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9. Estimation and selection of ARIMA models

Outline:

• Introduction

• Likelihood of ARMA processes

� AR processes

� MA and ARMA processes

• Kalman filter

• Properties of the estimators

• Model selection criteria

Recommended readings:

B Chapter 10 of D. Peña (2008).

B Chapters 5 and 8 of P.J. Brockwell and R.A. Davis (1996).

B Chapters 5 and 13 of J.D. Hamilton (1994).
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Introduction

B This section is divided into two parts:

• First, we will study the estimation of parameters of an ARMA model.

• Second, we wil study the selection of an ARMA model from among various
estimated models.

B We will assume that we have a stationary series, {ωt}, and we wish to
estimate the parameters of a specified ARMA model.

The notation ωt is used because frequently the series is a transformation
of the original series, zt. For example, with monthly economic data we
often have ωt = ∇∇12lnzt.

B The study of the estimation starts with the simplest case: the conditional
estimation of AR processes, which is similar to least squares estimation in a
regression model.
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Introduction

B Next we will look at the exact estimation of AR processes, which leads to a
problem of non-linear estimation in the parameters, thus requiring the use of
optimization algorithms for non-linear problems.

B Later, we will study the estimation of MA and ARMA models, which is
always non-linear and requires two stages:

(i) To calculate the value of the likelihood function given the value of the
parameters.

(ii) to find a new value of the parameters that increases the value of the
function.

B We see how to evaluate the likelihood function by means of an efficient
algorithm, the Kalman filter.

B The estimation consists in iterating between these two phases until the
maximum of the function is obtained.
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Introduction

B The second part of the section looks at the case in which we have several
estimated ARMA models for a series and are faced with the problem of deciding
between them and selecting the most suitable.

B The main ideas of model selection are important and are be widely used in
the rest of the course:

• Adjustment criteria are not useful for model selection, because if we increase
the number of parameters the fit of the model will increase.

• Then, we must turn to criteria that balance the adjustment with the number
of estimated parameters.

B Here, we will study the Akaike information criterion and the Bayesian
information criterion (also known as Schwarz IC).
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Likelihood of ARMA processes

B Let us assume that we have an ARMA process and wish to estimate the
parameters by maximum likelihood.

B To do this, we must write the joint density function and maximize it with
respect to the parameters, considering the data as fixed.

B To write the joint density of the T observations ωT = (ω1, ..., ωT ) , we are
going to use the following relation:

f (x,y) = f (x) f (y|x) . (171)

B This expression remains true if all the density functions are conditional on
another variable z, such that:

f(x,y|z) = f(x|z)f(y|x, z). (172)
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Likelihood of ARMA processes

B We consider the joint density function of the T observations ωT . Taking
x =ω1 and y =ω2, ..., ωT in (171) we can write

f (ωT ) = f (ω1) f (ω2, ..., ωT |ω1)

and decomposing the second term, with (172) making z =ω1, x =ω2 and
y =ω3, ..., ωT , results in

f (ωT ) = f (ω1) f (ω2|ω1) f(ω3, ..., ωT |ω1, ω2)

and repeating this process, we finally obtain

f (ωT ) = f (ω1) f (ω2|ω1) f (ω3|ω2, ω1) ...f (ωT |ωT−1, ..., ω1) . (173)

B This expression allows us to write the joint density function of the T variables
as a product of T univariate distributions.
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Likelihood of ARMA processes

B The difference between this representation and that which is obtained using
independent data points is that instead of having the product of the marginal
distributions of each data point we have the marginal distribution of the first
and the product of the conditionals of each data point, given the previous one.

B The decomposition (173) lets us write the likelihood of an ARMA model,
since if we assume normality, all the conditional distributions will be normal.
Its expectation is the one step ahead prediction which minimizes the quadratic
prediction error, and we write:

E (ωt|ωt−1, ..., ω1) = ω̂t−1(1) = ωt|t−1.

B We let et denote the prediction error of ωt made using the information from
ωt−1, ..., ω1 and knowing the parameters of the process. Thus:

et = et−1(1) = ωt − ωt|t−1.
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Likelihood of ARMA processes

B These prediction errors are highly related to the innovations of the process.
Nevertheless, they are not identical due to a problem of initial values.

B To illustrate the difference, let us assume a series of zero mean and size
T , generated by an AR(1) process with known parameter φ. Thus, since
ωt|t−1 = φωt−1 for t = 2, ..., T but E(ω1) = φE(ω0) = 0, we can calculate
the one step ahead prediction errors by means of:

a1 = ω1 − φE(ω0) = ω1

a2 = ω2 − φω1

... ... ...

aT = ωT − φωT−1.

B We see that the prediction errors, e2, ..., eT , coincide with the innovations
of the model, a2, ..., aT , where ωt = φωt−1 + at, for t = 2, ..., T.
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Likelihood of ARMA processes

B The difference appears in the first one step ahead prediction error, e1, which
is not equal to the innovation in this point, a1 = ω1 − φω0.

B This makes it so that for t = 2, ..., T the variance of the one step ahead
prediction errors is σ2, that of the innovation, whereas for t = 1 it is different.

B In general, we can write:

V ar (ωt|ωt−1, ..., ω1) = σ2vt|t−1

where for an AR(1):

vt|t−1 = 1 for t = 2, ..., T

= (1− φ2)−1 for t = 1.
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Likelihood of ARMA processes

B With this notation, the joint density function of the sample for a general
ARMA process can be written as:

f (ωT ) =
∏T

t=1
σ−1v

−1/2
t|t−1 (2π)−1/2 exp

{
− 1

2σ2

∑T

t=1

(ωt − ωt|t−1)
vt|t−1

2
}

and taking logarithms letting βββ = (µ, φ1, ..., θq, σ
2) be the parameter vector,

the support function is:

L(βββ) = −T

2
lnσ2 − 1

2

∑T

t=1
ln vt|t−1 −

1
2σ2

∑T

t=1

e2
t

vt|t−1
(174)

where both the conditional variances vt|t−1 as well as the one step ahead
prediction errors, et, depend on the parameters.

B Therefore, evaluating the likelihood function is reduced to the problem of
calculating the one step ahead prediction errors and their variances.

B The maximization of the exact likelihood function is carried out using a
nonlinear optimization algorithm.
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Likelihood of ARMA processes

AR processes

B First, let us consider the AR(1) process of mean µ, ωt = c + φωt−1 + at,
where c = µ(1− φ). In this case, we have:

E(ω1) = µ (175)

and

V ar(ω1) = E(ω1 − µ)2 =
σ2

1− φ2
. (176)

B We assume that, using the above notation, ω1|0 = µ and v1|0 = (1−φ2)−1.
For ω2 we have that, by conditioning ω1, the moments of the conditional
distribution are:

ω2|1 = E(ω2|ω1) = c + φω1

and
V ar(ω2|ω1) = E

[
(ω2 − c− φω1)2

]
= E(a2

2) = σ2

resulting in v2|1 = 1.
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Likelihood of AR(1) processes

B In the same way, we check that

ωt|t−1 = E(ωt|ωt−1) = c + φωt−1, t = 2, ..., T

and
V ar(ωt|ωt−1) = σ2vt|t−1 = σ2, t = 2, ..., T.

B As a result, the likelihood function is:

f (ωT ) = f(ω1)
T∏

t=2

σ−1 (2π)−1/2 exp

{
− 1

2σ2

T∑
t=2

(ωt − c− φωt−1)2
}

. (177)
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Likelihood of AR(1) processes

B Taking logarithms and using f(ω1) as normal, with parameters given by
(176) and (175), gives us the support function:

L
(
φ,σ2|ωT

)
=

−T

2
lnσ2 +

1
2

ln
(
1− φ2

)
−
(
1− φ2

)
(ω1 − µ)2

2σ2
(178)

− 1
2σ2

T∑
t=2

(ωt − c− φωt−1)2.

B To obtain the estimator of φ we have to take the derivative of the parameter
and set the result to zero.

B A cubic equation is obtained which has three roots, and the one that
maximizes the likelihood function is the ML estimator.
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Likelihood of AR(1) processes

B The expression (178) shows that, if we don’t consider the first term, the
support function has the usual expression of a linear model. If we condition
the first observation we have:

f (ω2, ..., ωT |ω1) =
∏T

t=2
σ−1 (2π)−1/2 × exp

{
− 1

2σ2

∑T

t=2
(ωt − c− φωt−1)2

}
.

B We define the conditional likelihood as the one associated with this joint
density function:

LC

(
φ,σ2|ω1

)
=
−(T − 1)

2
lnσ2 − 1

2σ2

∑T

t=2
(ωt − c− φωt−1)2

and the estimator of the parameter φ that maximizes this conditional likelihood
is obtained by minimizing the sum of squares∑T

t=2
(ωt − c− φωt−1)2 =

∑T

t=2
(ω̃t − φω̃t−1)2

where ω̃t = ωt − µ.
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Likelihood of AR(1) processes

B Taking the derivative and setting it to zero, given the estimator ω = µ̂ =∑T
t=1 ωt/T for the mean, the conditional ML estimator of φ is:

φ̂ =
∑T

t=2(ωt − ω)(ωt−1 − ω)∑T
t=2(ωt−1 − ω)2

,

which is that of the slope in a regression model of ωt with respect to ωt−1.

B The conditional ML estimator of the variance is:

σ̂2 =
∑T

t=2(ωt − ĉ− φ̂ωt−1)2

T − 1
,

where ĉ = ω(1− φ̂).

B In conclusion, if we condition the first term and write the likelihood of the
observations from 2 to T , we have a linear model in the parameters.

B The difference between the estimator obtained with the conditional likelihood
and the exact likelihood will generally be small, and negligible in large samples.
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Likelihood of ARMA processes

AR processes

B Let us consider a general AR(p) process. The conditional expectation of ωt,
for t = p + 1, ..., T given the previous data points, ωt−1, ..., ω1 is:

E [ωt|ωt−1, ..., ω1] = µ + φ1(ωt−1 − µ) + ... + φp(ωt−p − µ)

and its conditional variance is:

V ar (ωt|ωt−1, ..., ω1) = V ar(at) = σ2.

B Hence, all the conditional distributions for t = p + 1, ..., T are normal, with
a mean equal to the one step ahead prediction and variance σ2.

B The conditional support function is obtained from the joint density of the
observations (ωp+1,, ..., ωT ) conditional on the first p:

LC

(
µ, φ,σ2|ω1, ..., ωp

)
= −(T − p)

2
lnσ2 − 1

2σ2

T∑
t=p+1

(
ωt − µ−

p∑
i=1

φi(ωt−i − µ)

)2

.

(179)
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Likelihood of AR(p) processes

B Maximizing this function with respect to µ and φ is equivalent to minimizing
the sum of squares of the one step ahead prediction errors and we can write:

S =
T∑

t=p+1

a2
t =

∑T

t=p+1

(
ωt − µ−

∑p

i=1
φi(ωt−i − µ)

)2

(180)

where at = (ωt − µ−
∑p

i=1 φi(ωt−i − µ)).

B Therefore, maximizing the conditional support is equivalent to least squares.

B The estimator of µ is obtained:∑T

t=p+1

(
ωt − µ−

∑p

i=1
φi(ωt−i − µ)

)
= 0

and assuming that
∑T

t=p+1 ωt ≈
∑T

t=p+1 ωt−i, which is approximately true if
T is large, we find that the estimator of the mean is the sample mean of the
observations considered: µ̂ = (T − p)−1

∑T
t=p+1 ωt.
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Likelihood of AR(p) processes

B A better estimator of µ is ω =
∑T

t=1 ωt/T, the sample mean of all the
observations. Both estimators are unbiased, but the one calculated using the
whole sample has less variance and is the one we will use.

B This is equivalent to initially estimating the mean with all the data points
and then writing the likelihood for the variables in deviations to the mean.

B To obtain the estimator of φ, replacing µ with ω in (180) and letting
x′

t = (ωt−1 − ω, ..., ωt−p − ω) , we get the usual least squares estimator in
regression models:

φ̂ =

 T∑
t=p+1

xtx′
t

−1 T∑
t=p+1

xt(ωt − ω)

 . (181)

Time series analysis - Module 1



444

Likelihood of AR(p) processes

B For large samples this expression is approximately,

φ̂ = Γ̂−1
p γ̂p, (182)

where

Γ̂p =

∣∣∣∣∣∣
γ̂0 · · · γ̂p−1
... . . . ...

γ̂p−1 · · · γ̂0

∣∣∣∣∣∣ , γ̂p =

∣∣∣∣∣∣
γ̂1
...

γ̂p

∣∣∣∣∣∣ ,
which are the Yule-Walker equations.

B Nevertheless, in small samples both estimators are different and this
difference is greater when the order of the process is higher.

B It can be proved that the least squares estimators are more accurate than
those of Yule-Walker.
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Likelihood of ARMA processes

MA and ARMA processes

B The estimation of models with MA and mixed components is more
complicated than that of AR for two reasons.

• First, the likelihood function, both the conditional as well as the exact, is
always non-linear in the parameters.

• Second, the procedure for conditioning certain initial values, which leads to
simple results in the ARs, is more complicated for MA and ARMA processes,
making the calculation of the expectations and conditional variances more
difficult

B To illustrate these problems, we take the case of an MA(1):

ωt = at − θat−1

with zero marginal expectation.
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Likelihood of MA(1) processes

B The expectation of ωt conditional on its previous values is no longer
straightforward, as in the AR, and to obtain it we must express ωt as a
function of the previous values.

B Starting with t = 2, since ω2 = a2− θa1, and a1 = ω1 + θa0, we have that:

ω2 = −θω1 + a2 − θ2a0

and taking expectations in this expression and assuming E(a0|ω1) = 0, we
deduce that the expectation of the conditional distribution is:

E(ω2|ω1) = −θω1,

and the variance
var(ω2|ω1) = σ2(1 + θ4).
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Likelihood of AR(p) processes

B Following this form for t = 3, 4, .., we obtain

ωt = −θωt−1 − θ2ωt−2 − ...− θt−1ω1 + at − θta0

which leads to

E(ωt|ωt−1, ..., ω1) = −θωt−1 − θ2ωt−2 − ...− θt−1ω1

and
var(ωt|ωt−1, ..., ω1) = σ2(1 + θ2t).

B These expressions are non-linear in the parameters and they are difficult to
obtain in MA(q) processes.
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Likelihood of MA(1) processes

B An alternative approach is to condition the first unobserved innovations as
well. We observe that for each value of the parameters θ, the expression:

at = ωt + θat−1 (183)

permits recursive calculations of the disturbances at, conditional on an initial
value a0.

B Taking a0 = 0 we can calculate all the remaining disturbances starting from
ωt. Thus:

E(ωt|ωt−1, ..., ω1, a0) = −θat−1

and
var(ωt|ωt−1, ..., ω1, a0) = E

[
(ωt + θat−1)2

]
= E

[
at

2
]

= σ2

which leads to the conditional support:

LC (θ|ω1, a0) =
− (T − 1)

2
lnσ2 − 1

2σ2

∑T

t=2
a2

t .

B The maximization of this function is carried out by means of a non-linear
algorithm.
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Likelihood of ARMA(p,q) processes

B The conditional estimation of ARMA(p,q) models is carried out following
the same principles. Letting r = max(p, q) and βββ = (µ, φ1, ..., θq, σ

2) be the
parameter vector, the conditional support function is:

LC (βββ|a0, ωp) =
− (T − r)

2
lnσ2 − 1

2σ2

∑T

T=r+1
a2

t (184)

where we have a2
t = a2

t (β|a0, ωp) , in order to stress that the innovations are
calculated from vectors a0 and ωp from initial values.

B These estimated or residual innovations are calculated recursively by means
of:

ât = ωt−c−φ1ωt−1-...-φpωt−p+θ1ât−1+ ...+θqât−q t = r+1, ..., T (185)

where c = µ(1− φ1 − ...− φp) and it is assumed that the first r residuals are
zero.

B The maximization of (184) requires an initial value of the parameters that
can be obtained using the Hannan-Rissanen algorithm.
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Hannan-Rissanen algorithm

B This algorithm provides initial estimators for an ARMA(p, q) process and it
has two steps.

�  We obtain an initial estimation of residuals of the model by adjusting a long
AR of order k > p + q. Let π̂i be the coefficients estimated using (181).
The residuals are calculated by means of

ât = ωt − ĉ−
∑k

i=1
π̂iωt−i

�  With the estimated residuals from step 1, we estimate the regression

ωt = c + φ1ωt−1 + ...+φpωt−p − θ1ât−1 − ...− θqât−q + ut. (186)

The estimation of this regression provides the initial estimators.

B This algorithm can be used to obtain estimators of ARMA models by
iterating the above steps, which only require regressions. Indeed, with the
parameters estimated in step 2 we can calculate new residuals and repeat the
estimation of (186) until convergence is reached.

B In these conditions we obtain estimators close to the ML.
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The Kalman filter

B The Kalman filter is a recursive procedure which is very fast computationally
and has many applications in time series. In particular, it lets us quickly
evaluate the likelihood of any ARMA model by calculating the one step ahead
prediction errors and their variances.

B Let us assume that we observe a system that can be represented by means
of an observation equation:

zt = Htαt + εt (187)

where zt is a k × 1 vector of observations, Ht is a known k × p matrix, αt is
an unobserved p× 1 state vector and εt is a WN with distribution N (0,Vt).

B Moreover, the description of the system includes an equation that describes
the dynamic evolution of the state variables, αt, called the state equation:

αt = Ωtαt−1 + ut (188)

where Ωt is known p× p matrix and ut another WN, independent of εt, with
distribution Np(0,Rt).
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The Kalman filter

B The representation of a system by means of equations (187) and (188) is
not unique. There is always the possibility of increasing the dimension of the
state vector by putting zeros in the matrices which multiply it and we say that
the state vector has a minimum dimension when it is not possible to represent
the system with fewer than p state variables.

B Once the dimension of the state vector is fixed it is not unique either. Given
a state vector αt the system can be represented equally using the state vector
α∗

t = Aαt, and we can write the observation equation as

zt = HtA−1Aαt + εt = H∗
tα

∗
t + εt

and that of the evolution of the state as

α∗
t = Ω∗

tα
∗
t−1 + ut

where now Ω∗
t = AΩtA−1.

B From here on we will assume that the system has a minimum dimension.
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The Kalman filter

B Any ARMA(p, q) model can be written in this formulation as follows. We
define m = max(p, q + 1) and let αt = (α1,t, α2,t, ..., αm,t)′ denote the state
vector variables, which follow the state equation:

α1,t

α2,t
...

αm,t

 =


φ1 1 ... 0
φ2 0 . . . 0
... ... ... 1

φm 0 ... 0




α1,t−1

α2,t−1
...

αm,t−1

+


1
−θ1

...
−θm

 at. (189)

B We observe that in this equation the state matrix, the form of Ωt is:

Ωt =
[

φm−1 I
φm 0′

]
where φm−1 is an m − 1 column vector, I is the identity matrix and 0′ is a
vector of zeros.
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The Kalman filter

B The vector of innovations in this equation is

ut = θat

where θ′ = (1,−θ1, ...,−θm). The covariance matrix of u is

Rt = θθ′σ2.

B We are going to check whether by substituting successively in the state
variables we obtain the representation of the ARMA process.

B The first equation is

α1,t = φ1α1,t−1 + α2,t−1 + at (190)

and the second
α2,t = φ2α1,t−1 + α3,t−1 − θ1at (191)

B Substituting α2,t−1 in (190) according to the expression (191), gives us

α1,t = φ1α1,t−1 + φ2α1,t−2 + α3,t−2 + at − θ1at−1 (192)
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The Kalman filter

B The third equation is
α3,t = φ3α1,t−1 + α4,t−1 − θ2at

and replacing α3,t−2 now in (192) with its above expression, we begin recovering
the ARMA process in the variable α1,t.

B The observation equation simply serves to make the observed variable, zt,
which is scalar, equal to the first component of the state vector:

zt = (1, 0, ...0)αt. (193)

B Equations (189) and (193) are a representation of the ARMA model in the
state space. We observe that they are a particular case of (187) and (188):

• In the observation equation (187) the data vector is now scalar, the state is
a m = max(p, q + 1) × 1 vector, the matrix Ht = (1, 0, ..., 0) and there is
no measurement error or noise in the observation matrix.

• In the state equation matrix Ωt is invariant in time, and the covariance
matrix of ut is singular of rank one.
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The Kalman filter

B The Kalman filter is a recursive algorithm for obtaining predictions of future
observations and quickly provides the one step ahead prediction errors and
their variances.

BWe are going to show the general formulation of the algorithm and then
indicate its particularization in order to calculate the likelihood function of an
ARMA process.

BThe algorithm operates in three steps:

• First, we predict the future state from information about the current state.

• Second, we predict new observations.

• In the third step, which is carried out when a new observation enters the
system, the state estimation is revised at that moment in light of the new
information.
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The Kalman filter - First step

B The first step is the prediction of the future state starting from an estimation
of the current state.

B Let us assume that we have the data points Zt−1 = {z1, ..., zt−1} and an
estimator of the state vector, α̂t−1, and we wish to predict α̂t|t−1, the future
state estimation using the observed data points, Zt−1.

B This estimation is calculated taking expectations in (188) conditional on
Zt−1 and we have:

α̂t|t−1 = Ωtα̂t−1 (194)

where we have used the notation α̂t−1|t−1 = α̂t−1.

B We let St|t−1 denote the covariance matrix of this estimation:

St|t−1 = E
[
(αt − α̂t|t−1)(αt − α̂t|t−1)′|Zt−1

]
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The Kalman filter - First step

B To calculate St|t−1 we subtract equation (194) from (188) such that:

αt − α̂t|t−1 = Ωt (αt−1 − α̂t−1) + ut,

and plugging this expression into the definition of St|t−1 and letting St−1 =
St−1|t−1, results in

St|t−1 = ΩtSt−1Ω′
t + Rt. (195)

B This equation has a clear intuitive interpretation: the uncertainty when
predicting a new state with information up to t−1 is the sum of the uncertainty
that we had with respect to the previous state using this information, measured
by St−1, and the uncertainty of the noise in the state equation, Rt.

B For example, in an AR(1) the state vector is scalar, and Ωt = φ < 1. The
variance of the estimation follows the process

st|t−1 = φ2st−1 + σ2

and only a part of the uncertainty at t− 1 is transferred to time t.
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The Kalman filter - Second step

B The second step is the prediction of the new observation zt given information
up to t− 1:

ẑt|t−1 = E(zt|Zt−1) = Htα̂t|t−1. (196)

B This prediction will have an uncertainty that is measured by the covariance
matrix of the prediction errors:

et = zt − ẑt|t−1

defined by:
Pt|t−1 = E [ete′t] .

B To calculate this matrix, subtracting prediction (196) from the observation
equation (187), we have:

et = zt − ẑt|t−1 = Ht(αt − α̂t|t−1) + εt (197)
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The Kalman filter - Second step

B Plugging expression (197) into the definition of Pt|t−1, we obtain

Pt|t−1 = HtSt|t−1H
′
t
+ Vt. (198)

B This equation indicates that the uncertainty of the prediction accumulates the
uncertainty in the state and that of the measurement error of the observation
equation.

B The prediction error that comes from the state estimation is modulated
depending on matrix Ht.

B If this is the identity matrix, which means that the observations zt are
measurements of the state variables plus a random error, a measurement error
of the observations is added to the error of the state variables.
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The Kalman filter - Third step

B The third step is to revise the state estimation in light of the new information.

B Let us assume that zt has been observed thus the information available
becomes Zt = (Zt−1, zt).

B The new state estimation, α̂t = α̂t|t = E(αt|Zt), is calculated by regression
using:

E(αt|Zt−1, zt) = E(αt|Zt−1)+

+cov(αt, zt|Zt−1)var(zt|Zt−1)−1(zt − E(zt|Zt−1)). (199)

B In this equation the expectations E(αt|Zt−1) = α̂t|t−1 and E(zt|Zt−1) =
ẑt|t−1 and the matrix var(zt|Zt−1) = Pt|t−1 are known.
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The Kalman filter - Third step

B All that remains to be calculated is the covariance between the state and
the new observation, which is given by

cov(αt, zt|Zt−1) = E
[
(αt − α̂t|t−1)(zt − ẑt|t−1)′

]
= E

[
(αt − α̂t|t−1)e′t

]
and substituting (197),

cov(αt, zt|Zt−1) = E
[
(αt − α̂t|t−1)((αt − α̂t|t−1)′H′

t + ε′t)
]

= St|t−1H
′
t
,

(200)
since the observation error ε′t is white noise and independent of αt − α̂t|t−1.

B Plugging this covariance into (199), we can write:

α̂t = α̂t|t−1 + Kt(zt − ẑt|t−1) (201)

where Kt is the matrix of regression coefficients which is called the gain of the
filter, and is given by:

Kt = St|t−1H
′
t
P−1

t|t−1.
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The Kalman filter - Third step

B Equation (201) indicates that the revision we make of the prior estimation
to the state depends on the prediction error, et = zt − ẑt|t−1.

B If this error is zero, we do not modify the estimation, otherwise, we make a
modification in the state estimation that depends on the quotient of the error
in the state estimation, St|t−1, and the prediction error P−1

t|t−1.

B An equivalent way of writing equation (201) is

α̂t = (I−KtHt)α̂t|t−1 + Ktzt

which indicates that the state estimation is a linear combination of the two
sources of information that are available to us:

On the one hand, the prior estimation, α̂t|t−1, and on the other,
observation zt that also provides information about the state.
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The Kalman filter - Third step

B The covariance matrix of this estimation is

St = E [(αt − α̂t)(αt − α̂t)′|Zt]

and replacing α̂t with its expression in equation (201), we have

St = E
[
(αt − α̂t|t−1 −Ktet)(αt − α̂t|t−1 −Ktet)′|Zt

]
and utilizing (200), we finally obtain

St = St|t−1 − St|t−1H
′
t
P−1

t|t−1Ht
St|t−1. (202)
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The Kalman filter equations

B Equations (194), (195), (196), (198), (201) and (202) comprise the Kalman
filter:

α̂t|t−1 = Ωtα̂t−1

St|t−1 = ΩtSt−1Ω′
t + Rt.

ẑt|t−1 = E(zt|Zt−1) = Htα̂t|t−1.

Pt|t−1 = HtSt|t−1H
′
t
+ Vt.

α̂t = α̂t|t−1 + Kt(zt − ẑt|t−1)

St = St|t−1 − St|t−1H
′
t
P−1

t|t−1Ht
St|t−1.

B Under the hypothesis of normality the filter provides optimal estimations
and predictions.
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Properties of the estimators

B It can be proved that the asymptotic properties of the maximum likelihood
method are valid, under some regularity conditions, for ML estimators of
ARMA models.

B These conditions require the process to be stationary and that the ARMA
model we are estimating not contain common factors in its AR and MA part.

B For stationary processes in large samples the ML estimators have an
asymptotical normal distribution and they are asymptotically unbiased and
efficient.

B In particular, the matrix of second derivatives of the support evaluated at
its maximum directly provide the variances and covariances of the estimators:

Var
(
β̂MV

)
= −

∂2L
(
β̂MV

)
∂β∂β′


−1
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Properties of the estimators

B The condition under which there are no common factors in the AR and MA
part is important.

B For example, if ωt is white noise and we estimate the model

(1− φB) ωt = (1− θB) at

all the values of the parameters with the condition φ = θ are compatible with
the data and it can be proved that the variance of the estimators is infinite.

B In general, if the model is overparameterized and simultaneously has
redundant AR and MA factors we will have a situation of strong multicollinearity
which can give rise to multiple maximums in the likelihood function.
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Estimation of ARIMA models - Example

Example 88. We are going to estimate the models identified for the Spanish
vehicle registration series. The four programs we will use are TSW, which uses
the Kalman filter and exact maximum likelihood, the SCA which also uses
exact ML and EViews and Minitab which use conditional ML.

Program Model σ̂a

TSW ∇∇12 lnMt = (1− 0.61B)
(
1− 0.78B12

)
at 0.123

SCA ∇∇12 lnMt = (1− 0.61B)
(
1− 0.78B12

)
at 0.122

Minitab ∇∇12 lnMt = (1− 0.62B)
(
1− 0.84B12

)
at 0.119

EViews ∇∇12 lnMt = (1− 0.59B)
(
1− 0.85B12

)
at 0.119

TSW
(
1− 0.21B12

)
∇∇12 lnMt = (1− 0.61B)

(
1− 0.89B12

)
at 0.121

SCA
(
1− 0.14B12

)
∇∇12 lnMt = (1− 0.61B)

(
1− 0.85B12

)
at 0.117

Minitab (1− 0.25B)∇∇12 lnMt = (1− 0.62B)
(
1− 0.95B12

)
at 0.116

EViews
(
1− 0.20B12

)
∇∇12 lnMt = (1− 0.59B)

(
1− 0.92B12

)
at 0.116
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Estimation of ARIMA models - Example

Dependent Variable: D(LREG,1,12)
Method: Least Squares
Date: 02/11/08   Time: 16:02
Sample (adjusted): 1961M02 1999M12
Included observations: 467 after adjustments
Convergence achieved after 12 iterations
Backcast: 1960M01 1961M01

Variable Coefficient Std. Error t-Statistic Prob.  

MA(1) -0.590730 0.036126 -16.35184 0.0000
SMA(12) -0.849112 0.022492 -37.75125 0.0000

R-squared 0.506632     Mean dependent var -0.000828
Adjusted R-squared 0.505571     S.D. dependent var 0.169220
S.E. of regression 0.118988     Akaike info criterion -1.415315
Sum squared resid 6.583538     Schwarz criterion -1.397557
Log likelihood 332.4760     Durbin-Watson stat 2.023869

Dependent Variable: D(LREG,1,12)
Method: Least Squares
Date: 02/11/08   Time: 16:06
Sample (adjusted): 1962M02 1999M12
Included observations: 455 after adjustments
Convergence achieved after 10 iterations
Backcast: 1961M01 1962M01

Variable Coefficient Std. Error t-Statistic Prob.  

AR(12) 0.200860 0.048032 4.181812 0.0000
MA(1) -0.588512 0.037092 -15.86627 0.0000

SMA(12) -0.919005 0.017842 -51.50692 0.0000

R-squared 0.535343     Mean dependent var -0.000767
Adjusted R-squared 0.533287     S.D. dependent var 0.167318
S.E. of regression 0.114306     Akaike info criterion -1.493309
Sum squared resid 5.905740     Schwarz criterion -1.466142
Log likelihood 342.7278     Durbin-Watson stat 2.078833

B We can see that the best model from the point of view of residual variance
is that which has an ARMA(1,1) in the seasonal part.

B One conclusion from this exercise is that the greatest difference between the
exact and conditional estimations appears when the model has moving average
terms close to the unit value such that the process is close to non-invertibility.
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Model selection criteria

B Let us assume that we have estimated a set of models, M1, ..., Mm, and we
wish to select the one which best explains the observed series.

B Selecting the model by its fit to our given sample does not yield suitable
results, since the model with the most parameters always leads to greater
likelihood and a smaller sum of squares error within the sample.

B For example, if we compare an AR(p) with an AR(p + 1) the fit of the
AR(p + 1) cannot be worse than that of the AR(p), and we will always choose
the most complex model. Therefore, in order to choose between models we
must turn to other principles.

B The problem can be looked at as one of discrimination: we have different
models Mi and a stationary series, ωT = (ω1, ..., ωT ), and we wish to select
the model most compatible with the observed series; this can be approached
from a classical or Bayesian point of view.
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Model selection criteria

B Beginning with the classical approach, we see that comparing the likelihood
of different models is of little use because the model with the most parameters
will always have greater likelihood.

B However, we can calculate the expected value of the likelihood for each one
of the models and select the model that produces an expected value that is
higher than this expected likelihood. This is the approach that leads to the
Akaike information criterion.

B If we have the a priori probabilities for each model, P (Mi), we could use the
Bayesian approach and select the model that has maximum probability given
the data:

P (Mi|ωT ) =
P (ωT |Mi)P (Mi)∑m

i=1 P (ωT |Mj)P (Mj)
. (203)

B If we assume that the a priori probabilities of all the models are the same,
this approach leads to the Bayesian information criterion, explained below.
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Model selection criteria - Akaike information criterion

B The likelihood function of an ARIMA model is given by (174). Multiplying
by −2 and taking expectations in this expression we have

E(−2L(β)) = T lnσ2 +
∑T

t=1
ln vt|t−1 + E

[∑T

t=1

e2
t

σ2vt|t−1

]
.

B It is proved that

AIC = E(−2L(β)) = T ln σ̂2
MV + 2k, (204)

where T is the sample size used to estimate the model, σ̂2
MV the ML estimator

of the variance of the innovations and k the number of parameters estimated
to calculate the one step ahead predictions.

B Therefore, selecting the model with maximum expected likelihood is
equivalent to choosing that which minimizes the likelihood with a negative
sign given by (204). This criterion is known as the AIC criterion.
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Model selection criteria - Bayeasian information criterion

B An alternative criterion was proposed by Schwarzusing a Bayesian approach.
The criterion is to maximize the a posteriori probability of the model, P (Mi|ω),
assuming that the a priori probabilities are the same for all the models.

B Since, according to (203), P (Mi|ω) is proportional to P (ω|Mi)P (Mi), if
the a priori probabilities are the same, the a posteriori probability of the model
is proportional to P (ω|Mi).

B Selecting the model that maximizes this probability is equivalent to selecting
the model that minimizes −2lnP (ω|Mi).

B It can be proved that the model that asymptotically minimizes this quantity
is the one that minimizes the criterion:

BIC = T ln σ̂2
MV + k lnT, (205)

where T is the sample size, σ̂2
MV the ML estimator of the variance and k the

number of parameters.
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Comparison of model selection criteria

B A problem with the AIC is that it tends to overestimate the number of
parameters in the model and this effect can be important in small samples.

B If we compare the expression (205) with (204) we see that the BIC penalizes
the introduction of new parameters more than the AIC does, hence it tends to
choose more parsimonious models.

B It can be proved that the BIC criterion is consistent, in the sense that
when the data have been generated by an ARIMA model the BIC selects the
appropriate order of the model with a probability of one.

B On the other hand, the AIC criterion is efficient, in the sense that if the data
are generated by a model that could be of infinite order, and we consider a
sequence of estimators whose order increases with the sample size, the selected
predictor is that with the lowest expected prediction error.
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Selection of ARIMA models - Example

Example 89. We are going to apply the model selection criteria in order
to choose a model for the vehicle registration series. The table gives the
model, the residual variance, the number of parameters and the value of the
corresponding selection criterion:

Modelo σ̂2 T k BIC AIC
ARIMA(0, 1, 1)× (0, 1, 1)12 0.1192 466 2 -1.9799 -1.9716
ARIMA(0, 1, 1)× (1, 1, 1)12 0.1162 466 3 -2.0017 -1.9892

B The best model using both the BIC as well as the AIC is the second one,
which obtains the lowest value using both criteria. This would then be the
model chosen.

B Notice that EViews use an slight different definitions for AIC and BIC:

AICEV iews = −2 ln(L/T )+2k/T and BICEV iews = −2 ln(L/T )+lnTk/T,

where L is the full likelihood function (including inessential constant terms).
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Estimation and selection of ARIMA models - Example

Example 90. We are going to compare some models estimated for the series
on work related accidents:

• ARIMA(0, 1, 1)× (0, 1, 1)
• ARIMA(2, 1, 0)× (0, 1, 1)
• ARIMA(2, 1, 0)× (1, 1, 1)

Dependent Variable: D(LWA,1,12)
Method: Least Squares
Date: 02/11/08   Time: 16:14
Sample (adjusted): 1980M02 1998M12
Included observations: 227 after adjustments
Convergence achieved after 15 iterations
Backcast: 1979M01 1980M01

Variable Coefficient Std. Error t-Statistic Prob.  

MA(1) -0.493807 0.056078 -8.805724 0.0000
SMA(12) -0.893467 0.022294 -40.07662 0.0000

R-squared 0.457425     Mean dependent var 0.000856
Adjusted R-squared 0.455013     S.D. dependent var 0.087703
S.E. of regression 0.064745     Akaike info criterion -2.627936
Sum squared resid 0.943193     Schwarz criterion -2.597760
Log likelihood 300.2707     Durbin-Watson stat 2.156429

Dependent Variable: D(LWA,1,12)
Method: Least Squares
Date: 02/11/08   Time: 16:16
Sample (adjusted): 1980M04 1998M12
Included observations: 225 after adjustments
Convergence achieved after 14 iterations
Backcast: 1979M04 1980M03

Variable Coefficient Std. Error t-Statistic Prob.  

AR(1) -0.578750 0.064125 -9.025366 0.0000
AR(2) -0.279150 0.064026 -4.359932 0.0000

MA(12) -0.912116 0.016276 -56.04015 0.0000

R-squared 0.482486     Mean dependent var 0.001194
Adjusted R-squared 0.477824     S.D. dependent var 0.087672
S.E. of regression 0.063353     Akaike info criterion -2.666935
Sum squared resid 0.891029     Schwarz criterion -2.621387
Log likelihood 303.0301     Durbin-Watson stat 2.001199
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Dependent Variable: D(LWA,1,12)
Method: Least Squares
Date: 02/11/08   Time: 16:17
Sample (adjusted): 1981M04 1998M12
Included observations: 213 after adjustments
Convergence achieved after 11 iterations
Backcast: 1980M04 1981M03

Variable Coefficient Std. Error t-Statistic Prob.  

AR(1) -0.584658 0.066305 -8.817657 0.0000
AR(2) -0.301333 0.066217 -4.550720 0.0000

SAR(12) 0.253553 0.067781 3.740758 0.0002
MA(12) -0.928355 0.014642 -63.40277 0.0000

R-squared 0.500921     Mean dependent var 0.000865
Adjusted R-squared 0.493757     S.D. dependent var 0.086068
S.E. of regression 0.061238     Akaike info criterion -2.729493
Sum squared resid 0.783772     Schwarz criterion -2.666370
Log likelihood 294.6910     Durbin-Watson stat 2.009470

B Of the three models the best ones are the last two, according to the BIC criterion.

B The first is an approximation of the second, because (1 − 0.54B)
−1

= (1 + 0.54B +

.29B2 + .16B3 + ...) and if we truncate the series and keep the first two values we have an

AR(2) similar to the one estimated by the second model.

B The third model seems to pick up the seasonality better since the AR term is significant,

and it has the smallest BIC value of the three although the differences between the second

and third model are slight.
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