Problem Set # 1

(1) For the simple regression model:

 $y_i = \mu + \varepsilon_i$, with $\varepsilon_i \sim \mathcal{N}(0, \sigma^2)$,

prove that the sample mean is consistent and asymptotically normal. Now, consider the alternative estimator:

$$\widetilde{\mu} = \sum_{i=1}^{n} w_i y_i$$
, where $w_i = \frac{i}{\sum_{i=1}^{n} i}$.

Prove that this is a consistent estimator of μ and obtain its asymptotic variance.

(2) For the regression model:

$$\boldsymbol{y} = \boldsymbol{X}\boldsymbol{\beta} + \boldsymbol{\varepsilon}, \text{ with } \boldsymbol{\varepsilon} \sim \mathcal{N}(\boldsymbol{0}, \sigma^2 \boldsymbol{I}),$$

- (a) Obtain the mean and the variance of the ML estimator, $\hat{\sigma}^2 = \hat{\boldsymbol{\varepsilon}}' \hat{\boldsymbol{\varepsilon}}/n$, of σ^2 .
- (b) Prove that this estimator is consistent.
- (3) Consider the following regression model:

$$y_i = \beta_0 + \beta_1 i^\gamma + \varepsilon_i,$$

where the i = 1, 2, ..., n and the $\{\varepsilon_i\}$ are such that $E[\varepsilon_i] = 0$, $E[\varepsilon_i \varepsilon_j] = \sigma^2 I(i = j)$ and $\sigma > 0$. Prove that the OLS estimator of (β_0, β_1) converges in quadratic mean if and only if $-1/2 < \gamma < 0$ or $\gamma > 0$.

(4) Let be $\{X_i\}$ and $\{Y_i\}$ sequences of i.i.d. random variables, such that:

$$E[X_i] = 0$$
, $Var(X_i) = 1$, $E[Y_i] = 6$ and $Var(Y_i) = 5$.

Let $\bar{X} = n^{-1} \sum_{i=1}^{n} X_i$ and $\bar{Y} = n^{-1} \sum_{i=1}^{n} Y_i$. Find the probability orders of: (a) \bar{X} . (b) \bar{Y} . (c) $\bar{X}\bar{Y}$. (d) $\bar{X} + 2$.

(5) Write a MATLAB function that illustrates the asymptotic normality of the OLS estimator under i.i.d. non-gaussian innovations.