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The outline for today

Addendum A. A brief revision of asymptotic theory.

2.1 Ordinary Least Squares.

• Small samples properties.
• Asymptotic properties.

Recommended readings: Chapter 6 of Creel (2006) and Chapter 9 of Greene
(2000).

To learn more: Chapters I to V of Halbert White (1984) Asymptotic theory for
econometrician, Academic Press, Inc.
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A brief revision of asymptotic theory

• Convergence in probability  Weak consistency.

• Almost sure convergence  Strong consistency.

• Complete convergence.

• Convergence in mean  LLN.

• Convergence in distribution  CLT.

• Stochastic orders.
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Convergence in probability

Definition 1: Let {bn(ω)} be a sequence of real-valued random variables. If
there exists a real-valued random variable b(ω) such that for every ε > 0,

Pr{|bn(ω)− b(ω)| < ε} → 1 as n →∞,

then we say that {bn(ω)} converges in probability to b.

Example 1: Let {bn(ω)} a sequence s.t. Pr{bn(ω) = 1} = 1
n and Pr{bn(ω) =

0} = 1− 1
n, then

bn
p−→ 0.

Other frequent notation is P lim bn = b.
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Almost sure convergence

Definition 2: Let {bn(ω)} be a sequence of real-valued random variables. If
there exists a real-valued random variable b(ω) such that

Pr{ω : bn(ω) → b(ω)} = 1,

then we say that {bn(ω)} converges almost surely to b.

Proposition 1: Let {bn(ω)} be a sequence of real-valued r.v. and b(ω) a

real-valued r.v., bn
a.s.−→ b iff for every ε > 0,

lim
n

Pr{ω : sup
m≥n

|bm(ω)− b(ω)| > ε} = 0.

Example 2: Let {bn(ω)} a sequence s.t. Pr{bn(ω) = 1/n} = 1
2 and

Pr{bn(ω) = −1/n} = 1
2, then

bn
a.s.−→ 0.
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Almost sure and in probability convergence - 1

Proposition 2: Let {bn(ω)} be a sequence of real-valued r.v. and b(ω) a
real-valued r.v., such that {bn(ω)} converges almost surely to b, then {bn(ω)}
converges in probability to b.

Proof: Without lost of generality we can assume that W Warning

b = 0. So, if bn
a.s.−→ 0, for every ε > 0 and δ > 0 we can choose an

n0 = n0(ε, δ) s.t.

Pr


∞⋂

n=n0

|bn| ≤ ε

 ≥ 1− δ,

then, for n > n0 we have

Pr{|bn| ≤ ε} ≥ Pr


∞⋂

n=n0

|bn| ≤ ε

 ≥ 1− δ,

and this implies that bn
p−→ 0.�
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Almost sure and in probability convergence - 1

But the reciprocal isn’t true.

Example 3: For every positive integer n we can find two integer m and k s.t.

n = 2k + m and 0 ≤ m < 2k. Let {bn(ω)} a sequence defined by

bn(ω) =
{

2k if m/2k ≤ ω ≤ (m + 1)/2k

0 otherwise ,

then

Pr{bn = 2k} =
1
2k

and Pr{bn = 0} = 1− 1
2k

.

So, in this example, bn
p−→ 0 but bn

a.s.9 0 since the limit of bn(ω) does not
exist for any ω.
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Complete convergence

Definition 3: Let {bn(ω)} be a sequence of real-valued random variables. If
there exists a real-valued random variable b(ω) such that

∞∑
n=1

Pr{ω : |bn(ω)− b(ω)| > δ} < ∞,

for every δ > 0, then we say that {bn(ω)} converges completely to b.

Proposition 3: Let {bn(ω)} be a sequence of real-valued r.v. and b(ω) a
real-valued r.v., such that {bn(ω)} converges completely to b, then {bn(ω)}
converges almost surely to b.

Proof: bn
a.s.−→ b iff for every δ > 0,

lim
n

Pr{ω : supm≥n|bn(ω)− b(ω)| > δ} = 0.
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But,

Pr{ω : supm≥n|bm(ω)− b(ω)| > δ} = Pr{ω :
⋃

m≥n

|bm(ω)− b(ω)| > δ}

Pr{ω :
⋃

m≥n

|bm(ω)− b(ω)| > δ} ≤
∞∑

m=n

Pr{ω : |bm(ω)− b(ω)| > δ},

and this sum has limit 0 since {bn(ω)} converges completely to b.�

Exercise: Show that the reciprocal isn’t true.

Hint: Remember that the condition limn an = 0 is only a necessary condition
for the convergence of series

∑∞
n=1 an.
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Convergence in rth mean

Definition 4: Let {bn(ω)} be a sequence of real-valued random variables and
r be a positive real number. If there exists a real-valued random variable b(ω)
such that

E[|bn − b|r] → 0 as n →∞,

then we say that {bn(ω)} converges in rth mean to b.

Proposition 4: Let {bn(ω)} be a sequence of real-valued r.v. and b(ω) a
real-valued r.v., such that {bn(ω)} converges in rth mean to b, then {bn(ω)}
converges in probability to b.

Proof: Using the generalized Chebyshev inequality,

Pr{|bn − b| ≥ ε} ≤ E[|bn − b|r]
εr

.

�
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Convergence in rth mean

But the reciprocal isn’t true.

Example 3 (bis): Notice that

E[|bn − b|r] = (2k)r 1
2k

+ 0r(1− 1
2k

) = 2k(r−1),

which tends to

 0 if r < 1
1 if r = 1
∞ if r > 1

,

then, {bn} does not converge in rth mean for r ≥ 1.
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Laws of Large Numbers

Definition 5: Let {bn(ω)} be a sequence of real-valued random variables such
that E[bn] = µn < ∞ and b̄n = n−1

∑n
i=1 bi be the sample mean. If, the

sequence {b̄n − E[b̄n]} converge in probability to 0, then we say that the
{bn(ω)} satisfy a Weak Laws of Large Numbers (WLLN).

Definition 6: Let {bn(ω)} be a sequence of real-valued random variables such
that E[bn] = µn < ∞ and b̄n = n−1

∑n
i=1 bi be the sample mean. If, the

sequence {b̄n − E[b̄n]} converge almost surely to 0, then we say that the
{bn(ω)} satisfy a Strong Laws of Large Numbers (SLLN).
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Weak Laws of Large Numbers - 1

Theorem 1: Let {bn(ω)} be a sequence of real-valued independent r.v. such
that:

(a) The r.v. in the sequence are identically distributed.
(b) bn has finite mean and finite variance.

Then, {bn(ω)} satisfy the WLLN.

Proof: Since the bi are i.i.d., then E[bi] = µi = µ and Var(bi) = σ2
i = σ2.

Therefore,

E[b̄n] = µ and Var(b̄n) =
σ2

n
.

Its only rest to use the Chebyshev inequality. �
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Weak Laws of Large Numbers - 2

Theorem 2 (Chebyshev): Let {bn(ω)} be a sequence of real-valued independent
r.v. such that their variance are bounded, i.e., there is a c > 0 finite s.t.:

Var(bn) = σ2
n ≤ c, for every n,

then {bn(ω)} satisfy the WLLN.

Proof: Similar to Theorem 1, but noticing that

Var(b̄n) =
∑n

i=1 σ2
n

n2
≤ c

n

�

Here, we don’t required the i.d. assumption.
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Weak Laws of Large Numbers - 3

Theorem 3 (Markov): Let {bn(ω)} be a sequence of real-valued r.v. such that

lim
n

Var(b̄n) = 0,

then {bn(ω)} satisfy the WLLN.

Proof: Again the Chebyshev inequality.

�

Theorem 4 (Khintchine): Let {bn(ω)} be a sequence of real-valued independent
r.v. such that:

(a) The r.v. in the sequence are identically distributed.
(b) bn has finite mean.

Then, {bn(ω)} satisfy the WLLN.
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Weak Laws of Large Numbers - 4

Theorem 5 (Gnedenko): Let {bn(ω)} be a sequence of real-valued r.v. such
that E[bi] = µi. The sequence {bn(ω)} satisfy the WLLN iff

lim
n

E
[

(b̄n − E[b̄n])2

1 + (b̄n − E[b̄n])2

]
= 0.

An strong result but difficult to apply it.
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Strong Laws of Large Numbers - 1

Kolmogorov inequality: Let {bn(ω)} be a sequence of real-valued independent
r.v. such that E[bn] = µn and Var(bn) = σ2

n < ∞. Then, for every δ > 0,

Pr

{
n⋃

k=1

{|Sk − E[Sk]| ≥ δVn}

}
≤ 1

δ2
,

where Sn =
∑n

k=1 bk and V 2
n = Var(Sn).

Theorem 6 (Kolmogorov): Let {bn(ω)} be a sequence of real-valued
independent r.v. such that E[bn] = µn, Var(bn) = σ2

n < ∞ and

∞∑
n=1

σ2
n

n2
< ∞,

then {bn(ω)} satisfy the SLLN.
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Strong Laws of Large Numbers - 2

Theorem 7 (Khintchine): Let {bn(ω)} be a sequence of real-valued independent
r.v. such that:

(a) The r.v. in the sequence are identically distributed.
(b) bn has finite mean µ

Then, {bn(ω)} satisfy the SLLN.

Proof: The proof is slightly long but it use two interesting elements:

• The truncation technique.

• The Borel-Cantelli lemma.
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Without lost of generality we can assume that µ = 0.

We construct two sequences of r.v. {an} and {cn} s.t.:

an =
{

1 with probability ρn

−1 with probability 1− ρn
,

and the {an} are independent and independent respect to the {bn}.

cn =
{

bn if |bn| ≤ n
nan if |bn| > n

then, |cn| = min(|bn|, n). The truncation technique.

Moreover, we can find a ρn such that E[cn] = 0:

E[cn] = To what?
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So,
∞∑

n=1

Pr{cn = bn} =
∞∑

n=1

Pr{|bn| > n}

and

Pr{|b1| > 1} = Pr{1 < |b1| ≤ 2}+ Pr{2 < |b1| ≤ 3}+ · · ·
Pr{|b2| > 2} = Pr{2 < |b2| ≤ 3}+ Pr{3 < |b1| ≤ 4}+ · · ·

but the bn are i.i.d., then we can write:∑∞
n=1 Pr{|bn| > n} =

∑∞
n=1 n Pr{n < |b| ≤ n + 1}

≤
∑∞

n=1

∫
n<|x|≤n+1

|x|dF (x) =
∫

R |x|dF (x) < ∞.

Borel-Cantelli Lemma: Let {An} be a sequence of random
events. If

∑∞
n=1 Pr{An} < ∞, then Pr{lim sup An} = 0.
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By Borel-Cantelli Lemma we have:

Pr{
∞⋂

m=1

∞⋃
n≥m

{cn 6= bn}} = 0,

or equivalently,

Pr{
∞⋃

m=1

∞⋂
n≥m

{cn = bn}} = 1.

Then, the truncation cn is a.s. equal to bn for a sufficiently large m.

The remaining is to prove that cn has finite second moment and the Kolmogorov
theorem’s condition: ∞∑

n=1

E[c2
n]

n2
< ∞,

in order to conclude that {cn} satisfy a SLLN. �
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Convergence in distribution or in law

Definition 7: Let {bn(ω)} be a sequence of real-valued random variables such
that with distribution function {Fn}. If Fn(z) → F (z) as n → ∞ for every
continuity point z of F and F is the distribution function of a random variable
b, then we say that {bn(ω)} converge in distribution to b.

Example 4: Let {Fn} be a sequence of distribution functions such that,

Fn(z) =

 0 if z < 0
xn if 0 ≤ z ≤ 1
1 if z ≥ 1

. So, Fn(x) → F (x) =? for every x, then

bn
d−→?

Example 5: Let {Fn} be a sequence of distribution functions such that,

Fn(z) =
{

0 if z < n
1 if z ≥ n

, i.e., the r.v. bn is concentrated on n. Then

Fn(x) → F (x) = 0 for every x, then: What we can concluded?
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Convergence in distribution - 2

Proposition 5: Let {bn(ω)} be a sequence of real-valued r.v., b(ω) a real-valued
r.v. and let be fn and f its densities functions such that fn(x) → f(x) as
n →∞ for almost all x. Then, {bn(ω)} converges in law to b.

Proof: Exercise. �

Proposition 6: Let {bn(ω)} be a sequence of real-valued r.v., b(ω) a real-valued
r.v. and let be ϕn and ϕ its characteristic functions such that ϕn(t) → ϕ(t)
as n →∞ for all t and ϕ is continuous at t = 0. Then, {bn(ω)} converges in
law to b.

Proof: Is more that an exercise. �
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In probability and in law convergence - 1

Proposition 7: Let {bn(ω)} be a sequence of real-valued r.v. and b(ω) a
real-valued r.v., such that {bn(ω)} converges in probability to b, then {bn(ω)}
converges in law to b.

Proof: Let

An = {bn ≤ z} = {bn ≤ z, b ≤ y} ∪ {bn ≤ z, b > y}
⊂ {b ≤ y} ∪ {bn ≤ z, b > y},

then
Fn(z) ≤ F (y) + Pr{bn ≤ z, b > y}.

If y > z then

Pr{bn ≤ z, b > y} ≤ Pr{|bn − b| > y − z}.
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Using that bn
p−→ b, we have Pr{|bn − b| > y − z} → 0

=⇒ Fn(z)− F (y) ≤ Pr{|bn − b| > y − z} → 0

=⇒ lim sup Fn(z) ≤ F (y).

Analogously, we obtain lim inf Fn(z) ≥ F (x) for x < z.

Then,
F (x) ≤ lim inf Fn(z) ≤ lim supFn(z) ≤ F (y)

Finally, letting y ↓ z and x ↑ z, since z is a continuity point of F , we obtain
that F (y) ↓ F (z) and F (x) ↑ F (z). �
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In probability and in law convergence - 2

The reciprocal isn’t true.

Example 6: Let {bn} a sequence of independent and identically distributed r.v.
and let b a r.v. such that the joint distribution is give by the following table:

b : bn 0 1 Marginal
0 0 0.5 0.5
1 0.5 0 0.5

Marginal 0.5 0.5 1

Notice that Pr{|bn− b| > 0.5} = 1, then {bn} does not converge in probability
to b.

But bn
d−→ b since both has the same distribution function.
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In probability and in law convergence - 2

The asymptotic equivalence lemma: Let {an(ω)} and {bn(ω)} be two
sequences of real-valued r.v. and b(ω) a real-valued r.v., such that {an−bn(ω)}
converges in probability to 0 and {bn(ω)} converges in law to b, then {an(ω)}
converges in law to b.

Proof:

Pr{an ≤ x} = Pr{bn ≤ x + bn − an}
= Pr{bn ≤ x + bn − an, bn − an ≤ ε}+

+ Pr{bn ≤ x + bn − an, bn − an > ε}
≤ Pr{bn ≤ x + ε}+ Pr{bn − an > ε}

,

So,
lim supPr{an ≤ x} ≤ lim inf Pr{bn ≤ x + ε}.

Analogously, we obtain lim inf Pr{an ≤ x} ≥ lim supPr{bn ≤ x− ε}.

Its only rest to make ε ↓ 0 and to use that x is a continuity point. �
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Central Limit Theorem - 1

Definition 8: Let {bn(ω)} be a sequence of real-valued random variables such

that with finite mean and variance. If the sequence an =
∑n

i=1 bi−E[
∑n

i=1 bi]

Var(
∑n

i=1 bi)
(1/2)

converge in law to N (0, 1), then we say that {bn(ω)} obeys a central limit
theorem.

Levy-Lindeberg theorem: Let {bn(ω)} be a sequence of i.i.d. real-valued
random variables with finite mean, µ, and finite variance, σ2. Then {bn(ω)}
obeys a central limit theorem.

Proof: Its based on the Taylor expansion of the characteristic functions,
ϕbk−µ(t) = E[exp(it(bk − µ))],

ϕbk−µ(t) = 1 − t2σ2

2
+ o(t2),

where the o(t2) is the same for all bk since they are i.d. random variables.
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Since the {bn(ω)} are i.i.d. we have E[
∑n

i=1 bi] = µ and Var(
∑n

i=1 bi) = σ2.
Then,

ϕan(t) = E
[
exp

(
it

∑n
k=1

bk−µ
σ
√

n

)]
=

∏n
k=1 E

[
exp

(
itbk−µ

σ
√

n

)]
= ϕbk−µ

(
t

σ
√

n

)
=

(
1 − t2σ2

2σ2n
+ o(t2)

)n

→ e−
t2

2

=
(
1 − t2

2 + o(t2)
)n

→ e−
t2

2

which is the characteristic function of a N(0, 1). �

Example 7 (De Moivre’s theorem): Let {bn} a sequence of independent and
identically Bernoulli(p) distributed r.v. then∑n

k=1 bk − np√
np(1− p)

d−→ N (0, 1).
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Liapunov theorem: Let {bn(ω)} be a sequence of independent real-
valued random variables with zero mean and finite variance, σ2

n. If the

lim sup E[|bn|3]
s3
n

= 0, where s2
n =

∑n
k=1 σ2

k, then

∑n
k=1 bk

sn

d−→ N (0, 1).

Lindeberg theorem: Let {bn(ω)} be a sequence of independent real-valued
random variables with finite mean, µk, and finite variance, σ2

k. Let Fk be the
distribution function of bk. If for every ε > 0 the Lindeberg condition

1
sn

n∑
k=1

∫
|x−µk|≥εsn

(x− µk)dFk(x) → 0 as n →∞

is satisfy, then ∑n
k=1 bk −

∑n
k=1 µk

sn

d−→ N (0, 1).
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Stochastic orders - 1

Definition 9: The sequence {bn(ω)} is at most of order nλ almost surely, if
there exist a O(1) non-stochastic sequence sequence {an} such that

n−λbn − an
a.s.−→ 0

Notation: Oa.s.(nλ)

Oa.s.(1) is called almost surely bounded

Definition 10: The sequence {bn(ω)} is of order smaller than nλ almost surely,
if

n−λbn
a.s.−→ 0

Notation: oa.s.(nλ)
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Stochastic orders - 2

Definition 11: The sequence {bn(ω)} is at most of order nλ in probability, if
there exist a O(1) non-stochastic sequence sequence {an} such that

n−λbn − an
p−→ 0

Notation: Op(nλ)

Op(1) is called bounded in probability

Definition 12: The sequence {bn(ω)} is of order smaller than nλ almost surely,
if

n−λbn
a.s.−→ 0

Notation: op(nλ)
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Stochastic orders - Properties

Proposition 8: Let {an(ω)} and {bn(ω)} be two sequences of real-valued r.v.

(a) If {an(ω)} is Oa.s.(nλ) and {bn(ω)} is Oa.s.(nµ), then {an(ω)bn(ω)} is
Oa.s.(nλ+µ) and {an(ω) + bn(ω)} is Oa.s.(nκ), where κ = max(λ, µ).

(b) If {an(ω)} is oa.s.(nλ) and {bn(ω)} is oa.s.(nµ), then {an(ω)bn(ω)} is
oa.s.(nλ+µ) and {an(ω) + bn(ω)} is oa.s.(nκ), where κ = max(λ, µ).

(c) If {an(ω)} is Oa.s.(nλ) and {bn(ω)} is oa.s.(nµ), then {an(ω)bn(ω)} is
oa.s.(nλ+µ) and {an(ω) + bn(ω)} is Oa.s.(nκ), where κ = max(λ, µ).

Proposition 8 holds for in probability orders

Proposition 9: Let {bn(ω)} be a sequence of real-valued r.v. and b be a r.v.,

such that bn
d−→ b, then bn = Op(1).
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Asymptotic properties of the least squares estimator

Consistency:

β̂ = (X ′X)−1X ′y

= (X ′X)−1X ′ (Xβ + ε)

= β0 + (X ′X)−1X ′ε

= β0 +
(

X ′X

n

)−1
X ′ε

n

(
X′X

n

)−1

: By assumption limn→∞

(
X′X

n

)
= QX ⇒ limn→∞

(
X′X

n

)−1

=

Q−1
X , since the inverse of a nonsingular matrix is a continuous function of the

elements of the matrix.
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X′ε
n :

X ′ε

n
=

1
n

n∑
t=1

xtεt.

Each xtεt has expectation zero, so E
(

X′ε
n

)
= 0.

The variance of each term is Var (xtεt) = xtx
′
tσ

2.

As long as these are finite, and given a technical condition, the Kolmogorov
SLLN applies, so

1
n

n∑
t=1

xtεt
a.s.→ 0.

This implies that β̂
a.s.→ β0.
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Asymptotic properties of the LSE - 2

Normality:

β̂ = β0 + (X ′X)−1X ′ε

β̂ − β0 = (X ′X)−1X ′ε

√
n

(
β̂ − β0

)
=

(
X ′X

n

)−1
X ′ε√

n

•
(

X′X
n

)−1

→ Q−1
X .

• Considering X′ε√
n
, the limit of the variance is

lim
n→∞

Var
(

X ′ε√
n

)
= lim

n→∞
E

(
X ′εε′X

n

)
= σ2

0QX
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• We assume one (for instance, the Lindeberg CLT) holds, so

X ′ε√
n

d→ N
(
0, σ2

0QX

)
Therefore, √

n
(
β̂ − β0

)
d→ N

(
0, σ2

0Q
−1
X

)
• In summary, the OLS estimator is normally distributed in small and large

samples if ε is normally distributed. If ε is not normally distributed, β̂ is
asymptotically normally distributed when a CLT can be applied.
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Asymptotic properties of the LSE - 3

Asymptotic efficiency

The least squares objective function is

s(β) =
n∑

t=1

(yt − x′tβ)2

Supposing that ε is normally distributed, the model is

y = Xβ0 + ε,

with
ε ∼ N (0, σ2

0In),
so

f(ε) =
n∏

t=1

1√
2πσ2

exp
(
− ε2

t

2σ2

)
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The joint density for y can be constructed using a change of variables:
ε = y −Xβ, so ∂ε

∂y′ = In and | ∂ε
∂y′| = 1, then

f(y) =
n∏

t=1

1√
2πσ2

exp
(
−(yt − x′tβ)2

2σ2

)
.

Taking logs,

lnL(β, σ) = −n ln
√

2π − n lnσ −
n∑

t=1

(yt − x′tβ)2

2σ2
.

It’s clear that the objective function for the MLE of β0 are the same as the
objective function for OLS (up to multiplication by a constant), so the ML
estimator and OLS share their properties.

In particular, under the classical assumptions with normality, the OLS estimator
β̂ is asymptotically efficient.
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