Econometrics
 PhD in Business Administration and Quantitative Methods Course 2005-2006
 June 29th, 2006

Name:

Please, answer 4 of the following 6 questions. Time: 3 hours.
(1) Consider the following regression model:

$$
y_{i}=\beta_{0}+\beta_{1} x_{i}+\varepsilon_{i},
$$

where the x_{i} are non-stochastic and the $\left\{\varepsilon_{i}\right\}$ are i.i.d. with the following density function:

$$
f_{\varepsilon}(x)=\left\{\begin{array}{cl}
\lambda x^{-(\lambda+1)} & \text { if } x \geq 1, \\
0 & \text { otherwise }
\end{array} .\right.
$$

Assuming that λ is unknown $(\lambda>2)$, obtain the maximum likelihood estimators for λ, β_{0} and β_{1}.
(2) The constant elasticity of substitution production function may be written

$$
\ln Y=\ln \gamma-\frac{\nu}{\rho} \ln \left(\delta K^{-\rho}+(1-\delta) L^{-\rho}\right)+\varepsilon .
$$

A Taylor series approximation to this function around the point $\rho=0$ is

$$
\begin{aligned}
\ln Y & =\ln \gamma+\nu \delta \ln K+\nu(1-\delta) \ln L-\frac{1}{2} \rho \nu \delta(1-\delta)(\ln K-\ln L)^{2}+\varepsilon \\
& =\beta_{1}+\beta_{2} x_{2}+\beta_{3} x_{3}+\beta_{4} x_{5}+\varepsilon,
\end{aligned}
$$

where $x_{2}=\ln K, x_{3}=\ln L, x_{4}=(\ln K-\ln L)^{2}$, and

$$
\begin{array}{ll}
\beta_{1}=\ln \gamma & \gamma=\exp \beta_{1} \\
\beta_{2}=\nu \delta & \delta=\frac{\beta_{2}}{\beta_{2}+\beta_{3}} \\
\beta_{3}=\nu(1-\delta) & \nu=\beta_{2}+\beta_{3} \\
\beta_{4}=-\frac{1}{2} \rho \nu \delta(1-\delta) & \rho=\frac{-2 \beta_{4}\left(\beta_{2}+\beta_{3}\right)}{\beta_{2} \beta_{3}} .
\end{array}
$$

We obtain the following ordinary least squares regression results:

$$
\begin{gathered}
\ln Y=1.4677-0.1115 \ln K+1.1002 \ln L+0.1522(\ln K-\ln L)^{2}, \\
R^{2}=0.94677, \quad \widehat{\varepsilon}^{\prime} \widehat{\varepsilon}=0.8018, \quad n=27, \\
\widehat{\operatorname{Var}}(\widehat{\boldsymbol{\beta}})=\left[\begin{array}{rrrr}
0.16650 & & & \\
-0.10090 & 0.17320 & & \\
0.08385 & -0.17890 & 0.18850 & \\
0.03164 & -0.05192 & 0.05296 & 0.16220
\end{array}\right] .
\end{gathered}
$$

(a) Compute the implied estimates of the underlying parameters.
(b) Test the hypothesis that $\rho=0$.
(3) Consider the following regression model:

$$
y_{i}=\beta_{0}+\beta_{1} i^{\gamma}+\varepsilon_{i},
$$

where the $i=1,2, \ldots, n$ and the $\left\{\varepsilon_{i}\right\}$ are such that $\mathrm{E}\left[\varepsilon_{i}\right]=0, \mathrm{E}\left[\varepsilon_{i} \varepsilon_{j}\right]=\sigma^{2} I(i=j)$ and $\sigma>0$. Prove that the OLS estimator of $\left(\beta_{0}, \beta_{1}\right)$ converges in quadratic mean if and only if $-1 / 2<\gamma<0$ or $\gamma>0$.
(4) Consider the following regression:

$$
y_{i}=\beta_{0}+\beta_{1} x_{1 i}+\beta_{2} x_{2 i}+u_{i}
$$

where $\mathrm{E}\left[u_{i}\right]=\operatorname{cov}\left(x_{2 i}, u_{i}\right)=0, \mathrm{E}\left[u_{i}^{2}\right]=\sigma_{i}^{2}$ and $\operatorname{cov}\left(x_{2 i}, u_{i}\right) \neq 0$.
(a) Derive the probability limit of the OLS estimator of the parameters β_{0}, β_{1} and β_{2} denote by $\widehat{\beta}_{0}, \widehat{\beta}_{1}$ and $\widehat{\beta}_{2}$, respectively.
(b) Is $\widehat{\beta}_{2}$ a consistent estimator of β_{2} ?
(5) Consider the simple regression $y_{i}=\beta x_{i}$. Show that the estimator $\widetilde{\beta}=\bar{y} / \bar{x}$ is unbiased and that its variance is larger than that of the OLS estimator.
(6) The following model is specified:

$$
\begin{array}{lllll}
y_{1}=\gamma_{1} y_{2} \quad+\beta_{11} x_{1} & & +\varepsilon_{1} \\
y_{2}=\gamma_{2} y_{1} & & \\
& +\beta_{22} x_{2} & +\beta_{32} x_{3} & +\varepsilon_{2}
\end{array}
$$

All variables are measured as deviations from their means. The sample of 25 observations produces the following matrix of sum of squares and cross-products:

$$
\left[\begin{array}{rrrrr}
20 & 6 & 4 & 3 & 5 \\
6 & 10 & 3 & 6 & 7 \\
4 & 3 & 5 & 2 & 3 \\
3 & 6 & 2 & 10 & 8 \\
5 & 7 & 3 & 8 & 15
\end{array}\right] .
$$

(a) Estimate the two equations by OLS.
(b) Estimate the parameters of the two equations by 2SLS. Also, estimate the asymptotic covariance matrix of the 2SLS estimates.
(c) Estimate the reduced-form coefficient matrix by OLS and indirectly by using your structural estimates from part (b).

