Problem Set \# 2

(1) The following data were generated by a Weibull distribution: ${ }^{1}$

1.3043	0.4895	1.2742	1.4019	0.3255	0.2996	0.2642
1.0878	1.9461	0.4761	3.6454	0.1534	1.2357	0.9638
0.3345	1.1227	2.0296	1.2797	0.9608	2.0070	

(a) Obtain the maximum likelihood estimates of α and β, and give the asymptotic covariance matrix for the estimates.
(b) Carry out the Wald test of the hypothesis that $\beta=1$.
(c) Obtain the maximum likelihood estimates of α under the hypothesis that $\beta=1$.
(d) Using the results of parts (a) and (b), carry out a likelihood ratio test of the hypothesis that $\beta=1$.
(e) Carry out a Lagrange multiplier test of the hypothesis that $\beta=1$.
(2) For the classical regression model $\boldsymbol{y}=\boldsymbol{X} \boldsymbol{\beta}+\boldsymbol{\varepsilon}$ with no constant term and K regressors, what is

$$
\operatorname{plim} \frac{R^{2} / K}{\left(1-R^{2}\right) /(n-K)},
$$

assuming that the true value of β is zero?
(3) Prove that, under the hypothesis that $\boldsymbol{R} \boldsymbol{\beta}=\boldsymbol{r}$, the estimator

$$
s_{R}^{2}=\frac{\left(\boldsymbol{y}-\boldsymbol{X} \widehat{\boldsymbol{\beta}}_{R}\right)^{\prime}\left(\boldsymbol{y}-\boldsymbol{X} \widehat{\boldsymbol{\beta}}_{R}\right)}{n-K+J},
$$

where J is the number of restrictions, is unbiased for σ^{2}.
(4) What is the covariance matrix of the GLS estimator and the difference between it and the OLS estimator?

$$
\operatorname{Cov}\left(\widehat{\boldsymbol{\beta}}_{G L S}, \widehat{\boldsymbol{\beta}}_{G L S}-\widehat{\boldsymbol{\beta}}_{O L S}\right),
$$

where $\widehat{\boldsymbol{\beta}}_{G L S}=\left(\mathbf{X}^{\prime} \boldsymbol{\Omega}^{-1} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \boldsymbol{\Omega}^{-1} \boldsymbol{y}$, and $\widehat{\boldsymbol{\beta}}_{O L S}=\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \boldsymbol{y}$.
(5) Suppose that y has the following density function:

$$
f(y \mid \boldsymbol{x})=\frac{e^{-y / \boldsymbol{\beta}^{\prime} \boldsymbol{x}}}{\boldsymbol{\beta}^{\prime} \boldsymbol{x}}, y>0
$$

Then $\mathrm{E}[y \mid \boldsymbol{x}]=\boldsymbol{\beta}^{\prime} \boldsymbol{x}$ and $\operatorname{Var}[y \mid \boldsymbol{x}]=\left(\boldsymbol{\beta}^{\prime} \boldsymbol{x}\right)^{2}$. For this model, prove that GLS and MLE are the same.

[^0](6) Assume that the model
$$
y^{*}=\beta x^{*}+\varepsilon
$$
conform to all of the assumptions of the classical normal regression model. If data on y^{*} and x^{*} were available, all the apparatus of the classical model would apply. ${ }^{2}$ We assume that
$$
y=y^{*}+v \quad \text { with } v \sim \mathcal{N}\left(0, \sigma_{v}^{2}\right)
$$
and
$$
x=x^{*}+u \quad \text { with } u \sim \mathcal{N}\left(0, \sigma_{u}^{2}\right) .
$$
(a) Prove that when only x^{*} is measured with error, the squared correlation between y and x is less than that between y^{*} and x^{*}.
(b) Does the same hold true if y^{*} is also measured with error?

[^1]
[^0]: ${ }^{1}$ The density function of a Weibull distribution is $f(x)=\alpha \beta x^{\beta-1} e^{-\alpha x^{\beta}}$ for $x>0$ and $\alpha, \beta>0$.

[^1]: ${ }^{2}$ Notice that here $*$ denotes unobserved variables.

