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8. Identifying possible ARIMA models

Outline:

• Introduction

• Variance stabilizing transformation

• Mean stabilizing transformation

• Identifying ARMA structure

Recommended readings:

B Chapter 9 of D. Peña (2008).

B Chapter 6 of P.J. Brockwell and R.A. Davis (1996).

B Chapter 17 of J.D. Hamilton (1994).
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Introduction

B We had studied the theoretical properties of ARIMA processes. Here we
are going to analyze how to fit these models to real series. Box and Jenkins
(1976) proposed carrying out this fit in three steps.

• The first step consists of identifying the possible ARIMA model that the
series follows, which requires: (1) deciding what transformations to apply in
order to convert the observed series into a stationary one; (2) determining
an ARMA model for the stationary series.

• Once we have provisionally chosen a model for the stationary series we
move on to the second step of estimation, where the AR and MA model
parameters are estimated by maximum likelihood.

• The third step is that of diagnosis, where we check that the residuals do
not have a dependence structure and follow a white noise process.

B These three steps will be the subject of the final session of Module 1.
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Introduction

B These three steps represented an important advancement in their day, since
the estimation of the parameters of an ARMA model required a great deal of
calculation time. Nowadays, estimation of an ARIMA model is straightforward,
making it much simpler to estimate all the models we consider to be possible
in explaining the series and then to choose between them.

B This is the philosophy of the automatic selection criteria of ARIMA models,
which work well in practice in many cases, and are essential when we wish to
model and obtain predictions for a large set of series.

B Nevertheless, when the number of series to be modelled is small, it is
advisable to carry out the identification step that we will look at next in order
to better understand and familiarize ourselves with the dynamic structure of
the series of interest.

B The objective is not to choose a model now for the series, but rather to
identify a set of possible models that are compatible with the series graph and
its simple and partial autocorrelation functions.
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Introduction

B These models will be estimated and in the third phase, diagnosis, we ensure
that the model has no detectable deficiencies.

B Identification of the model requires identifying the non-stationary structure,
if it exists, and then the stationary ARMA structure:

• The identification of the non-stationary structure consists in detecting which
transformations must be applied to obtain a stationary ARMA process with
constant variance and mean:

� to transform the series so that it has constant variance;
� to differentiate the series so that it has constant mean.

• Later we will identify the ARMA model for the stationary series and analyze
these aspects.
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Variance stabilizing transformation

B In many series the variability is often greater when the series takes high
values than when it takes low ones.

Example 80. The figure shows the Spanish vehicle registration series and we
observe that the variability is much greater when the level of the series is high,
which is what happens at the end of the series, than when it is low.
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B The variability does not
increase over time but rather
with the level of the series:
the variability around 1975-1980
is high and corresponds to a
maximum of the level, and
this variability decreases around
1980-1985, when the level drops.
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B We can confirm this visual impression by plotting a graph between a measure
of variability, such as the standard deviation, and a measure of level, such as
the local mean.

B In order to make homogeneous comparisons since the series is seasonal we
take the 12 observations from each year and calculate the standard deviation
and the mean of the registrations in each year.
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B We can see that a clear linear-
type dependence exists between
both variables.
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B When the variable of the series increases linearly with the level of the series,
as is the case with the vehicle registration, by taking logarithms we get a series
with constant variability.

Example 80. The figure shows the series in logarithms which confirms this
fact. The series in logs has constant variability.
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Variance stabilizing transformation

B The dependency of the variability of the level of the series might be a result
of the series being generated as a product (instead of sum) of a systematic
or predictable component, µt, times the innovation term, ut, that defines the
variability. Then:

zt = µtut. (155)

B Let us assume that the expectation of this innovation is one, such that
E(zt) = µt. The standard deviation of the series is:

σt =
[
E(zt − µt)2

]1/2
=

[
E(µtut − µt)2

]1/2
=

= |µt|
[
E(ut − 1)2

]1/2
= |µt|σu

and while the innovation ut has constant variability, the standard deviation of
the observed series zt is not constant in time and will be proportional to the
level of the series.
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B As we have seen, this problem is solved by taking logarithms, since then,
letting at = ln ut:

yt = ln zt = ln µt + at

and an additive decomposition is obtained for the variable yt, which will have
constant variance.

B The above case can be generalized permitting the standard deviation to be
a potential function of the local mean, using:

σt = kµα
t , (156)

and if we transform variables zt into new variables yt by means of:

yt = x1−α
t

these new variables yt have the same standard deviation.
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B A more general way of describing this transformation is:

yt =
x1−α

t − 1
1− α

(157)

which is part of the family of Box-Cox transformations and includes the
powers and the logarithm of the variable.

B In the series, when a relationship is observed between the level and
the variability we can estimate the value of α needed to obtain constant
variability by making consecutive groups of observations, calculating the
standard deviation in each group, si, and the mean xi and representing
these variables in a graph.

B Taking logarithms in (156), the slope of the regression

log si = c + α log xi (158)

estimates the value of α, and the transformation of the data by means of (157)
will lead to a series where the variability does not depend on the level.
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Example 80. The figure gives the relationship between the logarithms of
these variables for the registration series. We observe that the slope is close to
the unit and if we estimate regression (158) we have c = −2.17 and α = 1.04.
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B As a result, a transformation
using α = 0, that is, by means
of logarithms, should produce a
variance constant with the level.

B We had seen that the vehicle
registration series expressed in
logarithms and its variability is
approximately constant.

B It is advisable to plot graphs between variability and mean using groups of
data that are as homogeneous as possible.
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Mean stabilizing transformation

B To stabilize the mean of the series we apply regular and seasonal differences.
The decision to apply these differences can be based on the graph of the series
and on the sample autocorrelation function, but we can also use formal tests.

Determining the order of regular difference

B If the series has a trend or shows changes in the level of the mean, we
differentiate it in order to make it stationary. The need to differentiate is
clearly seen from the graph of the series. For example, the vehicle registration
series clearly shows periodic behavior and non-constant mean.

B Note that

(1−B) ln zt = ln zt − ln zt−1 = ln
(

1 +
zt − zt−1

zt−1

)
≈ zt − zt−1

zt−1

where we have used ln(1 + x) ≈ x if x is small.

B Therefore, series ∇ ln zt is equivalent to the relative growth rates of zt.
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Example 81. The figure shows the first difference of the registration series
and we can see that it contains very noticeable variations month to month, up
to 0.8, that is 80% of its value.
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B This is due to the presence
of strong seasonality, appearing
in the graph as sharp drops,
which correspond to the month
of August of each year.

B As a result of this effect the
series does not have a constant
mean. Next, we will look at
how to eliminate this pattern by
means of a seasonal difference.

Time series analysis - Module 1



387

Mean stabilizing transformation

B When the decision to differentiate is not clear from analyzing the graph, it
is advisable to study its autocorrelation function, ACF.

B We have seen that a non-stationary series has to show positive
autocorrelations, with a slow and linear decay.

Example 82. The figure shows gives the ACF of the vehicle registration
series: a slow linear decay of the coefficients can be observed, which indicates
the need to differentiate.
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Mean stabilizing transformation

B It is important to point out that the characteristic which identifies a non-
stationary series in the estimated ACF is not autocorrelation coefficients close
to the unit, but rather the slow linear decay.

Example 83. In the IMA(1,1)
process if θ is close to
one, then the expected value
of the sample autocorrelation
coefficients is always less than
0.5. Nevertheless, a smooth
linear decrease is still to be
expected.
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B To summarize, if the ACF does not fade for high values (more than 15
or 20) it is generally necessary to differentiate in order to obtain a stationary
process.
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Mean stabilizing transformation

B It is possible to carry out a test to decide whether or not the series should
be differentiated.

B But, if the objective is forecasting, these tests are not very useful
because in case of doubt it is always advisable to differentiate, since the
negative consequences of overdifferentiating are much less that those of
underdifferentiating.

B Indeed, if we assume that the series is stationary when it is not, the medium
term prediction errors can be enormous because the medium term prediction
of a stationary period is its mean, whereas a non-stationary series can move
away from this value indefinitely and the prediction error is not bounded.

B The undifferentiated model will also be non-robust and with little capacity
to adapt in the presence of future values.

B However, if we overdifferentiate we always have adaptive predictors and,
while we lose accuracy, this loss is limited.
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Mean stabilizing transformation

B A further reason for taking differences in case of doubt is that it can be
proved that although the series is stationary, if the AR parameter is close to
the unit we obtain better predictions by overdifferentiating the series than by
using the true stationary model.

B When the aim is not to forecast, but rather to decide whether a variable is
stationary or not, a common situation in economic applications, then we must
use the unit-root tests:

• Dickey-Fuller test (with or without intercept, with trend and intercept)

• Augmented Dickey-Fuller test

• Phillips Perron test ...

B EViews provides us with six different unit root tests.
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Mean stabilizing transformation

Unit root tests

B These tests tell us whether we have to take an additional difference in a
series in order to make it stationary.

B We will first present the simplest case of the Dickey-Fuller test. Let us
assume that we wish to decide between the non-stationary process:

∇zt = at, (159)

and the stationary: (1− ρB) zt = c + at. (160)

B The Dickey-Fuller test was developed because the traditional procedure for
estimating both models and choosing the one with least variance is not valid
in this case.

B In fact, if we generate a series that follows a random walk, (159), and we fit
both models to this series, in model (159) we will not estimate any parameter
whereas in (160) we estimate parameters ρ and c so that the variance of the
residuals is minimum.
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B To illustrate this aspect, the figure shows the distribution of the least squares
estimator of parameter ρ in samples of 100 which have been generated by
random walk (159).
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B The distribution is observed
to be very asymmetric and that
it can be much smaller than the
true value of the parameter which
is one, especially with the second
estimator, the estimated value,
which is the one that provides
the best fit.

B In conclusion, comparing the
variances of both models is not
a good method for choosing
between them and, especially if
we want to protect ourselves
with respect to the error of not
differentiating.
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Unit root tests

B One might think that a better way of deciding between two models is
to estimate the stationary model (160) by least squares and test whether
coefficient ρ is one, comparing the estimator with its estimated standard
deviation.

B The test would be H0 : ρ = 1 compared to the alternative H1 : ρ < 1, and
the statistic for the test:

tµ =
ρ̂− 1
ŝρ

(161)

where ŝρ is the estimated standard deviation of the least squares estimator.

B We could carry out the test comparing the value of tµ using the usual tables
of the Student’s t with a unilateral test.

B Nevertheless, this method is not correct, since the distribution in the
sample of the estimator ρ̂ is not normal with a mean of one, which is necessary
for the statistic (161) to be a Student’s t.
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B Furthermore, when the process is non-stationary the least squares estimation
provides an erroneous value of the variance of estimator ρ̂ and statistic (161)
does not follow a Student’s t-distribution.

B The reason is that when the null hypothesis is true the value of the parameter
is found in the extreme of the parametric space (0,1) and the conditions of
regularity which are necessary for the asymptotic properties of the ML estimator
are not satisfied.

B To illustrate this fact the figure
gives the result of calculating the
statistic (161) in 20 000 samples
of 100 generated by random
walks.

B Notice that the distribution of
the statistic differs greatly from
that of the Students’s t and does
not even have zero mean.
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Dickey-Fuller test

B In the Dickey-Fuller test, the null hypothesis of the test, H0, is that the
series is non-stationary and it is necessary to differentiate, ρ = 1, and test
whether this hypothesis can be rejected in light of the data.

B The statistic for the test is (161), but its value is compared with the true
distribution of the test, which is not that of the Student’s t

B A simple way of obtaining the value of this statistic (161) is to write the
model (160) that we want to estimate subtracting zt−1 from both members of
the equation and write:

∇zt = c + αzt−1 + at (162)

where α = ρ− 1.

B When we write a model including the variable in differences and in levels in
the equation, ∇zt and zt−1, we call it an error correction model.
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Dickey-Fuller test

B In model (162) if α = 0 we have a random walk and if α 6= 0 a stationary
process.

B The null hypothesis which states that the process is non-stationary and ρ = 1
in this model becomes the null hypothesis H0 : α = 0, and the alternative,
that the process is stationary, becomes H1 : α 6= 0.

B The test consists in estimating parameter α in (162) by least squares and
rejecting that the process is stationary if the value of tµ is significantly small.

B The statistic (161) is now written:

tµ =
α̂

ŝα
(163)

where α̂ is the least squares estimation of α in (162) and ŝα is its estimated
standard deviation calculated in the usual way.
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Dickey-Fuller test

B Under the hypothesis that α = 0 (which implies that ρ = 1) the distribution
of tµ has been tabulated by Dickey and Fuller. An extract from their tables is:

Table 1: Critical values for the Dickey-Fuller unit-root test

T without constant with constant
.01 .025 .05 .1 .01 025 .05 .1

25 -2.66 -2.26 -1.95 -1.60 -3.75 -3.33 -3.00 -2.63
50 -2.62 -2.25 -1.95 -1.61 -3.58 -3.22 -2.93 -2.60
100 -2.60 -2.24 -1.95 -1.61 -3.51 -3.17 -2.89 -2.58
250 -2.58 -2.23 -1.95 -1.62 -3.46 -3.14 -2.88 -2.57
500 -2.58 -2.23 -1.95 -1.62 -3.44 -3.13 -2.87 -2.57
∞ -2.58 -2.23 -1.95 -1.62 -3.43 -3.12 -2.86 -2.57

B We observe that the estimation of α̂ will be negative since ρ ≤ 1.
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Dickey-Fuller test

B The distribution of the statistic is different when we include a constant
or not in the model and, for greater security, it is always recommendable to
include it, since the alternative is that the process is stationary but does not
necessarily have zero mean.

B The decision of the test is:

Reject non-stationarity if tµ ≤ tc

where the value of tc is obtained from Table 1.

B We recommend carrying out the test with a low level of significance, .01, such
that there is a low probability of rejecting that the process is non-stationary
when this hypothesis is true.

B Since the negative consequences of underdifferentiating, we need to protect
ourselves against the risk of rejecting that the process is non-stationary when
in fact it is.
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Augmented Dickey-Fuller test

B The test we have studied analyzes whether there is a unit-root in an AR(1).
This test is generalized for ARMA processes.

B We begin by studying the case in which we have an AR(p + 1) process and
we want to know if it has a unit root. That is, we have to choose between two
models:

H0 : φp(B)∇zt = at, (164)

H1 : φp+1(B)zt = c + at. (165)

B The null hypothesis establishes that the largest root of an AR(p+1) is equal
to one, model (164), and the process is non-stationary. The alternative states
that it is less than one, as in (165), and we will have a stationary process.

B The idea of the Augmented Dickey-Fuller test is to try to test the condition
of a unit root directly in the operator φp+1(B).
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Augmented Dickey-Fuller test

B To implement this idea, the operator φp+1(B) is decomposed

φp+1(B) = (1− α0B)− (α1B + ... + αpB
p)∇. (166)

B This decomposition can always be done, because in both sides of the equality
we have a polynomial in B of order p + 1 with p + 1 coefficients. Thus by
identifying powers of B in both members we can obtain the p + 1 coefficients
α0, ..., αp, given φ1, ..., φp+1.

B We will see that this decomposition has the advantage of transferring the
condition of the unit root in the first member to a condition on a coefficient
that we can estimate in the second member.

B Indeed, if φp+1(B) has a unit root, then φp+1(1) = 0, and if we make B = 1
in (166) the term (α2B + ... + αp+1B

p)(1 − B) is cancelled and it will have
to be verified that (1− α0) = 0, that is α0 = 1.
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Augmented Dickey-Fuller test

B The unit root condition in φp+1(B) implies α0 = 1.

B We will see that α0 = 1 also implies a unit root: if α0 = 1, we can write
the polynomial on the left as (1 − α1B − ... − αpB

p)∇, and the polynomial
has a unit root.

B Therefore, we have proved that the two following statements are equivalent:
(1) the polynomial φp+1(B) has a unit root and (2) the coefficient α0 in
decomposition (166) is one.

B The model (165) can be written, utilizing (166)

φp+1(B)zt = (1− α0B)zt − (α1B + ... + αpB
p)∇zt = c + at, (167)

that is:

zt = c + α0zt−1 +
p∑

i=1

αi∇zt−i + at
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Augmented Dickey-Fuller test

B To obtain the statistic of the test directly we can, as in the above case,
subtract zt−1 from both members and write the model in the error correction
form, that is, with levels and differences as regressors.

B This model is:

∇zt = c + αzt−1 +
∑p

i=1
αi∇zt−i + at (168)

where α = (α0 − 1) .

B Equation (168) can be estimated by least squares and the test for whether
the series has unit root, α0 = 1 is equivalent to the test α = 0.

B The test utilizes the same statistic from above:

tµ =
α̂

ŝα
, (169)

where α̂ is the least squares estimation of α in (168) and ŝα is its estimated
standard deviation calculated in the usual way.
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Augmented Dickey-Fuller test

B The distribution of tµ when the hypothesis of a unit root ρ = 1 is true
has been tabulated by Dickey and Fuller. Again, the distribution depends on
whether or not we have a constant in the model.

B In seasonal series we must be careful to introduce all of the necessary lags.

Example 84. The ADF unit-root test in the vehicle registration series
logarithm:

Augmented Dickey-Fuller Unit Root Test on LREG

Null Hypothesis: LREG has a unit root
Exogenous: None
Lag Length: 13 (Automatic based on SIC, MAXLAG=17)

t-Statistic   Prob.*

Augmented Dickey-Fuller test statistic  2.498728  0.9972
Test critical values: 1% level -2.569934

5% level -1.941504
10% level -1.616243

*MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Unit Root Test on LREG

Null Hypothesis: LREG has a unit root
Exogenous: Constant
Lag Length: 13 (Automatic based on SIC, MAXLAG=17)

t-Statistic   Prob.*

Augmented Dickey-Fuller test statistic -3.109254  0.0266
Test critical values: 1% level -3.444158

5% level -2.867522
10% level -2.570019

*MacKinnon (1996) one-sided p-values.
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Example 84. Now, if we consider the seasonal differentiated series, we
observe that it not have constant level, but it no longer shows any clear trend.
The ACF of this series has a lot of slowly decreasing positive coefficients,
suggesting the need for a difference.
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Example 84. The ADF unit-root test in the seasonal differentiated series:

Augmented Dickey-Fuller Unit Root Test on D12LREG

Null Hypothesis: D12LREG has a unit root
Exogenous: Constant
Lag Length: 13 (Automatic based on SIC, MAXLAG=17)

t-Statistic   Prob.*

Augmented Dickey-Fuller test statistic -4.156481  0.0009
Test critical values: 1% level -3.444531

5% level -2.867686
10% level -2.570107

*MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation
Dependent Variable: D(D12LREG)
Method: Least Squares
Date: 02/12/08   Time: 19:15
Sample (adjusted): 1962M03 1999M12
Included observations: 454 after adjustments

Variable Coefficient Std. Error t-Statistic Prob.  

D12LREG(-1) -0.198206 0.047686 -4.156481 0.0000
D(D12LREG(-1)) -0.459689 0.058717 -7.828886 0.0000
D(D12LREG(-2)) -0.195625 0.058645 -3.335761 0.0009
D(D12LREG(-3)) -0.033722 0.059000 -0.571560 0.5679
D(D12LREG(-4)) -0.026740 0.058813 -0.454659 0.6496
D(D12LREG(-5)) 0.019417 0.058815 0.330134 0.7415
D(D12LREG(-6)) 0.086480 0.058610 1.475510 0.1408
D(D12LREG(-7)) 0.030257 0.057933 0.522285 0.6017
D(D12LREG(-8)) 0.091939 0.057046 1.611664 0.1078
D(D12LREG(-9)) 0.133196 0.056060 2.375975 0.0179

D(D12LREG(-10)) 0.071162 0.055130 1.290808 0.1974
D(D12LREG(-11)) 0.097910 0.053822 1.819131 0.0696
D(D12LREG(-12)) -0.257202 0.051574 -4.987043 0.0000
D(D12LREG(-13)) -0.142624 0.045052 -3.165737 0.0017

C 0.014872 0.007203 2.064680 0.0395
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Example 84. The ADF unit-root test in the seasonal differentiated series
with different number of lags

Augmented Dickey-Fuller Unit Root Test on D12LREG

Null Hypothesis: D12LREG has a unit root
Exogenous: Constant
Lag Length: 9 (Fixed)

t-Statistic   Prob.*

Augmented Dickey-Fuller test statistic -4.902542  0.0000
Test critical values: 1% level -3.444404

5% level -2.867631
10% level -2.570077

*MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Unit Root Test on D12LREG

Null Hypothesis: D12LREG has a unit root
Exogenous: Constant
Lag Length: 12 (Fixed)

t-Statistic   Prob.*

Augmented Dickey-Fuller test statistic -5.055517  0.0000
Test critical values: 1% level -3.444499

5% level -2.867672
10% level -2.570100

*MacKinnon (1996) one-sided p-values.

B This example illustrates the importance of including the right lags in the
test.
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Mean stabilizing transformation

Determining the order of seasonal differencing

B If the series has seasonality a seasonal difference, ∇s = 1−Bs, will have to
be applied in order to make the series stationary. Seasonality is shown:

• In the series graph, which will show a repeating pattern of period s.

• In the autocorrelation function, which shows positive coefficients that slowly
decrease in the lags s, 2s, 3s...

Example 85. The figure
suggests a seasonal pattern
because the value of the series is
systematically lower in August.
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Determining the order of seasonal differencing

B Apart from the series graph it is advisable to look at the ACF, since a series
with seasonality will show high and positive autocorrelation in seasonal lags.

Example 85. The figure shows the sample ACF of the regular differentiated
series.

B Notice that there are high and persistent correlations in seasonal lags 12, 24
and 36.
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Determining the order of seasonal differencing

B This suggests the need for taking a seasonal difference to obtain a stationary
series.

B The figure gives the series with two differences, one regular and the other
seasonal.
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Identifying the ARMA structure

B Once we had determined the order of regular and seasonal differences, the
next step is to identify the ARMA structure.

B Identification of the orders of p and q is carried out by comparing the
estimated partial and simple autocorrelation functions with the theoretical
functions of the ARMA process.

B Letting ωt denote the stationary series, ωt = ∇d∇D
s zt, where in practice d

takes values in (0, 1, 2) and D in (0, 1), the autocorrelations are calculated by:

rk =
∑T−k

t=d+sD+1 (ωt − ω) (ωt+k − ω)∑T
t=d+sD+1 (ωt − ω)2

, k = 1, 2, ... (170)

B In order to judge when a coefficient rk is different from zero we need its
standard error, whose determination depends on the structure of the process.
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Identifying the ARMA structure

B One simple solution is to take 1/
√

T as the standard error, which
is approximately the standard error of a correlation coefficient between
independent variables. If all the theoretical autocorrelation coefficients were
null, the standard deviations of estimation would be approximately 1/

√
T .

B Therefore, we can place confidence bands at ±2/
√

T and consider as
significant, in the first approximation, the coefficients which lie outside those
bands.

B The partial autocorrelations are obtained with the regressions:

ω̃t = αk1ω̃t−1 + ... + αkkω̃t−k

where ω̃t = ωt−ω. The sequence α̂kk (k = 1, 2, ...) of least squares coefficients
estimated in these regressions is the partial autocorrelation function.

B In the graphs of the PACF we will always use the asymptotic limits ±2/
√

T ,
and we will considered as approximate limits of reference.
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Identifying the ARMA structure

B If the process is seasonal, we study the coefficients of the sample ACF and
PACF in lags s, 2s, 3s, ..., in order to determine the seasonal ARMA structure.

B Identifying an ARMA model can be a difficult task. With large sample sizes
and pure AR or MA processes, the structure of the sample ACF and PACF
usually indicates the required order.

B Nevertheless, in general, the interpretation of the sample ACF and PACF
is complex for three main reasons:

• when autocorrelation exists the estimations of the autocorrelations are also
correlated, which introduces a pattern of random variation in the sample
ACF and PACF that is superposed on the true existing pattern;

• the limits of confidence that we use, 2/
√

T , are asymptotic and not very
precise for the first autocorrelations;

• for mixed ARMA processes it can be extremely difficult to estimate the order
of the process, even when the theoretical values of the autocorrelations are
known.
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Identifying the ARMA structure

B Fortunately, it is not necessary in the identification step to decide what the
order of the model is, but only to choose a set of ARMA models that seem
suitable for representing the main characteristics of the series.

B Later we will estimate this set of selected models and choose the most
suitable.

B Identification with the simple and partial autocorrelation function of the
possible models can be done using the following rules:

1. Decide what the maximum order of the AR and MA part is from the
obvious features of the ACF and PACF.

2. Avoid the initial identification of mixed ARMA models and start with
AR or MA models, preferably of low order.

3. Utilize the interactions around the seasonal lags, especially in the
ACF, in order to confirm the concordance between the regular part
and the seasonal.
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Identifying the ARMA structure

B In practice, most real series can be approximated well using ARMA models
with p and q less than three, for non-seasonal series, and with P and Q less
than two for seasonal series.

B In addition to selecting the orders (p, q)(P,Q) of the model we have to
decide in this step if the stationary series, ωt, has a mean different from zero:

ω =
∑

ωt

Tc
,

where Tc is the number of summands (normally Tc = T −d−sD). Its standard
deviation can be approximated by:

s (ω) ' sω√
T

(1 + 2r1 + ... + 2rk)
1/2

where sω is the standard deviation of the stationary series, ωt, and ri the
estimated autocorrelation coefficients.
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Identifying the ARMA structure

B In this formula we are assuming that the first k autocorrelation coefficients
are significant and that k/T is unimportant.

B If ω ≥ 2s (ω) we accept that the mean of the stationary process is different
from zero and we will include it as a parameter to estimate; in the opposite
case we assume that E(ωt) = 0.

Additionally

B There are automatic selection procedures, such as the one installed in the
TRAMO program, which avoid the identification step and estimate all the
possible models within a subset, which is usually taken as p ≤ 3, q ≤ 2,
P ≤ 2, Q ≤ 1.

B EViews incorporates the TRAMO routines to identify the orders, the mean,
the log transformations, etcetera.
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Identifying the ARMA structure - Examples

Example 86. Lets consider the regular and seasonal differentiated vehicle
registration series. The most notable features of its ACF are: (i) a significant
r1 coefficient; (ii) significant coefficients in the seasonal lags, r12, r24 and
r36; (ii) interaction around the seasonal lags, as shown by the positive and
symmetric values of the coefficients r11 and r13 as well as r23 and r25.
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B The regular part suggests an MA(1) model.

B The seasonal part is more complicated, since the observed structure is
compatible with that of an AR(1)12 with negative coefficient and with longer
AR or ARMA(1,1) 12 models as well.
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Example 86. The PACF of this series confirms the MA(1) structure for the
regular part: a geometric decay is observed in the first lags and, by the
interaction as well, which repeats after the seasonal lags.
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B The two significant coefficients in the seasonal lags cause us to reject the
hypothesis of an AR(1)12, but they are compatible with an AR(2)12 or with an
ARMA(1,1)12.

B Therefore, we move on to estimating models with MA(1) for the regular
part and AR(2) or ARMA(1,1) for the seasonal part.
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And TRAMO selects ...

TRANSFORMATION: Z -> LOG Z

NONSEASONAL DIFFERENCING D= 1
SEASONAL DIFFERENCING BD= 1

MEAN OF DIFFERENCED SERIES -0.8281D-03

MEAN SET EQUAL TO ZERO

MODEL FITTED

NONSEASONAL P= 0 D= 1 Q= 1
SEASONAL BP= 0 BD= 1 BQ= 1

PERIODICITY MQ= 12

TRAMO selects an ARIMA(0, 1, 1)× (0, 1, 1)12.
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Identifying the ARIMA model - Another example

Example 87. We are going to identify a model for the Spanish work related
accidents series found in the accidentes.dat file. This file contains 20 years
of monthly data from January 1979 to December 1998. The figure gives the
graph of this series.
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B The series seems to show an increase in variability with level.
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Example 87. The figure gives the relationship between the logarithm of the
standard deviation each year and the logarithm of the mean for the year.
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B A linear relationship is observed with a slope that is slightly less than the
unit, thus we will take logarithms as a first approximation.
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Example 87. The graph of the series in logarithms is shown in the figure.
The log transformation may be too strong because the variability of the first
two years now seems slightly greater than that of the last.
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B We have tried using the square root as well, and the result is a little better,
but for ease of interpretation we will work with the series in logarithms.
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Example 87. The graph of the series indicates the need for at least one
regular difference for the series to be stationary and the estimated ACF of the
∇ log zt transformation shows high coefficients and decays slowly in lags 12,
24, 36.
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B So we take a regular and a seasonal difference.
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Example 87. The figures give the simple and partial correlogram of the series
∇∇12 log zt. In the ACF we see significant coefficients in the regular lags 1
and 3, and in the seasonal lags 12, 24 and 36. Furthermore, several significant
coefficients appear around the seasonal lags.
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Example 87.

• Starting with the regular part, the ACF suggests an AR process for the
regular part, which is supported by the numerous coefficients of interaction
around the seasonal lags.

• As far as seasonality, there are significant lags in 12 and 24 and in the limit
for 36. The simplest hypothesis is an MA(2)12, but it could also be AR or
ARMA.

• Regarding the PACF, two significant lags appear in the regular part, which
suggests an AR(2) for this part.

• In the seasonal lags there are significant coefficients in lags 12 and 36,
which suggests that the seasonal structure might be either an MA or an AR
greater than two, or, alternatively, ARMA.

B As a conclusion to this analysis, in the next section we will estimate an
AR(2) ×MA(2)12 as well as more complex models of type ARMA(2, 1) ×
ARMA(2, 1)12.
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And TRAMO selects ...

TRANSFORMATION: Z -> LOG Z

NONSEASONAL DIFFERENCING D= 1
SEASONAL DIFFERENCING BD= 1

MEAN OF DIFFERENCED SERIES 0.5834D-03

MEAN SET EQUAL TO ZERO

MODEL FITTED

NONSEASONAL P= 2 D= 1 Q= 0
SEASONAL BP= 0 BD= 1 BQ= 1

PERIODICITY MQ= 12

TRAMO selects an ARIMA(2, 1, 0)× (0, 1, 1)12.
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