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Introduction

Econometrics is a branch of Economy concerning the empirical study of
relations among economic variables.

In econometrics is used:

• An econometric model: Based on the economic theory.

• Data: Facts.

• Econometrics techniques: Statistical inference.

Recommended readings: Chapter 2 and 3 of Creel (2006) and Chapter 1 and
6 of Greene (2000).
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Objectives of an econometric study

• Structural Analysis: It consists on the use of models to measure specific
economic relations. Its an important objective since we can compare
different theories under the fact’s (data) information.

• Prediction: It consists on the use of models to predict future values of
economic variables using the fact’s (data) information.

• Policies evaluation: It consists on the use of models to select among
alternatives policies.

These three objectives are interrelated.
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Economic and econometric models:

Example # 1: Economic theory tells us that demand functions are something
like:

xi = xi(pi,mi, zi)

• xi is G× 1 vector of quantities demanded.
• pi is G× 1 vector of prices.
• mi is income.
• zi is a vector of individual characteristics related to preferences.

Suppose we have a sample consisting of one observation on n individuals’
demands at time period t (this is a cross section, where i = 1, 2, ..., n indexes
the individuals in the sample).
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Example # 1 (cont.): This is nice economic model but it is not estimable as
it stands, since:

• The form of the demand function is different for all i.

• Some components of zi may not be observable to an outside modeler. For
example, people don’t eat the same lunch every day, and you can’t tell what
they will order just by looking at them. Suppose we can break zi into the
observable components wi and a single unobservable component εi.

What can we do?
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Example # 1 (cont.): An estimable (e.g., econometric) model is

xi = β0 + p′iβp + miβm + w′iβw + εi

Here, we impose a number of restrictions on the theoretical model:

• The functions xi(·) which may differ for all i have been restricted to all
belong to the same parametric family.

• Of all parametric families of functions, we have restricted the model to the
class of linear in the variables functions.

• There is a single unobservable component, and we assume it is additive.
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Example # 1 (cont.):

• These are very strong restrictions, compared to the theoretical model.

• Furthermore, these restrictions have no theoretical basis.

• For this reason, specification testing will be needed, to check that the
model seems to be reasonable.

First conclusion: Only when we are convinced that
the model is at least approximately correct should we
use it for economic analysis.
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The classical linear model is based upon several assumptions:

1. Linearity: the model is a linear function of the parameter vector β0 :

yt = β0
1x1 + β0

2x2 + · · ·+ β0
kxk + εt, (1)

or in matrix form,

y = x′βββ0 + εεε,

where y is the dependent variable, x = (x1, x2, · · · , xk)′, where xt is a k×1
vector of explanatory variables and βββ0 and εεε are conformable vectors.

The subscript “0” in βββ0 means this is the true value of the unknown
parameter.
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Suppose that we have n observations, then model (1) can be written as:

yyy = Xβββ + εεε, (2)

where yyy is a n× 1 vector and X is a n× k matrix.

2. IID mean zero errors:

E(ε|X) = 0

Var(ε|X) = E(εε′|X) = σ2In.

What are the implications of this second assumption?
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3. Nonstochastic, linearly independent regressors:

(a) Xn×k has rank k, its number of columns.
(b) X is nonstochastic.
(c) limn→∞

1
nX′X = QX, a finite positive definite matrix.

What are the implications of this third assumption?

4. Normality (Optional): ε|X is normally distributed.

For economic data, the assumption of nonstochastic regressors is
obviously unrealistic. Likewise, normality of errors will often be
unrealistic.

Econometrics



Introduction 13

Linear models are more general than they might first appear, since one can
employ nonlinear transformations of the variables:

ϕ0(zt) =
[

ϕ1(wt) ϕ2(wt) · · · ϕp(wt)
]
β0 + εt

where the φi() are known functions. Defining yt = ϕ0(zt), xt1 = ϕ1(wt), etc,
leads to a model in the form of equation (1).

For example, the Cobb-Douglas model:

z = Awβ2
2 wβ3

3 exp(ε)

can be transformed logarithmically to obtain

ln z = ln A + β2 lnw2 + β3 lnw3 + ε.
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Example: The Nerlove model

Theoretical background:

For a firm that takes input prices w and the output level q as given, the
cost minimization problem is to choose the quantities of inputs x to solve the
problem

min
x

w′x

subject to the restriction

f(x) = q.

The solution is the vector of factor demands x(w, q). The cost function is
obtained by substituting the factor demands into the criterion function:

C(w, q) = w′x(w, q).
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Example: The Nerlove model

• Monotonicity Increasing factor prices cannot decrease cost, so ∂C(w,q)
∂w ≥ 0.

• Homogeneity Because the cost of production is a linear function of w, it
has the property of homogeneity of degree 1 in input prices: C(tw, q) =
tC(w, q), where t is a scalar constant.

• Returns to scale The returns to scale parameter γ is defined as the inverse
of the elasticity of cost with respect to output:

γ =
(

∂C(w, q)
∂q

q

C(w, q)

)−1

.

Constant returns to scale is the case where increasing production q implies
that cost increases in the proportion 1:1. If this is the case, then γ = 1.
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Example: The Nerlove model

Cobb-Douglas approximating model:

The Cobb-Douglas functional form is linear in the logarithms of the regressors
and the dependent variable. For a cost function, if there are g factors, the
Cobb-Douglas cost function has the form:

C = Awβ1
1 ...w

βg
g qβqeε.

After a logarithmic transformation we obtain:

lnC = α + β1 lnw1 + ... + βg lnwg + βq ln q + ε,

where α = ln A .
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Example: The Nerlove model
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Example: The Nerlove model

Using the Cobb-Douglas functional form we can:

• Verify that the property of HOD1, since it implies that
∑g

i=1 βg = 1.

• Verify the hypothesis that the technology exhibits CRTS, since it implies
that

γ =
1
βq

= 1

so βq = 1.

• Verify the hypothesis of monotonicity, since it implies that the coefficients
βi ≥ 0, i = 1, ..., g.

BUT, the β’s are unknowns, then we must to estimate them.

Econometrics



Estimation principles 19

Estimation methods

Ordinary Least Squares Method:

The ordinary least squares (OLS)
estimator is defined as the value that
minimizes the sum of the squared errors:

β̂ = arg min s(β)

where

s(β) =
n∑

t=1

(yt − x′tβ)2

= (y −Xβ)′ (y −Xβ)

= y′y − 2y′Xβ + β′X′Xβ

= ‖ y −Xβ ‖2 .
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Using this distance,  the OLS line is defined.
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Ordinary Least Squares Method (2):

• To minimize the criterion s(β), find the derivative with respect to β and set
it to zero:

Dβs(β̂) = −2X′y + 2X′Xβ̂ = 0,

so
β̂ = (X′X)−1X′y.

• To verify that this is a minimum, check the s.o.c.:

D2
βs(β̂) = 2X′X.

Since rank of X is equal k, this matrix is positive definite, since it’s a
quadratic form in a p.d. matrix (the identity matrix of order n), so β̂ is in
fact a minimizer.
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Ordinary Least Squares Method (3):

• The fitted values are in the vector ŷ = Xβ̂.

• The residuals are in the vector ε̂ = y −Xβ̂

• Note that
y = Xβ + ε = Xβ̂ + ε̂.

• The first order conditions can be written as:

X′y + X′Xβ̂ = 0

X′(y + Xβ̂) = 0

X′ε̂ = 0,

then, the OLS residuals are orthogonal to X.
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Ordinary Least Squares Method (4):

• We have that Xβ̂ is the projection of y on the span of X, or

Xβ̂ = X (X ′X)−1
X ′y.

Therefore, the matrix that projects y onto the span of X is

PX = X(X ′X)−1X ′,

since Xβ̂ = PXy.

• ε̂ is the projection of y onto the n− k dimensional space orthogonal to the
span of X. We have that

ε̂ = y −Xβ̂

= y −X(X ′X)−1X ′y

=
[
In −X(X ′X)−1X ′] y.
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So the matrix that projects y onto the space orthogonal to the span of X is

MX = In −X(X ′X)−1X ′

= In − PX.

Then ε̂ = MXy.

• Therefore

y = PXy + MXy

= Xβ̂ + ε̂.

• Note that both PX and MX are symmetric and idempotent.

� A symmetric matrix A is one such that A = A′.
� An idempotent matrix A is one such that A = AA.
� The only nonsingular idempotent matrix is the identity matrix.
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Example: The Nerlove model (estimation)

The file <nerlovedata.m> contains data on 145 electric utility companies’
cost of production, output and input prices. The data are for the U.S., and
were collected by M. Nerlove. The observations are by row, and the columns
are COMPANY CODE, COST (C), OUTPUT (Q), PRICE OF LABOR (PL),
PRICE OF FUEL (PF ) and PRICE OF CAPITAL (PK).

Data Example:

101 0.082 2 2.09 17.9 183
102 0.661 3 2.05 35.1 174
103 0.990 4 2.05 35.1 171
104 0.315 4 1.83 32.2 166
105 0.197 5 2.12 28.6 233

Let’s MATLAB works ...
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We will estimate the Cobb-Douglas model:

lnC = β1 + β2 lnQ + β3 lnPL + β4 lnPF + β5 lnPK + ε (3)

using OLS.

The <prg1sl1.m> results are the following:

% OLS estimation (using the formula).

B =
-3.5265
0.7204
0.4363
0.4265
-0.2199

Econometrics



Estimation principles 26

-3 -2 -1 0 1 2 3 4 5
-3

-2

-1

0

1

2

3

4

5

C
om

pa
ny

 c
os

t -
 lo

gs

Fitted values
-3 -2 -1 0 1 2 3 4 5

-1

-0.5

0

0.5

1

1.5

2

R
es

id
ua

ls

Fitted values

• Do the theoretical restrictions hold?
• Does the model fit well? V Influential observations or outliers?
• What do you think about CRTS?
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Influential observations and outliers:

The OLS estimator of the ith element of the vector β is simply:

β̂i =
[
(X ′X)−1X ′]

i· y

= c′iy

Then β̂i is a linear estimator, i.e., it’s a linear function of the dependent
variable.

Since it’s a linear combination of the observations on the dependent variable,
where the weights are determined by the observations on the regressors, some
observations may have more influence than others.
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Influential observations and outliers (2):

Define

ht = (PX)tt

= e′tPXet

= ‖ PXet ‖2

= ‖ et ‖2= 1

ht is the tth element on the main diagonal of PX and et is tth-unit vector.

So 0 < ht < 1, and Trace(PX) = k ⇒ h = k/n.

So, on average, the weight on the yt’s is k/n. If the weight is much higher,
then the observation is potentially influential.

However, an observation may also be influential due to the value of yt, rather
than the weight it is multiplied by, which only depends on the xt’s.
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Influential observations and outliers (3):

Consider the estimation of β without using the tth observation (denote this
estimator by β̂(t)). Then,

β̂(t) = β̂ −
(

1
1− ht

)
(X ′X)−1X ′

tε̂t

so the change in the tth observations fitted value is

Xtβ̂ −Xtβ̂
(t) =

(
ht

1− ht

)
ε̂t

While an observation may be influential if it doesn’t affect its own fitted value,
it certainly is influential if it does.

A fast means of identifying influential observations is to plot
(

ht
1−ht

)
ε̂t as a

function of t.
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Influential observations and outliers (4):

The following example is based on Table 13.8 of Page 423 in Peña, D. (1995)
“Estad́ıstica. Modelos y Métodos”. It consists on three data sets that differ in
only one observation (see file <penadata.m>).

Data Set β̂1 β̂2 β̂3 ŝε R2 ht ε̂t

(
ht

1−ht

)
ε̂t

Original 2.38 1.12 -0.30 0.35 0.98 - - -

A 13.12 1.77 -1.72 0.97 0.88 0.11 4.26 0.54

B -2.74 0.80 0.38 0.37 0.98 0.91 0.19 2.01

C -25.36 -0.62 3.43 0.91 0.89 0.65 2.48 4.70

A is an outlier but is not an influential observation.

B is an influential but is not an outlier observation.

C is an outlier influential observation.
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Example: The Nerlove model (influential observations)
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Example: The Nerlove model (outliers observations)
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Residuals            
Standardized residuals

Standardized residuals: rt = ε̂t
ŝε
√

1−ht
≈ tn−k−2.
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Example: The Nerlove model (outliers observations)
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Warning: Multiple testing

Residuals            
Standardized residuals

Instead of using the α-critical value, we will use α/n-critical value.
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Properties of OLS estimator

Small sample properties of the least squares estimator:

• Unbiasedness: For β̂ we have

β̂ = (X ′X)−1X ′(Xβ + ε)

= β + (X ′X)−1X ′ε,

then applying the strong exogeneity assumption and the law of iterated
expectation, we have

E[(X ′X)−1X ′ε] = E[E[(X ′X)−1X ′ε|X]]

= E[(X ′X)−1X ′E[ε|X]]

= 0,

So the OLS estimator is unbiased.
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Small sample properties of the least squares estimator (2):

• Normality: β̂|X ∼ N (β, (X ′X)−1σ2), where σ2 = E[ε2
t ].

Proof: Note that β̂ = β + (X ′X)−1X ′ε, then β̂ is a linear function of ε.

It only rest to obtain the conditional variance.

Var(β̂|X) = E[(β̂ − β)(β̂ − β)′|X]

= E[(X ′X)−1X ′εε′XX ′X)−1|X]

= (X ′X)−1X ′E[εε′|X] XX ′X)−1

= (X ′X)−1σ2.

Notice that the above results is true regardless the distribution of ε.
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Small sample properties of the least squares estimator (3):

• Efficiency (Gauss-Markov theorem): In the classical linear regression model,
the OLS estimator, β̂, is the minimum variance linear unbiased estimator of
β. Moreover, for any vector of constants w, the minimum variance linear
unbiased estimator of w′β is w′β̂.

Proof: The OLS estimator is a linear estimator, i.e., it is a linear function of
the dependent variable. It is also unbiased, as we proved two slides ago.

Now, consider a new linear estimator β̃ = Cy. If this estimator is unbiased,
then we must have CX = I since

E[Cy] = E(CXβ + Cε)

= CXβ

Therefore, CX = I.
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The variance of an unbiased β̃ is

V (β̃) = CC′σ2.

Define
D = C− (X ′X)−1X ′

Since CX = I, then DX = 0 so

Var(β̃|X) =
(
D + (X ′X)−1X ′) (

D + (X ′X)−1X ′)′ σ2

=
(
DD′ + (X ′X)−1

)
σ2 = DD′σ2 + Var(β̂|X)

Finally,
Var(β̃) ≥ V (β̂).

Notice that the above results is true regardless the distribution of ε.
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Small sample properties of the least squares estimator (3):

• Unbiasedness of σ̂2 = 1
n−k ε̂′ε̂ = 1

n−kε′MXε, where MX is idempotent
matrix that projects onto the space orthogonal to the span of X and
ε̂ = MXy.

Proof:

E[σ̂2] =
1

n− k
E[Trace(ε′MXε)]

=
1

n− k
E(Trace(MXεε′)]

=
1

n− k
Trace(E[MXεε′])

=
1

n− k
σ2Trace(MX)

= σ2.
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Resampling methods - Introduction

Problem: Let XXX = (X1, . . . , XN) be observations generated by a model P,
and let T (XXX) be the statistics of interest that estimate the parameter θ. We
want to know:

• Bias: bT = E [T (XXX)]− θ,

• Variance: vT ,

• Distribution: L(T,P).
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Resampling methods in i.i.d. data

Jackknife: Let XXX = (X1, X2, . . . , XN) be a sample of size N and let
TN = TN(XXX) be an estimator of θ.

In the jackknife samples an observation of XXX is excluded each time, i.e. XXX(i) =
(X1, X2, . . . , Xi−1, Xi+1, . . . , XN) for i = 1, 2, . . . , N , and we calculate the
i-th jackknife statistic TN−1,i = TN−1

(
XXX(i)

)
.

Jackknife bias estimator:

bJack = (N − 1)(T̄N − TN)

Jackknife variance estimator:

vJack =
N − 1

N

N∑
i=1

(
TN−1,i − T̄N

)2
,

where T̄N = N−1
∑N

i=1 TN−1,i
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Jackknife

Outline of the resampling procedure:

(X1, . . . , XN) V


XXX\X1 V TN−1,1

XXX\X2 V TN−1,2
......... .........

XXX\XN V TN−1,N

V


bJack = (N − 1)(T̄N − TN)

vJack = N−1
N

N∑
i=1

(
TN−1,i −T̄N

)2

Possible uses:

• Bias reduction: TJack = TN − bJack.

• If
√

N(TN − θ) is asymptotically normal distributed, then we can obtain an
estimate of the asymptotic variance by vJack.
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Example # 1: Let X1, . . . , XN be i.i.d. N (µ, σ2) observations and TN = X̄
be the statistic of interest. In this case, we know that:

bT = 0, vT = σ2

N , L(T ) = N (µ, σ2

N ).

Jackknife results: N = 100, µ = 0 and σ2 = 1.

jackknife(data = x, statistic = mean)

Number of Replications: 100

Summary Statistics:
Observed Bias Mean SE

mean -0.1081 -1.374e-015 -0.1081 0.1094

bjack = −1.374e− 015 ≈ 0 and vjack = 0, 01196836 ≈ 0.01 = 1
100.
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d-jackknife: Let Sn,r be the subsets of {1, 2, . . . , N} of size r. For any
s = {i1, i2, . . . , ir} ∈ SN,r we obtain the d-jackknife replica by Tr,sc =
Tr(Xi1, Xi2, . . . , Xir).

d-jackknife variance estimator:

vJack−d =
r

dC

∑
s∈SN,r

(
Tr,sc − C−1

∑
s∈SN,r

Tr,sc

)2

,

where C =
(
N
d

)
.

d-jackknife as estimator of the distribution of TN : Let Hn(x) =
Pr{

√
n(Tn − θ) ≤ x} be the distribution we want to estimate. We define the

jackknife histogram by:

HJack(x) =
1
C

∑
s∈SN,d

I
(√

Nr/d(Tr,s − TN) ≤ x
)

.

To learn more: Shao and Tu (1995).
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Example # 2: We consider the following statistics: Tn = X̄2
n and the

sampling median Tn = F−1
n (1

2) = Q̂2:

RB = Ê
[

vJack−vT
vT

]
and RM = Ê

[
(vJack − vT )2

]
.
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Resampling methods in i.i.d. data

Bootstrap: Let XXX = (X1, . . . , XN) be observations generated by model P
and let T (XXX) be the statistic whose distribution L(T, P ) we want to estimate.

The bootstrap proposes the distribution L∗(T ∗; P̂N) of T ∗ = T (XXX∗) as
estimator of L(T, P ), where XXX∗ are observations generated by the estimated

model P̂N .

• Possible estimators of P in the i.i.d. case:

� Standard bootstrap: FN(x) = N−1
∑N

i=1 I (Xi ≤ x).
� Parametric bootstrap: Fϑ̂ (Its assumed that P = Fϑ).
� Smoothed bootstrap: Fn,h is a kernel estimator of F .

To learn more: Efron y Tibshirani (1993), Shao and Tu (1995), and Davison
and Hinkley (1997).
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Standard bootstrap

Outline of the resampling procedure:

(X1, . . . , XN) V FN V


(X∗ (1)

1 , . . . , X
∗ (1)
N ) V T

∗ (1)
N

(X∗ (2)
1 , . . . , X

∗ (2)
N ) V T

∗ (2)
N

......... .........

(X∗ (B)
1 , . . . , X

∗ (B)
N ) V T

∗ (B)
N

V

 bBoot = E∗ [T ∗N ]− TN

vBoot = E∗
[
(T ∗N − E∗[T ∗N ])2

]
L∗T (x) = Pr∗ {(T ∗N − TN) ≤ x}

where E∗ and Pr∗ are the bootstrap expectation and the bootstrap probability.

Remark: The X∗
i are i.i.d. FN observations, therefore the resampling

procedure could be interpreted as a sampling with replacement from the
original sample (X1, . . . , XN).
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Example # 1 (cont.): TN = X̄ and B = 1000 resamples of size N .

bootstrap(data = x.f, statistic = mean)

Number of Replications: 1000

Summary Statistics:
Observed Bias Mean SE

mean -0.1081 -0.004746 -0.1129 0.1071

Empirical Percentiles:
2.5% 5% 95% 97.5%

mean -0.3271 -0.2966 0.05394 0.0976

bboot = −0.004746 ≈ 0 y vboot = 0, 01147041 ≈ 0.01 = 1
100.
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Example # 1 (cont.):
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Example # 3: Let X1, . . . , XN be i.i.d. observations N (µ = 0, σ2 = 1)
and TN = Q̂2. In this case, we know that the asymptotic distribution of√

N(Q̂2 − Q2) is N (0, 1/4φ(0)2) and vT ≈ 1/(4 × 100 × 0.39894232) =
0.01570796.

Jackknife results:

jackknife(data = x.f, statistic = median)

Number of Replications: 100

Summary Statistics:
Observed Bias Mean SE

median -0.251 -1.099e-014 -0.251 0.153

Empirical Percentiles:
2.5% 5% 95% 97.5%

median -0.2664 -0.2664 -0.2356 -0.2356
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Example # 3 (cont.):

Bootstrap results:

bootstrap(data = x.f, statistic = median)

Number of Replications: 1000

Summary Statistics:
Observed Bias Mean SE

median -0.251 -0,0027 -0.2537 0.1168

Empirical Percentiles:
2.5% 5% 95% 97.5%

median -0.4614 -0.4333 0.03895 0.06271

vjack = 0.023409 and vboot = 0.01364224.
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Example # 3 (cont.):
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Bootstrap always?

One example where the bootstrap fails: Let X1, . . . , XN be i.i.d. U(0, θ).
We know that the m.l.e. of θ is TN = θ̂ = max1≤i≤N Xi and that the density
function of TN is:

fθ̂(x) =
{

nxn−1

θn if 0 ≤ x ≤ θ
0 otherwise

Bootstrap results:

bootstrap(data = x.f2, statistic = max)

Summary Statistics:
Observed Bias Mean SE

max 0.9517 -0.009143 0.9426 0.0143

Empirical Percentiles:
2.5% 5% 95% 97.5%

max 0.9123 0.9269 0.9517 0.9517
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Bootstrap always?

One example where the bootstrap fails (cont.):

Funcion de densidad de Max(X_i)
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Pr{θ̂∗ = θ̂} = 0, but Pr∗{θ̂∗ = θ̂} = 1− (1− 1/n)n → 1− e−1.
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Bootstrap always?

One example where the bootstrap fails (cont.): A bootstrap solution is the
parametric bootstrap:

Funcion de densidad de Max(X_i)
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Bootstrap in Linear Regression: Let
(
(Y1, X1,1, . . . , X1,k),

(Y2, X2,1, . . . , X2,k), . . . , (YN , XN,1, . . . , XN,k)
)

be observations generated by
the model:

Yi = β0 + β1Xi,1 + · · ·+ βkXi,k + εi,

where the εi are i.i.d. with E[εi] = 0, and E[ε2
i ] = σ2.

• Resampling of residuals (based on model):

1. We generate resamples ε∗1, ε
∗
2, . . . , ε

∗
N i.i.d. from FN,ε̂.

2. We construct bootstrap replicas by:

Y ∗
i = β̂0 + β̂1Xi,1 + · · ·+ β̂kXi,k + ε∗i ,

where the β̂i are estimates of the parameters βi.
3. Finally, we compute the statistic of interest in the bootstrap replicas.
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Bootstrap in Linear Regression:

• Resampling of “pairs” (not based on model):

1. We generate bootstrap replicas (Y ∗
1 , X∗

1,1, . . . , X
∗
1,k), (Y ∗

2 , X∗
2,1, . . . , X

∗
2,k),

. . . , (Y ∗
N , X∗

N,1, . . . , X
∗
N,k)

)
i.i.d. from FN,(Y,X1,...,Xk).

2. We calculate the statistic of interest in the bootstrap replicas.

Remark: The bootstrap observations in the resampling of “pairs” could be
interpreted as a sampling with replacement from the N vectors p × 1 in the
original data.

Remark: What happens if εi is not an i.i.d. sequence? For example, if the εi

is an AR(1) process? or if it is an heteroscedastic sequence?
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Example # 4: The data are taken from an operation of a plant for
the oxidation of ammonia to nitric acid, measured on 21 consecutive days
(Chapter 6 of Draper and Smith (1966)):

loss percent of ammonia lost
Air.Flow air flow to the plant

Water.Temp cooling water inlet temperature
Acid.Conc. acid concentration as a percentage

Bootstrap results:

bootstrap(data = stack, statistic = coef(lm(stack.loss ~ Air.Flow
+ Water.Temp + Acid.Conc., stack)), B = 1000, seed = 0, trace = F)

Summary Statistics:
Observed Bias Mean SE

(Intercept) -39.9197 0.829215 -39.0905 8.8239
Air.Flow 0.7156 0.004886 0.7205 0.1749

Water.Temp 1.2953 -0.031415 1.2639 0.4753
Acid.Conc. -0.1521 -0.005164 -0.1573 0.1180
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Example # 4 (cont):

Summary Statistics:
Observed Bias Mean SE

(Intercept) -39.9197 0.829215 -39.0905 8.8239
Air.Flow 0.7156 0.004886 0.7205 0.1749

Water.Temp 1.2953 -0.031415 1.2639 0.4753
Acid.Conc. -0.1521 -0.005164 -0.1573 0.1180

Empirical Percentiles:
2.5% 5% 95% 97.5%

(Intercept) -55.4846 -52.7583 -23.4913 -17.84522
Air.Flow 0.3844 0.4454 1.0136 1.05255

Water.Temp 0.3913 0.4768 2.0544 2.23920
Acid.Conc. -0.4181 -0.3604 0.0209 0.06103
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Example # 4 (cont):
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