{\prime} \varepsilon}{\sqrt{n}}
\end{aligned}
$$

- $\left(\frac{X^{\prime} X}{n}\right)^{-1} \rightarrow Q_{X}^{-1}$.
- Considering $\frac{X^{\prime} \varepsilon}{\sqrt{n}}$, the limit of the variance is

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \operatorname{Var}\left(\frac{X^{\prime} \varepsilon}{\sqrt{n}}\right) & =\lim _{n \rightarrow \infty} \mathrm{E}\left(\frac{X^{\prime} \epsilon \epsilon^{\prime} X}{n}\right) \\
& =\sigma_{0}^{2} Q_{X}
\end{aligned}
$$

- We assume one (for instance, the Lindeberg CLT) holds, so

$$
\frac{X^{\prime} \varepsilon}{\sqrt{n}} \xrightarrow{d} \mathcal{N}\left(0, \sigma_{0}^{2} Q_{X}\right)
$$

Therefore,

$$
\sqrt{n}\left(\hat{\beta}-\beta_{0}\right) \xrightarrow{d} \mathcal{N}\left(0, \sigma_{0}^{2} Q_{X}^{-1}\right)
$$

- In summary, the OLS estimator is normally distributed in small and large samples if ε is normally distributed. If ε is not normally distributed, $\hat{\beta}$ is asymptotically normally distributed when a CLT can be applied.

Asymptotic properties of the LSE - 3

Asymptotic efficiency

The least squares objective function is

$$
s(\beta)=\sum_{t=1}^{n}\left(y_{t}-x_{t}^{\prime} \beta\right)^{2}
$$

Supposing that ε is normally distributed, the model is

$$
y=X \beta_{0}+\varepsilon
$$

with

$$
\varepsilon \sim \mathcal{N}\left(0, \sigma_{0}^{2} I_{n}\right)
$$

so

$$
f(\varepsilon)=\prod_{t=1}^{n} \frac{1}{\sqrt{2 \pi \sigma^{2}}} \exp \left(-\frac{\varepsilon_{t}^{2}}{2 \sigma^{2}}\right)
$$

The joint density for y can be constructed using a change of variables: $\varepsilon=y-X \beta$, so $\frac{\partial \varepsilon}{\partial y^{\prime}}=I_{n}$ and $\left|\frac{\partial \varepsilon}{\partial y^{\prime}}\right|=1$, then

$$
f(y)=\prod_{t=1}^{n} \frac{1}{\sqrt{2 \pi \sigma^{2}}} \exp \left(-\frac{\left(y_{t}-x_{t}^{\prime} \beta\right)^{2}}{2 \sigma^{2}}\right) .
$$

Taking logs,

$$
\ln L(\beta, \sigma)=-n \ln \sqrt{2 \pi}-n \ln \sigma-\sum_{t=1}^{n} \frac{\left(y_{t}-x_{t}^{\prime} \beta\right)^{2}}{2 \sigma^{2}}
$$

It's clear that the objective function for the MLE of β_{0} are the same as the objective function for OLS (up to multiplication by a constant), so the ML estimator and OLS share their properties.

In particular, under the classical assumptions with normality, the OLS estimator $\hat{\beta}$ is asymptotically efficient.

