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The outline for today

Addendum A. A brief revision of asymptotic theory.

2.1 Ordinary Least Squares.

e Small samples properties.
e Asymptotic properties.

Recommended readings: Chapter 6 of Creel (2006) and Chapter 9 of Greene
(2000).

To learn more: Chapters | to V of Halbert White (1984) Asymptotic theory for
econometrician, Academic Press, Inc.
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A brief revision of asymptotic theory

e Convergence in probability ~~ Weak consistency.
e Almost sure convergence ~~ Strong consistency.
e Complete convergence.

e Convergence in mean ~> LLN.

e Convergence in distribution ~» CLT.

e Stochastic orders.
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Convergence in probability

Definition 1: Let {b,(w)} be a sequence of real-valued random variables. If
there exists a real-valued random variable b(w) such that for every € > 0,

Pr{|b,(w) —b(w)| <e} — 1 as n — oo,

then we say that {b,,(w)} converges in probability to b.

Example 1: Let {b,(w)} a sequence s.t. Pr{b,(w) =1} =% and Pr{b,(w) =
0}=1- % then

b, — 0.

Other frequent notation is Plim b,, = b.
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Almost sure convergence

Definition 2: Let {b,(w)} be a sequence of real-valued random variables. If
there exists a real-valued random variable b(w) such that

Pr{w: b,(w) — blw)} =1,
then we say that {b,,(w)} converges almost surely to b.

Proposition 1: Let {b,(w)} be a sequence of real-valued r.v. and b(w) a

real-valued r.v., b, 255 b iff for every € > 0,

lim Pr{w : sup |by,(w) — b(w)| > €} = 0.

m>n

Example 2:  Let {b,(w)} a sequence s.t. Pr{b,(w) = 1/n} = 1 and
Pr{b,(w) = —1/n} = 1, then

b, — 0.
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Almost sure and in probability convergence - 1

Proposition 2: Let {b,(w)} be a sequence of real-valued r.v. and b(w) a
real-valued r.v., such that {b,(w)} converges almost surely to b, then {b,(w)}
converges in probability to b.

Proof: Without lost of generality we can assume that & | Warning

b =0. So, if b, =5 0, for every ¢ > 0 and 6 > 0 we can choose an
ng = n0(5,5) S.t.

Pri () Ibal <ep>1-34,
n=nqg

then, for n > ng we have

Pr{|bn| <e} >Prq () lbn| <ep >1-34,

n=n

and this implies that b, 25 0.m

Econometrics




Almost sure and in probability convergence - 1

But the reciprocal isn't true.

Example 3: For every positive integer n we can find two integer m and k s.t.
n =24+ mand 0 < m < 2*. Let {b,(w)} a sequence defined by

Y

b (w) — 2F if m/2F <w < (m+1)/2"
n\W) = 0 otherwise

th
en !

1
Pr{b, =2} = — and Pr{b,=01=1-— —.
2k 2k

So, in this example, b,, —— 0 but b,, %5 0 since the limit of b, (w) does not
exist for any w.
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Complete convergence

Definition 3: Let {b,(w)} be a sequence of real-valued random variables. If
there exists a real-valued random variable b(w) such that

Z Pr{w : |by(w) — b(w)| > §} < o0,

for every 6 > 0, then we say that {b,(w)} converges completely to b.

Proposition 3: Let {b,(w)} be a sequence of real-valued r.v. and b(w) a
real-valued r.v., such that {b,(w)} converges completely to b, then {b,(w)}
converges almost surely to b.

Proof: b,, == b iff for every § > 0,

lim Pr{w : supy>n|bn(w) —b(w)| >} = 0.
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But,

Pr{w : suppzn|bm(w) = b(w)| > 6} =Pr{w: | ] [bm(w) — b(w)| > 6}

m>n

Pr{w: | J [bm(w) = bw)] >0} < Y Pr{w: [by(w) — b(w)| > 6},

m>n

and this sum has limit 0 since {b,,(w)} converges completely to b.m

Exercise: Show that the reciprocal isn't true.

Hint: Remember that the condition lim,, a,, = 0 is only a necessary condition
for the convergence of series > " . a,.
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Convergence in rth mean

Definition 4: Let {b,(w)} be a sequence of real-valued random variables and
r be a positive real number. If there exists a real-valued random variable b(w)
such that

E[|b, —b|"] — 0 as n — o0,
then we say that {b,,(w)} converges in rth mean to b.

Proposition 4: Let {b,(w)} be a sequence of real-valued r.v. and b(w) a
real-valued r.v., such that {b,(w)} converges in rth mean to b, then {b,(w)}
converges in probability to b.

Proof: Using the generalized Chebyshev inequality,

E[|b, — b|”
Pr{|b, — b > £} < LA = i
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Convergence in rth mean

But the reciprocal isn't true.

Example 3 (bis): Notice that

1 1

ElJbn — b7] = (2%)7 5z +07(1 — 5) = 2,
0 1fr<l
which tends to 1 ifr=1,
oo ifr>1

then, {b,} does not converge in rth mean for r > 1.
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Laws of Large Numbers

Definition 5: Let {b,,(w)} be a sequence of real-valued random variables such
that E[b,] = p, < o0 and b, = n~! > b; be the sample mean. If, the
sequence {b, — E[b,]} converge in probability to 0, then we say that the
{b,(w)} satisfy a Weak Laws of Large Numbers (WLLN).

Definition 6: Let {b,(w)} be a sequence of real-valued random variables such
that E[b,] = pun < 00 and b, = n~! > b; be the sample mean. If, the
sequence {b, — E[b,]} converge almost surely to 0, then we say that the
{b,(w)} satisfy a Strong Laws of Large Numbers (SLLN).
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Weak Laws of Large Numbers - 1

Theorem 1: Let {b,(w)} be a sequence of real-valued independent r.v. such
that:

(@) The r.v. in the sequence are identically distributed.
(b) b, has finite mean and finite variance.

Then, {b,(w)} satisfy the WLLN.

Proof: Since the b; are i.i.d., then E[b;] = pu; = p and Var(b;) = 0? = o2,

Therefore,

0.2

Eb, = and Var(b,) = —.

n

Its only rest to use the Chebyshev inequality. g
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Weak Laws of Large Numbers - 2

Theorem 2 (Chebyshev): Let {b,,(w)} be a sequence of real-valued independent
r.v. such that their variance are bounded, i.e., there is a ¢ > 0 finite s.t.:

Var(b,) = o> < ¢, for every n,

then {b,(w)} satisfy the WLLN.
Proof: Similar to Theorem 1, but noticing that

n 2
1=1 On
2

Var(b,) = 2

<

S|o

n

Here, we don't required the i.d. assumption.
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Weak Laws of Large Numbers - 3

Theorem 3 (Markov): Let {b,(w)} be a sequence of real-valued r.v. such that

lim Var(b,) = 0,

n

then {b,,(w)} satisfy the WLLN.

Proof: Again the Chebyshev inequality.

Theorem 4 (Khintchine): Let {b,(w)} be a sequence of real-valued independent
r.v. such that:

(@) The r.v. in the sequence are identically distributed.
(b) b, has finite mean.

Then, {b,(w)} satisfy the WLLN.

Econometrics



16

Weak Laws of Large Numbers - 4

Theorem 5 (Gnedenko): Let {b,(w)} be a sequence of real-valued r.v. such

that E[b;] = p;. The sequence {b,(w)} satisfy the WLLN iff

An strong result but difficult to apply it.
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Strong Laws of Large Numbers - 1

Kolmogorov inequality: Let {b,,(w)} be a sequence of real-valued independent
r.v. such that E[b,] = i, and Var(b,,) = 02 < oo. Then, for every § > 0,

{U{Sk ~B[Si| > oV }} =

k=1

where S, = >0, b and V.2 = Var(S,,).

Theorem 6 (Kolmogorov): Let {b,(w)} be a sequence of real-valued
independent r.v. such that E[b,] = u,, Var(b,) = 02 < oo and

>3

w‘iw

then {b,,(w)} satisfy the SLLN.
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Strong Laws of Large Numbers - 2

Theorem 7 (Khintchine): Let {b,,(w)} be a sequence of real-valued independent
r.v. such that:

(@) The r.v. in the sequence are identically distributed.
(b) b, has finite mean p

Then, {b,(w)} satisfy the SLLN.

Proof: The proof is slightly long but it use two interesting elements:

e The truncation technique.

e [ he Borel-Cantelli lemma.
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Without lost of generality we can assume that u = 0.

We construct two sequences of r.v. {a,} and {c,} s.t.:

Y

— 1 with probability p,
" 1 —1 with probability 1 — p,

and the {a,} are independent and independent respect to the {b,}.

{ b, if |bp| <n
Cp =

na, if |by| >n

then,

cn| = min(|b,|,n). The truncation technique.

Moreover, we can find a p,, such that E[c,] = 0:

Elc,] = To what?
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So,
Y Pr{c,=bp} =Y Pr{|b,| >n}
n=1 n=1

and

Pr{l < |b)] <2} +Pr{2 < |by| <3} +---

Pr{|bi| > 1}
Pr{2 < |bo| <3} +Pr{3 < |by| <4} +---

PI’{V)Q‘ > 2}

but the b,, are i.i.d., then we can write:

Zn nPr{n < |b| < n—|—1}

> ey Pr{[bn| > n}
zl|dF (z) = [ |z]|dF (z) < oo.

IA ]

D n=t n<|z|<n+

Borel-Cantelli Lemma: Let {A,} be a sequence of random
events. If >  Pr{4,} < oo, then Pr{limsup 4,,} = 0.
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By Borel-Cantelli Lemma we have:

Pr{() U fen £ bkt =0,

m=1ln>m

or equivalently,

Pr{| ] () {en=0bn}} =1

m=1n>m
Then, the truncation ¢, is a.s. equal to b,, for a sufficiently large m.

The remaining is to prove that ¢,, has finite second moment and the Kolmogorov

theorem’s condition: -

Elc;]
Z 5 <9,
n=1 n

in order to conclude that {c,} satisfy a SLLN. g
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Convergence in distribution or in law

Definition 7: Let {b,(w)} be a sequence of real-valued random variables such
that with distribution function {F,}. If F,(z) — F(z) as n — oo for every
continuity point z of F' and F' is the distribution function of a random variable
b, then we say that {b,(w)} converge in distribution to b.

Example 4: Let {F,} be a sequence of distribution functions such that,

0 if 2<0

Fo.(z) =< 2" f0<2<1 . So, Fy(r) — F(x) =7 for every x, then
1 ifz>1

by, —7

Example 5: Let {F,} be a sequence of distribution functions such that,

0 ifz<n . .
F.(z) = { | ifa>n i.e., the r.v. b, is concentrated on n. Then

F,.(z) — F(x) = 0 for every z, then: | What we can concluded?
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Convergence in distribution - 2

Proposition 5: Let {b,,(w)} be a sequence of real-valued r.v., b(w) a real-valued
rv. and let be f, and f its densities functions such that f,(x) — f(z) as
n — oo for almost all x. Then, {b,(w)} converges in law to b.

Proof: Exercise. g

Proposition 6: Let {b,,(w)} be a sequence of real-valued r.v., b(w) a real-valued
r.v. and let be ¢, and ¢ its characteristic functions such that ¢, (¢) — (%)
as n — oo for all ¢ and ¢ is continuous at ¢t = 0. Then, {b,(w)} converges in
law to b.

Proof: Is more that an exercise. g
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In probability and in law convergence - 1

Proposition 7: Let {b,(w)} be a sequence of real-valued r.v. and b(w) a
real-valued r.v., such that {b,(w)} converges in probability to b, then {b,(w)}

converges in law to b.

Proof: Let
A, = {b,<z}=4{b, <z, b<y}tU{b, <z b>y}
C {b<y}U{b, <zb>y},
then
F.(z) < F(y) + Pr{b, < z,b > y}.
If y > z then

Pr{b, < z,b > y} < Pr{|b, — b| >y — z}.
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Using that b, — b, we have Pr{|b, —b| >y — 2} — 0
— F,(2)— F(y) <Pr{lb,—b|>y—2} =0
—> limsup F,,(2) < F(y).

Analogously, we obtain liminf F},(z) > F(x) for x < z.

Then,
F(z) <liminf F,,(z) < limsup F,(z2) < F(y)

Finally, letting y | 2z and x T z, since z is a continuity point of F', we obtain
that Fi(y) | F(2) and F(xz) T F(2). m
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In probability and in law convergence - 2

The reciprocal isn't true.

Example 6: Let {b,} a sequence of independent and identically distributed r.v.
and let b a r.v. such that the joint distribution is give by the following table:

b: b, 0 1 | Marginal
0 0 [ 05 0.5
1 051 0 0.5
Marginal | 0.5 | 0.5 1

Notice that Pr{|b, —b| > 0.5} = 1, then {b,,} does not converge in probability
to b.

d . o .
But b,, — b since both has the same distribution function.
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In probability and in law convergence - 2

The asymptotic equivalence lemma: Let {a,(w)} and {b,(w)} be two
sequences of real-valued r.v. and b(w) a real-valued r.v., such that {a,,—b,(w)}
converges in probability to 0 and {b,,(w)} converges in law to b, then {a,(w)}
converges in law to b.

Proof:
Pr{a, <z} = Pr{b,<z+0b,— a,}
= Pr{bn§x+bn_an7bn_an§€}+
_I_Pr{bn S $+bn_an7bn_an > 5} ’
< Pri{b,<z+e}+Pr{b,—a, >c¢}
So,

lim sup Pr{a,, <z} <liminf Pr{b, <z + ¢}.

Analogously, we obtain lim inf Pr{a,, < z} > limsup Pr{b,, <z —¢}.

Its only rest to make € | 0 and to use that x is a continuity point. m
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Central Limit Theorem - 1

Definition 8: Let {b,,(w)} be a sequence of real-valued random variables such
> i1 bi — B[t b
Var(3 iy b;)(1/2)
converge in law to N (0,1), then we say that {b,(w)} obeys a central limit

theorem.

that with finite mean and variance. If the sequence a,, =

Levy-Lindeberg theorem: Let {b,(w)} be a sequence of i.i.d. real-valued
random variables with finite mean, p, and finite variance, 02. Then {b,(w)}
obeys a central limit theorem.

Proof: Its based on the Taylor expansion of the characteristic functions,
by, —u(t) = Elexp(it(by — p))],

t20?
Spbk—u(t) =1 — T + O(t2),

where the o(t?) is the same for all by since they are i.d. random variables.
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Since the {b,(w)} are i.i.d. we have E[>_"  b;] = p and Var(}.; , b;) = o°.
Then,

Ya,(t) = FE [GXP (it D = ?&gﬂ
= T 2 [ (it252)]
e
() et
= (1-% +a(®?) n

which is the characteristic function of a N(0,1). m

— e 2

Example 7 (De Moivre's theorem): Let {b,} a sequence of independent and
identically Bernoulli(p) distributed r.v. then

B =
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Liapunov theorem: Let {b,(w)} be a sequence of independent real-

valued random variables with zero mean and finite variance, o? If the

2
3
lim sup £l — 0, where s2 = S°”_ 42, then
P—3 n k=1%k

n

2=V d, N(0,1).

Sn

Lindeberg theorem: Let {b,(w)} be a sequence of independent real-valued
random variables with finite mean, ux, and finite variance, a,%. Let F}. be the
distribution function of b;. If for every € > 0 the Lindeberg condition

iZ/ (x — pg)dFr(x) — 0 as n — oo

Sn k=1 |z —pg|>esn

is satisfy, then
mn b o mn

Sn
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Stochastic orders - 1

Definition 9: The sequence {b,(w)} is at most of order n* almost surely, if
there exist a O(1) non-stochastic sequence sequence {a,} such that

- a.s.

Notation: O, ,.(n")

Oq.5.(1) is called almost surely bounded

Definition 10: The sequence {b,,(w)} is of order smaller than n* almost surely,
if

— a.s.
n~*b, =% 0

Notation: o, (1)
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Stochastic orders - 2

Definition 11: The sequence {b,(w)} is at most of order n> in probability, if

there exist a O(1) non-stochastic sequence sequence {a,} such that

_ p
n~*b, — a, — 0

Notation: O,(n?)

O,(1) is called bounded in probability

Definition 12: The sequence {b,(w)} is of order smaller than n* almost surely,
if

_ a.s.

Notation: o,(n*)
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Stochastic orders - Properties

Proposition 8: Let {a,(w)} and {b,(w)} be two sequences of real-valued r.v.

(@) If {a,(w)} is Ogs.(n?) and {b,(w)} is Og.s.(n*), then {a,(w)b,(w)} is
Og.s.(n ) and {an(w) + bp(w)} is O, 5. (n%), where K = max(\, ).

(b) If {a,(w)} is 04.5.(n?) and {b,(w)} is 04 ("), then {a,(w)b,(w)} is
0q.5.(N*TH) and {ay,(w) + by (w)} is 04.5.(n"), where kK = max(\, ).

(c) If {an(w)} is Oq..(n?) and {b,(w)} is 045 (n*), then {a,(w)b,(w)} is
0q.5.(n*TH) and {a,(w) + by (w)} is Oq.s.(n"), where x = max(\, p).

Proposition 8 holds for in probability orders

Proposition 9: Let {b,(w)} be a sequence of real-valued r.v. and b be a r.v.,
such that b, - b, then b, = O,(1).
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Asymptotic properties of the least squares estimator

Consistency:

X'X
n

5

(X'x)!
= (x'x)"!

@
I

X’y
X' (X8 +e)

= fo+ (X'X)"'X'e

X'X\ ! X
= [o+ -

: By assumption lim,, _, (

n

n

/ —1
X' X —
- =

Q' since the inverse of a nonsingular matrix is a continuous function of the
elements of the matrix.
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n
X'e 1
—_— = — E LtEt.
n n
t=1

. /
Each x;; has expectation zero, so E (%) = 0.

The variance of each term is Var (z;¢e,) = z,2.02.
+€¢ tTy

As long as these are finite, and given a technical condition, the Kolmogorov

SLLN applies, so
1 a.s
— g rier — 0.
n
t=1

This implies that B 2 B,
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Asymptotic properties of the LSE - 2

Normality:

B = Bo+ (X'X)'X'e

B—5By = (X'X)"'X'e
. X'X\ ' Xle
va(i-m) = (55) 25

~1
X'X —1
- () —ed
L] [l / [ . . L]
e Considering %, the limit of the variance is

X' X'ee! X
limVar( 5) = limE( € )

7— 00 \/’71, n— 00 n

— U%QX
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e \We assume one (for instance, the Lindeberg CLT) holds, so

Ae iN(()?O-gQX)

n

Therefore,

Vv (B — 50) LN (0,05Q%")

e In summary, the OLS estimator is normally distributed in small and large
samples if € is normally distributed. If £ is not normally distributed, (3 is
asymptotically normally distributed when a CLT can be applied.
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Asymptotic properties of the LSE - 3

Asymptotic efficiency

The least squares objective function is

n

s(B) = Y (ye—x,B)°

t=1

Supposing that ¢ is normally distributed, the model is

Yy = Xﬁo + €,
with
e ~ N (0, agln),
SO ,
- 1 1
fle) = H 52 exXp (_ﬁ)
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The joint density for y can be constructed using a change of variables:

e=y— X0, soa,—I and |a ;| =1, then

_ ﬁ \/%exp (_(?Jt ;093225)2) |

iy V27mo

Taking logs,

n / 2
InL(B,0) = —nlnv2r —nlno — Z e — 240) :

202
t=1

It's clear that the objective function for the MLE of 3y are the same as the
objective function for OLS (up to multiplication by a constant), so the ML

estimator and OLS share their properties.

In particular, under the classical assumptions with normality, the OLS estimator

(3 is asymptotically efficient.
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