
Outline

Clustering time series by dependence
measures

Andrés M. Alonso1,2 and Daniel Peña 1,3

1Department of Statistics

2Institute Flores de Lemus

3UC3M-BS Institute of Financial Big Data

VI Jornada de Estadística - UAM
February 24, 2017, Cantoblanco

Andrés M. Alonso and Daniel Peña Clustering time series by dependence measures



Outline

Outline

1 Introduction

2 The clustering procedure

3 Simulation study

4 Case-studies with real data

5 Conclusions & Extensions

Andrés M. Alonso and Daniel Peña Clustering time series by dependence measures



Introduction
The clustering procedure

Simulation study
Case-studies with real data
Conclusions & Extensions

The problem
Dissimilarity measures
A dissimilarity measure based on mutual dependency

The problem

Time series clustering problems arise when we observe a
sample of time series and we want to group them into different
categories or clusters.

This a central problem in many application fields and hence
time series clustering is nowadays an active research area in
different disciplines including finance and economics, medicine,
engineering, seismology and meteorology, among others.
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Dissimilarity measures

Key point

The metric chosen to assess the dissimilarity between two data
objects plays a crucial role in time series clustering.

Andrés M. Alonso and Daniel Peña Clustering time series by dependence measures



Introduction
The clustering procedure

Simulation study
Case-studies with real data
Conclusions & Extensions

The problem
Dissimilarity measures
A dissimilarity measure based on mutual dependency

Dissimilarity measures

Different dissimilarity criteria specifically designed to deal with
time series have been proposed in the literature. Some
examples are:

Maharaj, E.A. A significance test for classifying ARMA models, J. Statist. Comput. Simul. 54, 305-331 (1996)

Kakizawa, Y., Shumway, R.H. and Taniguchi, M. Discrimination and clustering for multivariate time series,

J. Am. Stat. Assoc. 93, 328–340, (1998)

Vilar, J.A. and Pértega, S. Discriminant and cluster analysis for Gaussian stationary processes: Local linear

fitting approach, J. Nonparametr. Stat. 16, 443-462 (2004)

Caiado, J., Crato, N. and Peña, D. A periodogram-based metric for time series classification, Comput.

Statist. Data Anal. 50, 2668-2684 (2006)

Alonso, A.M., Berrendero, J.R., Hernández, A., Justel, A. Time series clustering based on forecast

densities, Comput. Statist. Data Anal. 51, 762–776 (2006)

Corduas, M., Piccolo, D. Time series clustering and classification by the autoregressive metric, Comput.

Statist. Data Anal. 52, 1860–1872 (2008)

Scotto, M., Alonso, A.M., Barbosa, S. Clustering time series of sea levels: an extreme value approach, J.

Waterway, Port, Coastal, and Ocean Engineering 136, 215–225 (2010)
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Dissimilarity measures

Conceptually most of the dissimilarity criteria proposed for time
series clustering lead to a notion of similarity relying on two
possible criteria:

Proximity between raw series data

Proximity between underlying generating processes

In both cases, the classification task becomes inherently
univariate since similarity searching is governed only by the
behavior of each series but doesn’t take into account the
cross-dependency among the series.
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A dissimilarity measure based on mutual dependency

Suppose that we have stationary (standardized) time series.

Define rxx (h) = E(xitxi ,t−h) and rxy (h) = E(xityj ,t−h).

We can build a measure of the dependency as follows:

Let B(h) =
[

rxx (h) rxy (h)
ryx (h) ryy (h)

]
.

Then the matrix

Bk =




B(0) B(1) · · · B(k)
B(−1) B(0) · · · B(k − 1)

...
...

. . .
...

B(−k) B(−k + 1) · · · B(0)




is the covariance matrix of the vector stationary process
Zt = (xt , yt , xt−1, yt−1, ...., xt−k , yt−k )

T .
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A dissimilarity measure based on mutual dependency

A convenient measure of dissimilarity based on their joint
dependency is

Sxy(k) = |Bk |
1/2(k+1)

Notice that 0 ≤ |Bk | ≤ 1 with equality to one when Bk is
diagonal.

This measure will be non-negative, symmetric and will be
zero if x = y .

The dissimilarity will reach the largest value, one, when the
two series are independent, and will be zero if they are
identical.
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Our approach

Objective

To present a new way to find clusters in large vectors of time
series.

Procedure
The procedure has two steps:

In the first, series are split by their dependency, which is
measured by the determinant of their correlation matrix
including lags.

Second, inside each groups the series are split by putting
together series with a similar autocorrelacion structure.
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The clustering procedure: General description

First step

We use the dissimilarity defined by

PRM(X ,Y ) = |Bk |

as input of an agglomerative hierarchical clustering.
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The clustering procedure: General description

A problem with |Bk | for integrated series is that it will be always
close to zero, even if the series are independent.

Note that

|Bk | = |Bk−1|
(

1 − R2
k ,k+1(xt/yt , xt−1, ..., yt−k )

)
,

where R2
k ,k+1 is the square of the multiple correlation coefficient

in the linear fit x̂t =
∑k

j=1 bjxt−j +
∑k

j=0 cjyt−j , and this
correlation coefficient will be close to one for integrated series.
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The clustering procedure: General description

Considering the vector of variables
(xt , xt−1, ...., xt−k , yt , yt−1, ..., yt−k), we can separate the
univariate results from x to the dependence between x and y .

Thus, we can write

Bk =

[
R(x)k R(x , y)k

R(y , x)k R(y)k

]

where R(x)k and R(y)k are the (k + 1)× (k + 1) correlation
matrices of series x and y , respectively, and R(x , y)k includes
the dependence between x and y .
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The clustering procedure: General description

Note that

|Bk | =
∣∣∣R(x)k

∣∣∣
∣∣∣R(y)k − R(y , x)k R−1(x)k R(x , y)k

∣∣∣

It should be noticed that if x is integrated then |R(x)k | will be
close to zero and the product will be small whatever the second
term is.

This suggest the alternative measure

PRR(X ,Y ) = |Bk | /(|R(x)k | · |R(y)k |),

which has not this limitation.
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The clustering procedure: General description

First step - bis

We use the dissimilarity defined by

PRR(X ,Y ) = |Bk | /(|R(x)k | · |R(y)k |)

as input of an agglomerative hierarchical clustering.
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The clustering procedure: General description

Second step

To obtain vectors of autocorrelation measures for each
time series.

To calculate an appropriate distance among these vectors.

To use those distances as input of an agglomerative
hierarchical clustering.
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The clustering procedure: General description

Second step

What is the meaning of autocorrelation measures?

SAC (Simple AutoCorrelations).

PAC (Partial AutoCorrelations).

PRG (PR Global), PRk (x) = − T
k+1 log |R(x)K | proposed in Peña

and Rodríguez (2006) as a goodness-of-fit test.

PRV (PR Vector) that calculates the PR statistics for
k = 1, 2, . . . ,K .

PRD (PR Differences) which is similar to PRV but it calculates
the differences of the consecutive measures.

QAC (Quantile AutoCovariances) as in Lafuente-Rego and Vilar
(2015).
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The clustering procedure: General description

The nonlinear features of some time series, as for instance,
volatility and nonlinear behavior are not indicated by the
measures SAC, PAC or PR types statistics.

We know that these nonlinear features can be shown by the
autocorrelation of the absolute values or the squared residuals
of a linear fit.

Suppose that we fit an AR(p) model to the series where p is
chosen by the AIC or BIC criterion and we obtain:

et = yt − π̂1yt−1 − ...− π̂pyt−p.

Andrés M. Alonso and Daniel Peña Clustering time series by dependence measures



Introduction
The clustering procedure

Simulation study
Case-studies with real data
Conclusions & Extensions

Our approach
First step
Second step

The clustering procedure: General description

Then the vector of autocorrelation r′S = (r1(e2
t ), . . . , rk (e2

t )) or
r′A = (r1(|et |), . . . , rk (|et |)) may be useful to detect nonlinear
effects.

Thus, we propose to have a vector of features (r′, r′N ) where
r′N=(r′S or r′A) of dimension 2k and use these vectors to find
clusters.

Similar ideas can be used with PAC, PRG, PRD and PRD.

Andrés M. Alonso and Daniel Peña Clustering time series by dependence measures



Introduction
The clustering procedure

Simulation study
Case-studies with real data
Conclusions & Extensions

Motivation
Simulation with Independent scenarios
Simulation with Dependent scenarios

Simulation study: Motivation

Since our procedure has two steps, then the simulation study
will have two parts:

1 We will evaluate the performance of measures SAC, PAC,
PRG, PRD and PRD in clustering independent series.

2 We will evaluate the performance of the dissimilarity
measures based on mutual dependency, PRM and PRR, in
clustering dependent series.
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Simulation study: Independent scenarios

Set A - Independent series

Scenario A.1: Gaussian white noise vs AR(1) model with
φ = 0.5.

Scenario A.2: Gaussian white noise vs GARCH(1,1) model with
ω = 0.1, α = 0.7 and β = 0.2.

Scenario A.3: AR(1) model with φ = 0.5 vs AR(1)-GARCH(1,1)
model with φ = 0.5, ω = 0.1, α = 0.7 and β = 0.2.

For the three scenarios, we generate independent fifteen series of
length T = 100 and 200 for each group.

Scenarios, A and B, was used by Lafuente-Rego and Vilar (2015).
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Simulation study: Independent scenarios

Set B - Independent series

Scenario B.1: ARMA processes classification.
1 AR(1) Xt = 0.9Xt−1 + ǫt
2 MA(1) Xt = −0.7ǫt−1 + ǫt
3 AR(2) Xt = 0.3Xt−1 − 0.1Xt−2 + ǫt
4 MA(2) Xt = 0.8ǫt−1 − 0.6ǫt−1 + ǫt
5 ARMA(1,1) Xt = 0.8Xt−1 + 0.2ǫt−1 + ǫt
6 I(1) Xt = Xt−1 + ǫt

Scenario B.2: Non-linear processes classification.
1 TAR Xt = 0.5Xt−1I(Xt−1 ≤ 0)− 2Xt−1I(Xt−1 > 0) + ǫt
2 EXPAR Xt = [0.3 − 10 exp(−X2

t−1)]Xt−1 + ǫt

3 MA Xt = −0.7ǫt−1 + ǫt
4 NLMA Xt = −0.5ǫt−1 + 0.8ǫ2

t−1 + ǫt
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Simulation study: Independent scenarios

Set B - Independent series

Scenario B.3: Conditional heteroscedastic processes
classification.

1 ARCH σ2
t = 0.1 + 0.8a2

t−1
2 GARCH σ2

t = 0.1 + 0.1a2
t−1 + 0.8σ2

t−1
3 GJR-GARCH

σ2
t = 0.1 + [0.25 + 0.3I(at−1 < 0)]a2

t−1 + 0.5σ2
t−1

4 EGARCH
ln(σ2

t ) = 0.1+ 0.3ǫt−1 + 0.3 [|ǫt−1| − E(|ǫt−1|)] + 0.4 ln(σ2
t−1)

where at = σtǫt and Xt = 0.2at−1 + at .

For the three scenarios, we generate five independent series of each
type having length T = 100 and 200.
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Simulation study: Results

The following results are the means of the Gravilov index from 10000
replicates for the sets A and B with T = 100.

The similarity index used in Gavrilov et al. (2000) compares two
different cluster partitions, C = (C1, . . . ,Ck ) and C′ = (C′

1, . . . ,C
′
k ′)

using the following formulas:

Sim(Ci ,C
′
j ) = 2

#(Ci
⋂

C′
j )

#(Ci ) + #(C′
j )
,

and
Sim(C,C′) = k−1

∑k

i=1
max1≤j≤k ′ Sim(Ci ,C′

j ).

The closer to one the index, the higher is the agreement between the
two partitions.
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Simulation study: Results

Scenarios A

Method A.1 A.2 A.3
QAC 0.950 0.560 0.556
SAC 0.846 0.687 0.635
PAC 0.936 0.582 0.578
PRG 0.785 0.528 0.505
PRV 0.774 0.529 0.505
PRD 0.763 0.510 0.494

Main conclusions

The results for the first scenario,
A.1, are similar for the first three
approaches.

The PR based methods are
slightly worse.

The results point out that SAC
have the better results for the
second and third scenario, A.2
and A.3.

It should be notice that three PR
approaches have similar results
and improved by PAC.
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Simulation study: Results

Scenarios B

Method B.1 B.2 B.3
QAC 0.657 0.884 0.472
SAC 0.679 0.681 0.475
PAC 0.670 0.701 0.459
PRG 0.509 0.555 0.447
PRV 0.505 0.562 0.447
PRD 0.497 0.576 0.436

Main conclusions

The results for the first scenario,
B.1, points out that PAC and
SAC have the better
performances.

The results for the second
scenario, B.2, show that QAC
improves the other methods.

The results for the third
scenario, B.3, are similar for all
approaches.

As in set A, the PR approaches
have similar results and are
improved by PAC.
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Simulation study: Dependent scenarios

Set D - Dependent series

The models for the three populations are:
1 AR(1) X (1,i)

t = 0.9X (1,i)
t−1 + ǫ

(1,i)
t with i = 1, 2, ..., 5.

2 AR(1) X (2,i)
t = 0.2X (2,i)

t−1 + ǫ
(2,i)
t with i = 1, 2, ..., 5.

3 AR(1) X (3,i)
t = 0.2X (3,i)

t−1 + ǫ
(3,i)
t with i = 1, 2, ..., 5.

That is, the second and the third models have the same
autocorrelation structure.

The five scenarios differs in the dependence structure of
the innovations. In the following, we present the
autocorrelation matrices of (ǫ(1,1)t , ǫ

(1,2)
t , ..., ǫ

(3,5)
t ).
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Simulation study: Dependent scenarios

Scenario D.1

RD.1 =
























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

























1 .5 0 0 0 0 0 0 0 0 0 0 0 0 0
1 .5 0 0 0 0 0 0 0 0 0 0 0 0

1 .5 0 0 0 0 0 0 0 0 0 0 0
1 .5 0 0 0 0 0 0 0 0 0 0

1 .5 0 0 0 0 0 0 0 0 0
1 .5 0 0 0 0 0 0 0 0

1 .5 0 0 0 0 0 0 0
1 .5 0 0 0 0 0 0

1 .5 0 0 0 0 0
1 0 0 0 0 0

1 0 0 0 0
1 0 0 0

1 0 0
1 0

1




























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
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Simulation study: Dependent scenarios

Scenario D.1

o
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o
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o
5

o
6

o
7

o
8

o
9

o
10

o
11 o

12

o
13

o
14

o
15

Andrés M. Alonso and Daniel Peña Clustering time series by dependence measures



Introduction
The clustering procedure

Simulation study
Case-studies with real data
Conclusions & Extensions

Motivation
Simulation with Independent scenarios
Simulation with Dependent scenarios

Simulation study: Dependent scenarios

Scenario D.2

RD.2 =
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1 0 0 0 0 0
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1 .5 0 0

1 .5 0
1 .5

1





















































Andrés M. Alonso and Daniel Peña Clustering time series by dependence measures



Introduction
The clustering procedure

Simulation study
Case-studies with real data
Conclusions & Extensions

Motivation
Simulation with Independent scenarios
Simulation with Dependent scenarios

Simulation study: Dependent scenarios

Scenario D.3

RD.3 =
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Simulation study: Dependent scenarios

Scenario D.4
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Simulation study: Dependent scenarios

Scenario D.5

RD.5 =





















































1 .9 .9 .9 .9 .9 .9 .9 .9 .9 0 0 0 0 0
1 .9 .9 .9 .9 .9 .9 .9 .9 0 0 0 0 0

1 .9 .9 .9 .9 .9 .9 .9 0 0 0 0 0
1 .9 .9 .9 .9 .9 .9 0 0 0 0 0

1 .9 .9 .9 .9 .9 0 0 0 0 0
1 .9 .9 .9 .9 0 0 0 0 0

1 .9 .9 .9 0 0 0 0 0
1 .9 .9 0 0 0 0 0

1 .9 0 0 0 0 0
1 0 0 0 0 0

1 .9 .9 .9 .9
1 .9 .9 .9

1 .9 .9
1 .9

1





















































Andrés M. Alonso and Daniel Peña Clustering time series by dependence measures



Introduction
The clustering procedure

Simulation study
Case-studies with real data
Conclusions & Extensions

Motivation
Simulation with Independent scenarios
Simulation with Dependent scenarios

Simulation study: Scenarios D.1 - D.5
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Simulation study: Results

The following results are the means of the Gravilov index from 10000
replicates for the set D using the complete and single linkage

Method D.1 D.2 D.3 D.4 D.5
QAC 0.4911 0.6657 0.5954 0.6654 0.6666
SAC 0.4425 0.6433 0.7167 0.6651 0.6648
PAC 0.4914 0.6657 0.8140 0.6784 0.6885
PRM 0.6984 0.6639 1.0000 0.8420 1.0000
PRR 0.5269 0.6540 1.0000 0.8654 1.0000

Method D.1 D.2 D.3 D.4 D.5
QAC 0.5055 0.6642 0.6663 0.6657 0.6663
SAC 0.4447 0.6465 0.8178 0.6655 0.6661
PAC 0.4845 0.6430 0.8580 0.6611 0.6751
PRM 0.6340 0.5261 1.0000 0.5833 0.9022
PRR 0.9414 0.8315 1.0000 0.9602 1.0000
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Simulation study: Results

Main conclusions
The results of the three univariate methods are similar and they
don’t change much across linkage methods.

Notice that here a Gravilov index around 0.667 corresponds to
approximately separate the first population from the third one in
scenarios D.2, D.4 and D.5

For scenarios D.3, D.4 and D-5 where there are some “strong”
clusters, the complete linkage for both multivariate measures
improve the univariate measures.

For all scenarios, the single linkage and PRR is preferable to
other considered alternatives.
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A case-study with real data: Data description

Spanish mortality rates

We consider the Spanish mortality rates by age (0 – 90 years)
for both genders taken from the Human Mortality Database
(http://www.mortality.org).

The data is available from 1908 to 2010. We skip the period
1908 – 1949.

This allows us to use the period 1950 – 2000 as a model
adjustment period and 2001 – 2010 as a test period in the
forecasting exercise.
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A case-study with real data: Data description

Spanish mortality rates
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A case-study with real data: Data description

Spanish mortality rates

It is clear that these series has an strong negative trend. In fact they
share a common trend.
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A case-study with real data: Data description

Lee-Carter model

It is a well-known model which looks at the dependence between
mortality time series. It relates the mortality rates by age with a single
unobservable factor:

ln(MRx,t ) = ax + bx kt + εx,t

kt = c + kt−1 + ηt
,

where ax and bx are parameters which depend on age, x ; kt is the
unobservable factor which picks up the general characteristics of
mortality in the year t , and εx,t are the age-specific factors.

We will cluster the series of age-specific factors, εx,t .
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A case-study with real data: Factors & Loadings

Spanish mortality rates
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Spanish mortality rates: Clustering results

Spanish mortality rates

At the age-specific factors, we find two clusters and some
“independent” series.
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Spanish mortality rates: Clustering results

Here, we will compare the forecasting performance of three
models:

A factorial model with a single unobservable factor, as in
Lee-Carter (1992).

A factorial model with two unobservable factors, as in
Alonso, Peña and Rodríguez (2005).

A factorial model with two unobservable factors where:
the first factor is estimated using all series.
the second factor is estimated using the two obtained
clusters.
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A case-study with real data: Factors & Loadings

Spanish mortality rates
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Mean absolute prediction errors
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We observe improvements in almost all ages
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Mean absolute prediction errors
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We observe improvements in ages where two factors is worse than one factor
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Mean absolute prediction errors
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But also in ages where two factors is better than one factor
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A case-study with real data: Data description

Spanish electricity prices

We study the 24 series of hourly prices for the Iberian electricity
market from January 2014 to May 2016.
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A case-study with real data: Data description

Spanish electricity prices - Translated for better visualization.
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Spanish electricity prices: Clustering results

There are three clusters:

Sleeping hours

Working hours

Arriving & staying at
home.
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Mean absolute prediction errors
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We observe improvements in all hours for one-day-ahead forecast

Andrés M. Alonso and Daniel Peña Clustering time series by dependence measures



Introduction
The clustering procedure

Simulation study
Case-studies with real data
Conclusions & Extensions

Concluding remarks

We propose a two-step clustering procedure for time
series.

Based on (cross–)dependence measures.
Based on (auto–)dependence measures.

The simulation studies point out that PRM and PRR have
reasonable performance in clustering dependent time
series and SAC, PAC and QAC in clustering independent
time series.

We find that the clustering procedure produces
interpretable clusters and it helps us to improve forecasting
in two real data examples.
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Extensions

Clustering by predictability

“Weather prediction is ... the process of determining how the
weather will change as time advances, and the problem of
weather predictability becomes that of ascertaining whether
such predictions are possible” Lorenz (1975)

For AR(1) processes, DelSole (2004) derive the following
measure of predictability:

Mk = −
1
2

log(1 − φ2k )

for horizon k .
PRk(x) = − T

k+1 log |R(x)K | can be interpreted as a
weighted measure of predictability up to horizon k .
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Preliminary results

Method Scenario S1 Scenario S2 Scenario S3
QAC 0.6372 0.6666 0.6674
SAC 0.6559 0.6667 0.6711
PAC 0.6561 0.6667 0.6667
PRG 0.7700 0.9996 0.9853
PRV 0.7634 0.9990 0.9937
PRD 0.7662 0.9994 0.9947

DelSole, T. Predictability and information theory. Part I: Measure of predictability, J. Atmos. Sci. 61,

2425–2440 (2004a)

DelSole, T. Predictability and information theory. Part II: Part II: Imperfect Forecasts, J. Atmos. Sci. 62,

3368–3381 (2004b)
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