Econometrics PhD in Business Administration and Quantitative Methods Course 2005-2006 June 29th, 2006

Name:

Please, answer 4 of the following 6 questions. Time: 3 hours.

(1) Consider the following regression model:

$$y_i = \beta_0 + \beta_1 x_i + \varepsilon_i,$$

where the x_i are non-stochastic and the $\{\varepsilon_i\}$ are i.i.d. with the following density function:

$$f_{\varepsilon}(x) = \begin{cases} \lambda x^{-(\lambda+1)} & \text{if } x \ge 1, \\ 0 & \text{otherwise} \end{cases}$$

Assuming that λ is unknown ($\lambda > 2$), obtain the maximum likelihood estimators for λ, β_0 and β_1 .

(2) The constant elasticity of substitution production function may be written

$$\ln Y = \ln \gamma - \frac{\nu}{\rho} \ln(\delta K^{-\rho} + (1-\delta)L^{-\rho}) + \varepsilon.$$

A Taylor series approximation to this function around the point $\rho = 0$ is

$$\ln Y = \ln \gamma + \nu \delta \ln K + \nu (1 - \delta) \ln L - \frac{1}{2} \rho \nu \delta (1 - \delta) (\ln K - \ln L)^2 + \varepsilon$$
$$= \beta_1 + \beta_2 x_2 + \beta_3 x_3 + \beta_4 x_5 + \varepsilon,$$

where $x_2 = \ln K$, $x_3 = \ln L$, $x_4 = (\ln K - \ln L)^2$, and

$$\beta_1 = \ln \gamma \qquad \gamma = \exp \beta_1$$

$$\beta_2 = \nu \delta \qquad \delta = \frac{\beta_2}{\beta_2 + \beta_3}$$

$$\beta_3 = \nu(1 - \delta) \qquad \nu = \beta_2 + \beta_3$$

$$\beta_4 = -\frac{1}{2}\rho\nu\delta(1 - \delta) \qquad \rho = \frac{-2\beta_4(\beta_2 + \beta_3)}{\beta_2\beta_3}$$

We obtain the following ordinary least squares regression results:

$$\begin{split} \ln Y &= 1.4677 - 0.1115 \ln K + 1.1002 \ln L + 0.1522 (\ln K - \ln L)^2, \\ R^2 &= 0.94677, \quad \widehat{\varepsilon}' \widehat{\varepsilon} = 0.8018, \quad n = 27, \\ \widehat{Var}(\widehat{\beta}) &= \begin{bmatrix} 0.16650 \\ -0.10090 & 0.17320 \\ 0.08385 & -0.17890 & 0.18850 \\ 0.03164 & -0.05192 & 0.05296 & 0.16220 \end{bmatrix}. \end{split}$$

(a) Compute the implied estimates of the underlying parameters.

(b) Test the hypothesis that $\rho = 0$.

(3) Consider the following regression model:

$$y_i = \beta_0 + \beta_1 i^\gamma + \varepsilon_i,$$

where the i = 1, 2, ..., n and the $\{\varepsilon_i\}$ are such that $E[\varepsilon_i] = 0$, $E[\varepsilon_i \varepsilon_j] = \sigma^2 I(i = j)$ and $\sigma > 0$. Prove that the OLS estimator of (β_0, β_1) converges in quadratic mean if and only if $-1/2 < \gamma < 0$ or $\gamma > 0$.

(4) Consider the following regression:

 $y_i = \beta_0 + \beta_1 x_{1i} + \beta_2 x_{2i} + u_i,$

where $E[u_i] = cov(x_{2i}, u_i) = 0$, $E[u_i^2] = \sigma_i^2$ and $cov(x_{2i}, u_i) \neq 0$.

- (a) Derive the probability limit of the OLS estimator of the parameters β₀, β₁ and β₂ denote by β̂₀, β̂₁ and β̂₂, respectively.
- (b) Is $\hat{\beta}_2$ a consistent estimator of β_2 ?
- (5) Consider the simple regression $y_i = \beta x_i$. Show that the estimator $\tilde{\beta} = \bar{y}/\bar{x}$ is unbiased and that its variance is larger than that of the OLS estimator.
- (6) The following model is specified:

All variables are measured as deviations from their means. The sample of 25 observations produces the following matrix of sum of squares and cross–products:

- (a) Estimate the two equations by OLS.
- (b) Estimate the parameters of the two equations by 2SLS. Also, estimate the asymptotic covariance matrix of the 2SLS estimates.
- (c) Estimate the reduced–form coefficient matrix by OLS and indirectly by using your structural estimates from part (b).