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7. Forecasting with ARIMA models

Outline:

• Introduction

• The prediction equation of an ARIMA model

• Interpreting the predictions

• Variance of the predictions

• Forecast updating

• Measuring predictability

Recommended readings:

B Chapter 8 of D. Peña (2008).

B Chapters 5 and 6 of P.J. Brockwell and R.A. Davis (1996).

B Chapter 4 of J.D. Hamilton (1994).
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Introduction

B We will look at forecasting using a known ARIMA model. We will define the
optimal predictors as those that minimize the mean square prediction errors.

B We will see that the prediction function of an ARIMA model has a simple
structure:

• The non-stationary operators, that is, if the differences and the constant
exist they determine the long-term prediction.

• The stationary operators, AR and MA, determine short-term predictions.

B Predictions are of little use without a measurement of their accuracy, and
we will see how to obtain the distribution of the prediction errors and how to
calculate prediction confidence intervals.

B Finally we will study how to revise the predictions when we receive new
information.
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The prediction equation of an ARIMA model

Conditional expectation as an optimal predictor

B Suppose we have observed a realization of length T in a time series
zT = (z1, ..., zT ), and we wish to forecast a future value k > 0 periods ahead,
zT+k.

B We let ẑT (k) be a predictor of zT+k obtained as a function of the T values
observed, that is, with the forecast origin in T , and the forecast horizon at k.

B Specifically, we will study linear predictors, which are those constructed as
a linear combination of the available data:

ẑT (k) = α1zT + α2zT−1 + ...+ αTz1.

B The predictor is well defined when the constants α1, ..., αT used to construct
it are known.
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Conditional expectation as an optimal predictor

B We denote by eT (k) the prediction error of this predictor, given by:

eT (k) = zT+k − ẑT (k)

and we want this error to be as small as possible.

B Since the variable zT+k is unknown, it is impossible to know a priori the
error that we will have when we predict it.

B Nevertheless, if we know its probability distribution, that is, its possible values
and probabilities, with a defined predictor we can calculate the probability of
its error being among the given values.

B To compare predictors we specify the desired objective by means of a
criterion and select the best predictor according to this criterion.
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Conditional expectation as an optimal predictor

B If the objective is to obtain small prediction errors and it does not matter if
they are positive or negative we can eliminate the error sign using the criterion
of minimizing the expected value of a symmetric loss function of the error,
such as:

l(eT+k) = ce2T (k) or l(eT (k)) = c |eT (k)| ,
where c is a constant.

B Nevertheless, if we prefer the errors in one direction,, we minimize the
average value of an asymmetric loss function of the error which takes into
account our objectives. For example,

l(eT (k)) =
{
c1 |eT (k)| , if eT (k) ≥ 0
c2 |eT (k)| , if eT (k) ≤ 0

}
(130)

for certain positive c1 and c2. In this case, the higher the c2/c1 ratio the more
we penalize low errors.
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Example 66. The figure compares the three above mentioned loss functions.
The two symmetric functions

l1(eT (k)) = e2T (k), y l2(eT (k)) = 2 |eT (k)| ,

and the asymmetric (130) have been represented using c1 = 2/3 and c2 = 9/2.
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B Comparing the two symmetric
functions, we see that the
quadratic one places less
importance on small values than
the absolute value function,
whereas it penalizes large errors
more.

B The asymmetric function gives
little weight to positive errors,
but penalizes negative errors
more.
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Conditional expectation as an optimal predictor

B The most frequently utilized loss function is the quadratic, which leads to
the criterion of minimizing the mean square prediction error (MSPE) of zT+k

given the information zT . We have to minimize:

MSPE(zT+k|zT ) = E
[
(zT+k − ẑT (k))2|zT

]
= E

[
e2T (k)|zT

]
where the expectation is taken with respect to the distribution of the variable
zT+k conditional on the observed values zT .

B We are going to show that the predictor that minimizes this mean square
error is the expectation of the variable zT+k conditional on the available
information.

B Therefore, if we can calculate this expectation we obtain the optimal
predictor without needing to know the complete conditional distribution.
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Conditional expectation as an optimal predictor

B To show this, we let
µT+k|T = E [zT+k|zT ]

be the mean of this conditional distribution. Subtracting and adding µT+k|T
in the expression of MSPE(zT+k) expanding the square we have:

MSPE(zT+k|zT ) = E
[
(zT+k − µT+k|T )2|zT

]
+ E

[
(µT+k|T − ẑT (k))2|zT

]
(131)

since the double product is cancelled out.

B Indeed, the term µT+k|T − ẑT (k) is a constant, since ẑT (k) is a function of
the past values and we are conditioning on them and:

E
[
(µT+k|T − ẑT (k))(zT+k − µT+k|T )|zT

]
=

= (µT+k|T − ẑT (k))E
[
(zT+k − µT+k|T )|zT

]
= 0

thus we obtain (131).
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Conditional expectation as an optimal predictor

B This expression can be written:

MSPE(zT+k|zT ) = var(zT+k|zT ) + E
[
(µT+k|T − ẑT (k))2|zT

]
.

B Since the first term of this expression does not depend on the predictor, we
minimize the MSPE of the predictor setting the second to zero. This will
occur if we take:

ẑT (k) = µT+k|T = E [zT+k|zT ] .

B We have shown that the predictor that minimizes the mean square prediction
error of a future value is obtained by taking its conditional expectation on the
observed data.
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Conditional expectation as an optimal predictor - Example

Example 67. Let us assume that we have 50 data points generated by
an AR(1) process: zt = 10 + 0.51zt−1 + at. The last two values observed
correspond to times t = 50, and t = 49, and are z50 = 18, and z49 = 15. We
want to calculate predictions for the next two periods, t = 51 and t = 52.

The first observation that we want to predict is z51. Its expression is:

z51 = 10 + 0.5z50 + a51

and its expectation, conditional on the observed values, is:

ẑ50(1) = 10 + 0.5(18) = 19.

For t = 52, the expression of the variable is:

z52 = 10 + 0.5z51 + a52

and taking expectations conditional on the available data:

ẑ50(2) = 10 + 0.5ẑ50(1) = 10 + 0.5(19) = 19.5.
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The prediction equation of an ARIMA model

Prediction estimations

B Let us assume that we have a realization of size T, zT = (z1, ..., zT ),
of an ARIMA (p, d, q) process, where φ (B)∇dzt = c + θ(B)at, with known
parameters. We are going to see how to apply the above result to compute
the predictions.

B Knowing the parameters we can obtain all the innovations at fixing some
initial values. For example, if the process is ARMA(1,1) the innovations,
a2, ..., aT , are computed recursively using the equation:

at = zt − c− φzt−1 + θat−1, t = 2, ..., T

The innovation for t = 1 is given by:

a1 = z1 − c− φz0 + θa0

and neither z0 nor a0 are known, so we cannot obtain a1. We can replace
it with its expectation E(a1) = 0, and calculate the remaining at using this
initial condition.
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Prediction estimations

B As a result, we assume from here on that both the observations as well as
the innovations are known up to time T .

B The prediction that minimizes the mean square error of zT+k, which for
simplicity from here on we will call the optimal prediction of zT+k, is the
expectation of the variable conditional on the observed values.

B We define

ẑT (j) = E [zT+j|zT ] j = 1, 2, ...

âT (j) = E [at+j|zT ] j = 1, 2, ...

where the subindex T represents the forecast origin, which we assume is fixed,
and j represents the forecast horizon, which will change to generate predictions
of different future variables from origin T .
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Prediction estimations

B Letting ϕh (B) = φp (B)∇d be the operator of order h = p + d which
is obtained multiplying the stationary AR(p) operator and differences, the
expression of the variable zT+k is:

zT+k = c+ϕ1zt+k−1 + ...+ϕhzT+k−h + aT+k− θ1aT+k−1− ...− θqaT+k−q.
(132)

B Taking expectations conditional on zT in all the terms of the expression, we
obtain:

ẑT (k) = c+ ϕ1ẑT (k − 1) + ...+ ϕhẑT (k − h)
−θ1âT (k − 1)− ...− âT (k − q) (133)

B In this equation some expectations are applied to observed variables and
others to unobserved.

• When i > 0 the expression ẑT (i) is the conditional expectation of the
variable zT+i that has not yet been observed.

• When i ≤ 0, ẑT (i) is the conditional expectation of the variable zT−|i|,
which has already been observed and is known, so this expectation will
coincide with the observation and ẑT (− |i|) = zT−|i|.
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Prediction estimations

B Regarding innovations, the expectations of future innovations conditioned
on the history of the series is equal to its absolute expectation, zero, since the
variable aT+i is independent of zT , and we conclude that for i > 0, âT (i) are
zero.

• When i ≤ 0, the innovations aT−|i| are known, thus their expectations
coincide with the observed values and âT (− |i|) = aT−|i|.

B This way, we can calculate the predictions recursively, starting with j = 1
and continuing with j = 2, 3, ..., until the desired horizon has been reached.

B We observe that for k = 1, subtracting (132) from (133) results in:

aT+1 = zT+1 − ẑT (1),

and the innovations can be interpreted as one step ahead prediction errors
when the parameters of the model are known.
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Prediction estimations

B Equation (133) indicates that after q initial values the moving average
terms disappear, and the prediction will be determined exclusively by the
autoregressive part of the model.

B Indeed, for k > q all the innovations that appear in the prediction equation
are unobserved, their expectancies are zero and they will disappear from the
prediction equation.

B Thus the predictions of (133) for k > q satisfy the equation:

ẑT (k) = c+ ϕ1ẑT (k − 1) + ...+ ϕhẑT (k − h). (134)

B We are going to rewrite this expression using the lag operator in order to
simplify its use. In this equation the forecast origin is always the same but the
horizon changes. Thus, we now say that the operator B acts on the forecast
horizon such that:

BẑT (k) = ẑT (k − 1)
whereas B does not affect the forecast origin, T , which is fixed.
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Prediction estimations

B With this notation, equation (134) is written:(
1− ϕ1B − ...− ϕhB

h
)
ẑT (k) = φ (B)∇dẑT (k) = c, k > q. (135)

BThis equation is called the final prediction equation because it establishes
how predictions for high horizons are obtained when the moving average part
disappears.

B We observe that the relationship between the predictions is similar to that
which exists between autocorrelations of an ARMA stationary process, although
in the predictions in addition to the stationary operator φ (B) a non-stationary
operator ∇d also appears, and the equation is not equal to zero, but rather to
the constant, c.
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Prediction estimations - Examples

Example 68. Let us assume an AR(1) process zt = c + φ1zt−1 + at. The
prediction equation for one step ahead is:

ẑT (1) = c+ φ1zT ,

and for two steps:

ẑT (2) = c+ φ1ẑT (1) = c(1 + φ1) + φ2
1zT .

B Generalizing, for any period k > 0 we have:

ẑT (k) = c+ φ1ẑT (k − 1) = c(1 + φ1 + ....+ φk
1) + φk

1zT .

B For large k since |φ1| < 1 the term φk
1zT is close to zero and the prediction

is c(1 + φ1 + ....+ φk
1) = c/(1− φ1), which is the mean of the process.

B We will see that for any stationary ARMA (p, q) process, the forecast for a
large horizon k is the mean of the process, µ = c/(1− φ1 − ...− φp).

B As a particular case, if c = 0 the long-term prediction will be zero.
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Example 69. Let us assume a random walk: ∇zt = c + at. The one step
ahead prediction with this model is obtained using:

zt = zt−1 + c+ at.

B Taking expectations conditional on the data up to T , we have, for T + 1:

ẑT (1) = c+ zT ,

and for T + 2: ẑT (2) = c+ ẑT (1) = 2c+ zT ,

and for any horizon k:

ẑT (k) = c+ ẑT (k − 1) = kc+ zT .

B Since the prediction for the following period is obtained by always adding the
same constant, c, we conclude that the predictions will continue in a straight
line with slope c. If c = 0 the predictions for all the periods are equal to the
last observed value, and will follow a horizontal line.

B We see that the constant determines the slope of the prediction equation.
Nevertheless, the forecast origin is always the last available information.
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Example 70. Let us assume the model ∇zt = (1 − θB)at. Given the
observations up to time T the next observation is generated by

zT+1 = zT + aT+1 − θaT

and taking conditional expectations, its prediction is:

ẑT (1) = zT − θaT .

For two periods ahead, since zT+2 = zT+1 + aT+2 − θaT+1, we have

ẑT (2) = ẑT (1)

and, in general
ẑT (k) = ẑT (k − 1), k ≥ 2.
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B To see the relationship between these predictions and those generated by
simple exponential smoothing, we can invert operator (1− θB) and write:

∇(1− θB)−1 = 1− (1− θ)B − (1− θ)θB2 − (1− θ)θ2B3 − . . .

so that the process is:

zT+1 = (1− θ)
∑∞

j=0
θjzT−j + aT+1.

B This equation indicates that the future value, zT+1, is the sum of the
innovation and an average of the previous values with weights that decrease
geometrically.

B The prediction is:

ẑT (1) = (1− θ)
∑∞

j=0
θjzT−j

and it is easy to prove that ẑT (2) = ẑT (1).
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Example 71. We are going to look at the seasonal model for monthly data
∇12zt = (1− 0.8B12)at. The forecast for any month in the following year, j,
where j = 1, 2, ..., 12, is obtained by taking conditional expectations of the
data in:

zt+j = zt+j−12 + at+j − 0.8at+j−12.

For j ≤ 12, the result is:

ẑT (j) = zT+j−12 − 0.8aT+j−12−1, j = 1, ..., 12

and for the second year, since the disturbances at are no longer observed:

ẑT (12 + j) = ẑT (j).

B This equation indicates that the forecasts for all the months of the second
year will be identical to those of the first. The same occurs with later years.

B Therefore, the prediction equation contains 12 coefficients that repeat year
after year.

Time series analysis - Module 1



330

B To interpret them, let

zT (12) =
1
12

∑12

j=1
ẑT (j) =

1
12

∑12

j=1
zT+j−12 − 0.8

1
12

∑12

j=1
aT+j−12−1

denote the mean of the forecasts for the twelve months of the first year. We
define:

ST (j) = ẑT (j)− zT (12)
as seasonal coefficients. By their construction they add up to zero, and the
predictions can be written:

ẑT (12k + j) = zT (12) + ST (j), j = 1, ..., 12; k = 0, 1, ..

B The prediction with this model is the sum of a constant level, estimated by
zT (12), plus the seasonal coefficient of the month.

B We observe that the level is approximately estimated using the average level
of the last twelve months, with a correction factor that will be small, since∑12

j=1 aT+j−12−1 will be near zero since the errors have zero mean.
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Interpreting the predictions

Non-seasonal processes

B We have seen that for non-seasonal ARIMA models the predictions carried
out from origin T with horizon k satisfy, for k > q, the final prediction equation
(135).

BLet us assume initially the simplest case of c = 0. Then, the equation that
predictions must satisfy is:

φ (B)∇dẑT (k) = 0, k > q (136)

B The solution to a difference equation that can be expressed as a product
of prime operators is the sum of the solutions corresponding to each of the
operators.

B Since the polynomials φ(B) and ∇d from equation (136) are prime (they
have no common root), the solution to this equation is the sum of the solutions
corresponding to the stationary operator, φ(B), and the non-stationary, ∇d.
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Interpreting the predictions - Non-seasonal processes

B We can write:
ẑT (k) = PT (k) + tT (k) (137)

where these components must satisfy:

∇dPT (k) = 0, (138)

φ (B) tT (k) = 0. (139)

B It is straightforward to prove that (137) with conditions (138) and (139) is
the solution to (136). We only need to plug the solution into the equation and
prove that it verifies it.

B The solution generated by the non-stationary operator, PT (k), represents
the permanent component of the prediction and the solution to the stationary
operator, tT (k), is the transitory component.
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Interpreting the predictions - Non-seasonal processes

B It can be proved that the solution to (138), is of form:

PT (k) = β
(T )
0 + β

(T )
1 k + ...+ β

(T )
d−1k

(d−1) (140)

where the parameters β
(T )
j are constants to determine, which depend on the

origin T , and are calculated using the last available observations.

B The transitory component, solution to (139), provides the short-term
predictions and is given by:

tT (k) =
P∑

i=1

AiG
k
i

with G−1
i being the roots of the AR stationary operator. This component

tends to zero with k, since all the roots are |Gi| ≤ 1, thus justifying the name
transitory component.
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Interpreting the predictions - Non-seasonal processes

B As a result, the final prediction equation is valid for k > max(0, q− (p+ d))
and is the sum of two components:

�  A permanent component, or predicted trend, which is a polynomial of order
d− 1 with coefficients that depend on the origin of the prediction;

�  A transitory component, or short-term prediction, which is a mixture of
cyclical and exponential terms (according to the roots of φ (B) = 0) and
that tend to zero with k.

B To determine the coefficients β
(k)
j of the predicted trend equation, the

simplest method is to generate predictions using (133) for a large horizon k
until:

(a) if d = 1, they are constant. Then, this constant is β
(T )
0 ,

(b) if d = 2, it is verified that the difference between predictions,
ẑT (k) − ẑT (k − 1) is constant. Then the predictions are in

a straight line, and their slope is β
(T )
1 = ẑT (k) − ẑT (k − 1) ,

which adapts itself according to the available observations.
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Interpreting the predictions - Non-seasonal processes

B We have assumed that the stationary series has zero mean. If this is not
the case, the final prediction equation is:

φ (B)∇dẑT (k) = c. (141)

B This equation is not equal to zero and we have seen that the solution to a
difference equation that is not homogeneous is the solution to the homogeneous
equation (the equation that equals zero), plus a particular solution.

B A particular solution to (141) must have the property whereby differentiating
d times and applying term φ (B) we obtain the constant c.

B For this to occur the solution must be of type βdk
d, where the lag operator

is applied to k and βd is a constant obtained by imposing the condition that
this expression verifies the equation, that is:

φ (B)∇d(βdk
d) = c.
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Interpreting the predictions - Non-seasonal processes

B To obtain the constant βd we are first going to prove that applying the
operator ∇d to βdk

d yields d!βd, where d! = (d− 1)(d− 2)...2.

B We will prove it for the usual values of d. If d = 1 :

(1−B)βdk = βdk − βd(k − 1) = βd

and for d = 2 :

(1−B)2βdk
2 = (1− 2B+B2)βdk

2 = βdk
2− 2βd(k− 1)2 +βd(k− 2)2 = 2βd

B Since when we apply φ (B) to a constant we obtain φ (1) multiplying that
constant, we conclude that:

φ (B)∇d(βdk
d) = φ (B) d!βd = φ (1) d!βd = c

which yields: βd =
c

φ (1) d!
=
µ

d!
, (142)

since c = φ (1)µ, where µ is the mean of the stationary series.
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Interpreting the predictions - Non-seasonal processes

B Since a particular solution is permanent, and does not disappear with the
lag, we will add it to the permanent component (140), thus we can now write:

PT (k) = β
(T )
0 + β

(T )
1 k + ...+ βdk

d.

B This equation is valid in all cases since if c = 0, βd = 0, and we return to
expression (140).

B There is a basic difference between the coefficients of the predicted trend
up to order d − 1, which depend on the origin of the predictions and change
over time, and the coefficient βd, given by (142), which is constant for any
forecast origin because it depends only on the mean of the stationary series.

B Since long-term behavior will depend on the term of the highest order, long-
term forecasting of a model with constant are determined by that constant.
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Example 72. We are going to generate predictions for the population series
of people over 16 in Spain. Estimating this model, with the method that we
will described in next session, we obtain: ∇2zt = (1− 0.65B)at.

The predictions generated by this model for the twelve four-month terms are
given the figure. The predictions follow a line with a slope of 32130 additional
people each four-month period.

Dependent Variable: D(POPULATIONOVER16,2)
Method: Least Squares
Date: 02/07/08   Time: 10:59
Sample (adjusted): 1977Q3 2000Q4
Included observations: 94 after adjustments
Convergence achieved after 10 iterations
Backcast: 1977Q2

Variable Coefficient Std. Error t-Statistic Prob.  

MA(1) -0.652955 0.078199 -8.349947 0.0000

R-squared 0.271014     Mean dependent var -698.8085
Adjusted R-squared 0.271014     S.D. dependent var 17165.34
S.E. of regression 14655.88     Akaike info criterion 22.03365
Sum squared resid 2.00E+10     Schwarz criterion 22.06071
Log likelihood -1034.582     Durbin-Watson stat 1.901285

Inverted MA Roots       .65
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POPULATIONF
Spanish population over 16 years of age
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Example 73. Compare the long-term prediction of a random walk with drift,
∇zt = c+ at, with that of model ∇2zt = (1− θB) at.

B The random walk forecast is, according to the above, a line with slope c
which is the mean of the stationary series wt = ∇zt and is estimated using

ĉ =
1

T − 1

∑t=T

t=2
∇zt =

zT − z1
T − 1

.

B Since
ẑT (k) = ĉ+ ẑT (k − 1) = kĉ+ zT ,

the future growth prediction in a period, ẑT (k) − ẑT (k − 1), will be equal to
the average growth observed in the whole series ĉ and we observe that this
slope is constant.

B The model with two differences if θ → 1 will be very similar to ∇zt = c+at,
since the solution to ∇2zt = ∇at

is ∇zt = c+ at.
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B Nevertheless, when θ is not one, although it is close to one, the prediction
of both models can be very different in the long-term. In the model with two
differences the final prediction equation is also a straight line, but with a slope
that changes with the lag, whereas in the model with one difference and a
constant the slope is always constant.

B The one step ahead forecast from the model with two differences is obtained
from

zt = 2zt−1 − zt−2 + at − θat−1

and taking expectations:

ẑT (1) = 2zT − zT−1 − θaT = zT + β̂T

where we have let
β̂T = ∇zT − θaT

be the quantity that we add to the last observation, which we can consider as
the slope appearing at time T .
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B For two periods

ẑT (2) = 2ẑT (1)− zT = zT + 2β̂T

and we see that the prediction is obtained by adding that slope twice, thus zT ,
ẑT (1) and ẑT (2) are in a straight line.

B In the same way, it is easy to prove that:

ẑT (k) = zT + kβ̂T

which shows that all the predictions follow a straight line with slope β̂T .

B We observe that the slope changes over time, since it depends on the last
observed growth, ∇zT , and on the last forecasting error committed aT .
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B Replacing aT = (1− θB)−1∇2zT in the definition of β̂T , we can write

β̂T = ∇zT − θ(1− θB)−1∇2zT = (1− θ(1− θB)−1∇)∇zT ,

and the resulting operator on ∇zT is

1− θ(1− θB)−1∇ = 1− θ(1− (1− θ)B − θ(1− θ)B2 − ....)

so that β̂T can be written
β̂T = (1− θ)

∑T−1

i=0
θi∇zT−i.

B This expression shows that the slope of the final prediction equation is a
weighted mean of all observed growth, ∇zT−i, with weights that decrease
geometrically.

B We observe that if θ is close to one this mean will be close to the arithmetic
mean, whereas if θ is close to zero the slope is estimated only with the last
observed values.

I This example shows the greater flexibility of the model with two differences
compared to the model with one difference and a constant.
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Example 74. Compare these models with a deterministic one that also
generates predictions following a straight line. Let us look at the deterministic
linear model:

ẑT (k) = a+ bR(T + k)

B We assume to simplify the analysis that T = 5, and we write t =
(−2,−1, 0, 1, 2) such that t = 0. The five observations are (z−2, z−1, z0, z1, z2).
The slope of the line is estimated by least squares with

bR =
−2z−2 − z−1 + z−1 + 2z2

10

and this expression can be written as:

bR = .2(z−1 − z−2) + .3(z0 − z−1) + .3(z1 − z0) + .2(z2 − z1)

which is a weighted mean of the observed growth but with minimum weight
given to the last one.
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B It can be proved that in the general case the slope is written

bR =
∑T

t=2
wt∇zt

where
∑
wt = 1 and the weights are symmetric and their minimum value

corresponds to the growth at the beginning and end of the sample.

B Remember that:

• The random walk forecast is a line with slope c which is the mean of the
stationary series wt = ∇zt and is estimated using

ĉ =
1

T − 1

∑t=T

t=2
∇zt.

• The two differences model forecast is ẑT (k) = zT + kβ̂T where the slope

β̂T that changes over time.

I This example shows the limitations of the deterministic models for forecasting
and the greater flexibility that can be obtained by taking differences.
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Interpreting the predictions - Seasonal processes

B If the process is seasonal the above decomposition is still valid: the final
prediction equation will have a permanent component that depends on the non-
stationary operators and the mean µ of the stationary process, and a transitory
component that encompasses the effect of the stationary AR operators.

B In order to separate the trend from seasonality in the permanent component,
the operator associated with these components cannot have any roots in
common. If the series has a seasonal difference such as:

∇s = (1−Bs) =
(
1 +B +B2 + ...+Bs−1

)
(1−B)

the seasonal operator (1−Bs) incorporates two operators:

• The difference operator, 1−B, and the pure seasonal operator, given by:

Ss (B) = 1 +B + ...+Bs−1 (143)

which produces the sum of s consecutive terms.
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Interpreting the predictions - Seasonal processes

B Separating the root B = 1 from the operator ∇s, the seasonal model,
assuming a constant different from zero, can be written:

Φ (Bs)φ (B)Ss (B)∇d+1zt = c+ θ (B) Θ (Bs) at

where now the four operators Φ (Bs) , φ (B) , Ss (B) and ∇d+1 have no roots
in common.

B The final prediction equation then is:

Φ (Bs)φ (B)Ss (B)∇d+1ẑt (k) = c (144)

an equation that is valid for k > q + sQ and since it requires d+ s+ p+ sP
initial values (maximum order of B in the operator on the right), it can be
used to calculate predictions for k > q + sQ− d− s− p− sP .
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Interpreting the predictions - Seasonal processes

B Since the stationary operators, Ss(B) and ∇d+1, now have no roots in
common, the permanent component can be written as the sum of the solutions
of each operator.

B The solution to the homogeneous equation is:

ẑt (k) = TT (k) + ST (k) + tT (k)

where TT (k) is the trend component that is obtained from the equation:

∇d+1TT (k) = 0

and is a polynomial of degree d with coefficients that adapt over time.

B The seasonal component, ST (k) , is the solution to:

Ss (B)ST (k) = 0 (145)

whose solution is any function of period s with coefficients that add up to
zero.
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Interpreting the predictions - Seasonal processes

B In fact, an ST (k) sequence is a solution to (145) if it verifies:

s∑
j=1

ST (j) =
2s∑

s+1

ST (j) = 0

and the coefficients ST (1), ..., ST (s) obtained by solving this equation are
called seasonal coefficients.

B Finally, the transitory component will include the roots of polynomials
Φ (Bs) and φ (B) and its expression is

tT (k) =
p+P∑
i=1

AiG
k
i

where the G−1
i are the solutions of the equations Φ (Bs) = 0 and φ (B) = 0.
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Interpreting the predictions - Seasonal processes

B A particular solution to equation (144) is βd+1k
d+1, where the constant

βd+1 is determined by the condition

Φ (1)φ(1)s(d+ 1)!βd+1 = c

since the result of applying the operator ∇d+1 to βd+1k
d+1 is (d + 1)!βd+1

and if we apply the operator Ss (B) to a constant we obtain it s times (or: s
times this constant).

B Since the mean of the stationary series is µ = c/Φ (1)φ(1) the constant
βd+1 is

βd+1 =
c

Φ (1)φ(1)s(d+ 1)!
=

µ

s(d+ 1)!
.

which generalizes the results of the model with constant but without seasonality.
This additional component is added to the trend term.
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Interpreting the predictions - Seasonal processes

B To summarize, the general solution to the final prediction equation of a
seasonal process has three components:

1. The forecasted trend, which is a polynomial of degree d that
changes over time if there is no constant in the model and a
polynomial of degree d + 1 with the coefficient of the highest
order βd+1 deterministic and given by µ/s(d + 1)! , with µ
being the mean of the stationary series.

2. The forecasted seasonality, which will change with the initial
conditions.

3. A short-term transitory term, which will be determined by the
roots of the regular and seasonal AR operators.

B The general solution above can be utilized to obtain predictions for horizons
k > q + sQ− d− s− p− sP.

Time series analysis - Module 1



351

Interpreting the predictions - Airline passenger model

B The most often used ARIMA seasonal model is called the airline passenger
model:

∇∇szt = (1− θB)(1−ΘB12)at

whose equation for calculating predictions, for k > 0, is

ẑt (k) = ẑt (k − 1) + ẑt (k − 12)− ẑt (k − 13)−
−θât (k − 1)−Θât (k − 12) + θΘât (k − 13) .

B Moreover, according to the above results we know that the prediction of
this model can be written as:

ẑt (k) = β
(t)
0 + β

(t)
1 k + S

(k)
t . (146)

B This prediction equation has 13 parameters. This prediction is the sum of
a linear trend - which changes with the forecast origin - and eleven seasonal
coefficients, which also change with the forecast origin, and add up to zero.
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Interpreting the predictions - Airline passenger model

B Equation (146) is valid for k > q + Qs = 13, which is the future moment
when the moving average terms disappear, but as we need d + s = 13 initial
values to determine it, the equation is valid for k > q +Qs− d− s = 0, that
is, for the whole horizon.

B To determine the coefficients β
(t)
0 and β

(t)
1 corresponding to a given origin

and the seasonal coefficients, we can solve the system of equations obtained by
setting the predictions for thirteen periods equal to structure (146), resulting
in:

ẑt (1) = β̂
(t)
0 + β̂

(t)
1 + S

(t)
1

... ... ...

ẑt (12) = β̂
(t)
0 + 12β̂(t)

1 + S
(t)
12

ẑt (13) = β̂
(t)
0 + 13β̂(t)

1 + S
(t)
1

and with these equations we can obtain β
(t)
0 and β

(t)
1 with the

restriction
∑
S

(t)
j = 0.
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Interpreting the predictions - Airline passenger model

B Subtracting the first equation from the last and dividing by 12:

β̂
(t)
1 =

ẑt (13)− ẑt (1)
12

(147)

and the monthly slope is obtained by dividing expected yearly growth, computed
by the difference between the predictions of any month in two consecutive
years.

B Adding the first 12 equations the seasonal coefficients are cancelled out,
giving us:

zt =
1
12

∑12

j=1
ẑt (j) = β̂

(t)
0 + β̂

(t)
1

(
1 + ...+ 12

12

)
which yields:

β̂
(t)
0 = zt −

13
2
β̂

(t)
1 .

B Finally, the seasonal coefficients are obtained by difference

S
(t)
j = ẑt (j)− β̂(t)

0 − β̂(t)
1 j

and it is straightforward to prove that they add up to zero within the year.
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Example 75. We are going to calculate predictions using the airline passenger
data from the book of Box and Jenkins (1976). The model estimated for these
data is: ∇∇12 ln zt = (1− .40B)(1− .63B12)at

and we are going to generate predictions for three years assuming that this
is the real model for the series. These predictions are shown in the figure
together with the observed data.

Dependent Variable: D(LAIR,1,12)
Method: Least Squares
Date: 02/07/08   Time: 15:34
Sample (adjusted): 1950M02 1960M12
Included observations: 131 after adjustments
Convergence achieved after 10 iterations
Backcast: 1949M01 1950M01

Variable Coefficient Std. Error t-Statistic Prob.  

MA(1) -0.404855 0.080238 -5.045651 0.0000
SMA(12) -0.631572 0.069841 -9.042955 0.0000

R-squared 0.371098     Mean dependent var 0.000291
Adjusted R-squared 0.366223     S.D. dependent var 0.045848
S.E. of regression 0.036500     Akaike info criterion -3.767866
Sum squared resid 0.171859     Schwarz criterion -3.723970
Log likelihood 248.7952     Durbin-Watson stat 1.933726

Inverted MA Roots       .96      .83-.48i    .83+.48i  .48+.83i
 .48-.83i           .40    .00+.96i -.00-.96i
-.48+.83i     -.48-.83i   -.83-.48i -.83+.48i
     -.96

4.4

4.8

5.2

5.6

6.0

6.4

6.8

1950 1952 1954 1956 1958 1960 1962

LAIRF
Airline passenger numbers - Logs
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B The prediction function is a straight line plus seasonal coefficients. To
calculate these parameters the table gives the predictions for the first 13 data
points.

YEAR J F M A M J

61 6.11 6.05 6.18 6.19 6.23 6.36

YEAR J A S O N D

61 6.50 6.50 6.32 6.20 6.06 6.17

YEAR J

62 6.20

B To calculate the yearly slope of the predictions we take the prediction for
January, 1961, ẑ144(1) = 6.11, and that of January, 1962, ẑ144(13) = 6.20.
Their difference is 0.09, which corresponds to an annual growth rate of 9.00%.
The slope of the straight line is the monthly growth, which is 0.09/12 = 0.0075.

B The seasonal factors are obtained by subtracting the trend from each
prediction.
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B The intercept is:

β̂0 = (6.11 + 6.05 + ...+ 6.17)/12− 13
2

(0.0075) = 6.1904.

B The series trend follows the line: P144(k) = 6.1904 + 0.0075k. Subtracting
the value of the trend from each prediction we obtain the seasonal factors,
which are shown in the table:

J F M A M J

P144(k) 6.20 6.21 6.21 6.22 6.23 6.24

ẑ144(k) 6.11 6.05 6.18 6.19 6.23 6.36

Seasonal coef. −0.09 −0.16 −0.03 −0.03 0.00 0.12

J A S O N D

P144(k) 6.24 6.25 6.26 6.27 6.27 6.28

ẑ144(k) 6.50 6.50 6.32 6.20 6.06 6.17

Seasonal coef. 0.26 0.25 0.06 −0.07 −0.21 −0.11

B Notice that the lowest month is November, with a drop of 21% with respect
to the yearly mean, and the two highest months are July and August, 26% and
25% higher than the yearly mean.
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Variance of the predictions

B The variance of the predictions is easily calculated for MA(q) processes.
Indeed, if zt = θq (B) at, we have:

zT+k = aT+k − θ1aT+k−1 − ...− θqaT+k−q

and taking conditional expectations on the observations up to time T and
assuming that q > k, the unobserved innovations are cancelled due to having
zero expectation, giving us

ẑT (k) = −θkaT − θk+1aT−1 − ...− θqaT+k−q.

B Subtracting these last two equations gives us the forecasting error:

eT (k) = zT+k − ẑt (k) = aT+k − θ1aT+k−1 − ...− θk−1aT+1 (148)
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Variance of the predictions

B Squaring the expression (148) and taking expectations we obtain the
expected value of the square prediction error of zT+k, which is equal to the
variance of its distribution conditional on the observations until time T :

MSPE(zT+k|zT = MSPE(eT (k)) = (149)

= E
[
(zT+k − zT (k))2|zT

]
= σ2

(
1 + θ21 + ...+ θ2k−1

)
B This idea can be extended to any ARIMA process as follows: Let zt =
ψ (B) at be the MA(∞) representation of the process. Then:

zT+k =
∑∞

0
ψiaT+k−i (ψ0 = 1) , (150)

B The optimal prediction is, taking conditional expectations on the first T
observations,

ẑT (k) =
∑∞

0
ψk+jaT−j (151)
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Variance of the predictions

B Subtracting (151) from (150) the prediction error is obtained.

eT (k) = zT+k − ẑT (k) = aT+k + ψ1aT+k−1 + ...+ ψk−1aT+1

whose variance is:

V ar (eT (k)) = σ2
(
1 + ψ2

1 + ...+ ψ2
k−1

)
. (152)

B This equation shows that the uncertainty of a prediction is quite different
for stationary and non-stationary models:

• In a stationary model ψk → 0 if k → ∞, and the long-term variance of
the prediction converges at a constant value, the marginal variance of the
process. This is a consequence of the long-term prediction being the mean
of the process.

• For non-stationary models the series
∑
ψ2

i is non-convergent and the long-
term uncertainty of the prediction increases without limit. In the long-term
we cannot predict the behavior of a non-stationary process.
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Distribution of the predictions

B If we assume that the distribution of the innovations is normal the above
results allow us to calculate confidence intervals for the prediction.

B Thus zT+k is a normal variable
of mean ẑT (k) and variance
given by (152), and we can obtain
the interval(
ẑT (k)± λ1−α

√
V ar (eT (k))

)
where λ1−α are the percentiles of
the standard normal distribution.

Datafile airline.wf1

5.8

6.0

6.2

6.4

6.6

6.8

7.0

7.2

61M01 61M07 62M01 62M07 63M01 63M07

LAIRF
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Example 76. Given model ∇zt = (1− θB) at, calculate the variance of the
predictions to different periods.

B To obtain the coefficients of the MA(∞) representation, writing zt =
ψ (B) at, as in this model at = (1− θB)−1∇zt, we have

zt = ψ (B) (1− θB)−1∇zt

that is,

(1− θB) = ψ (B)∇ = 1 + (ψ1 − 1)B + (ψ2 − ψ1)B2 + ...

from which we obtain: ψ1 = 1− θ, ψ2 = ψ1, ..., ψk = ψk−1.

B Therefore:
V ar (eT (k)) = σ2(1 + (k − 1)(1− θ2))

and the variance of the prediction increases linearly with the horizon.
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Example 77. Given the ARIMA model:

(1− 0.2B)∇zt = (1− 0.8B) at

using σ2 = 4, and assuming that z49 = 30, z48 = 25, a49 = z49− ẑ49/48 = −2,
obtain predictions starting from the last observed value for t = 49 and construct
confidence intervals assuming normality.

B The expansion of the AR part is:

(1− 0.2B)(1−B) = 1− 1.2B + 0.2B2

and the model can be written:

zt = 1.2zt−1 − 0.2zt−2 + at − 0.8at−1.
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B Thus:

ẑ49(1) = 1.2 (30)− 0.2(25)− 0.8(−2) = 32.6,

ẑ49(2) = 1.2(32.6)− 0.2(30) = 33.12,

ẑ49(3) = 1.2(33.12)− 0.2(32.6) = 33.25,

ẑ49(4) = 1.2(33.25)− 0.2(33.12) = 33.28.

B The confidence intervals of these forecasts require calculation of the
coefficients ψ(B). Equating the operators used in the MA(∞) we have
(1− 1.2B + 0.2B2)−1 (1− 0.8B) = ψ(B), which implies:

(1− 1.2B + 0.2B2)(1 + ψ1B + ψ2B
2 + ...) = (1− 0.8B)

operating in the first member:

1−B (1.2− ψ1)−B2 (1.2ψ1 − 0.2− ψ2)−

−B3 (1.2ψ2 − 0.2ψ1 − ψ3)− ... = (1− 0.8B) .

and equating the powers of B, we obtain ψ1 = 0.4, ψ2 = 0.28, ψ3 = 0.33.
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B The variances of the prediction errors are:

V ar(e49(1)) = σ2 = 4,

V ar(e49(2)) = σ2
(
1 + ψ2

1

)
= 4× 1.16 = 4.64,

V ar(e49(3)) = σ2
(
1 + ψ2

1 + ψ2
2

)
= 4.95,

V ar(e49(4)) = σ2
(
1 + ψ2

1 + ψ2
2 + ψ2

3

)
= 5.38,

B Assuming normality, the approximate intervals of the 95% for the four
predictions are

(32.6± 1.96× 2) (33.12± 1.96×
√

4.64)

(33.25± 1.96×
√

4.95) (33.28± 1.96×
√

5.38).
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Forecast updating

B Let us assume that predictions are generated from time T for future periods
T + 1, ...T + j. When value zT+1 is observed, we want to update our forecasts
ẑT+2, ..., ẑT+j in light of this new information.

B According to (151) the prediction of zT+k using information until T is:

ẑT (k) = ψkaT + ψk+1aT−1 + ...

whereas on observing value zT+1 and obtaining the prediction error, aT+1 =
zT+1− ẑT (1), the new prediction for zT+k, now from time T + 1, is:

ẑT+1 (k − 1) = ψk−1aT+1 + ψkaT + ...

B Subtracting these two expressions, we have:

ẑT+1 (k − 1)− ẑT (k) = ψk−1aT+1.
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Forecast updating

B Therefore, when we observe zT+1 and calculate aT+1 we can fit all the
predictions by means of:

ẑT+1 (k − 1) = ẑT (k) + ψk−1aT+1, (153)

which indicates that the predictions are fitted by adding a fraction of the last
prediction error obtained to the previous predictions.

B If aT+1 = 0 the predictions do not change.

B Equation (153) has an interesting interpretation:

• The two variables zT+1 and zT+k have, given the information up to T, a
joint normal distribution with expectations, ẑT (1) and ẑT (k), variances σ2

and σ2
(
1 + ψ2

1 + . . .+ ψ2
k−1

)
and covariance:

cov(zT+1, zT+k) = E [(zT+1 − ẑT (1))(zT+k − ẑT (k))] =

= E [aT+1(aT+k + ψ1aT+k−1 + ...)] = σ2ψk−1.
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Forecast updating

• The best prediction of zT+k given zT+1 and the information up to T can
be calculated by regression, according to the expression:

E(zT+k|zT+1) = E(zT+k)+

+cov(zT+1, zT+k)var−1(zT+1)(zT+1 − E(zT+1))

where, to simplify the notation, we have not included the conditioning factor
in all the terms for the information up to T , since it appears in all of them.

• Substituting, we obtain:

ẑT+1 (k − 1) = ẑT (k) + (σ2ψk−1)σ−2aT+1

which is equation (153).
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Forecast updating - Example

Example 78. Adjust the predictions from Example 77 assuming that we
observe the value z50 equal to 34. Thus:

a50 = z50 − ẑ49(1) = 34− 32.6 = 1.4,

and the new predictions are,

ẑ50(1) = ẑ49(2) + ψ1a50 = 33.12 + 0.4× 1.4 = 33.68,

ẑ50(2) = ẑ49(3) + ψ2a50 = 33.25 + 0.28× 1.4 = 33.64,

ẑ50(3) = ẑ49(4) + ψ3a50 = 33.28 + 0.33× 1.4 = 33.74,

with new confidence intervals (33.68± 1.96× 2), (33.64± 1.96×
√

4.64) and
(33.74± 1.96×

√
4.95).

B We observe that by committing an error of underpredicting in the prediction
of z50, the following predictions are revised upwardly.
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Measuring predictability

B Any stationary ARMA processes, zt, can be decomposed in this way:

zt = ẑt−1(1) + at,

which expresses the value of the series at each moment as a sum of the two
independent components:

• the one step ahead prediction, knowing the past values and the parameters
of the process, and

• the innovations, which are independent of the past of the series.

B As a result, we can write:
σ2

z = σ2
ẑ + σ2

which decomposes the variance of the series, σ2
z, into two independent sources

of variability:

• that of the predictable part, σ2
ẑ, and

• that of the unpredictable part, σ2.
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Measuring predictability

B Box and Tiao (1977) proposed measuring the predictability of a stationary
series using the quotient between the variance of the predictable part and the
total variance:

P =
σ2

ẑ

σ2
z

= 1− σ2

σ2
z

. (154)

B This coefficient indicates the proportion of variability of the series that can
be predicted from its history.

B As in an ARMA process σ2
z = σ2

∑
ψ2

i , coefficient P can be written as:

P = 1− (
∑

ψ2
i )
−1.

B For example, for an AR(1) process, since σ2
z = σ2/(1− φ2), we have:

P = 1− (1− φ2) = φ2,

and if φ is near zero the process will tend to white noise and the predictability
will be close to zero, and φ is near one, the process will tend to a random
walk, and P will be close to one.
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Measuring predictability

B The measure P is not helpful for integrated, non-stationary ARIMA processes
because then the marginal variance tends to the infinite and the value of P is
always one.

B A more general definition of predictability by relaxing the forecast horizon
in the numerator and denominator:

• instead of assuming a forecast horizon of one we can assume a general
horizon k;

• instead of putting the prediction error with infinite horizon in the
denominator we can plug in the prediction error with horizon k + h, for
certain values of h ≥ 1.

B Then, we define the predictability of a time series with horizon k obtained
through h additional observations using:

P (k, h) = 1− var(et(k))
var(et(k + h))

.
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Measuring predictability

B For example, let us assume an ARIMA process and for convenience sake we
will write it as zt = ψ(B)at, although in general the series

∑
ψ2

i will not be
convergent.

B Nevertheless, using (151) we can write:

P (k, h) = 1−
∑k

i=0ψ
2
i∑k+h

i=0 ψ
2
i

=
∑k+h

i=k+1ψ
2
i∑k+h

i=0 ψ
2
i

.

B This statistic P (k, h) measures the advantages of having h additional
observations for the prediction with horizon k. Specifically, for k = 1 and
h = ∞ the statistic P defined in (154) is obtained.
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Measuring predictability - Example

Example 79. Calculate the predictability of the process ∇zt = (1 − .8B)at

for one and two steps ahead as a function of h.

B The one step ahead prediction is:

P (1, h) =
∑h+1

i=2 ψ
2
i∑h+1

i=0 ψ
2
i

=
.04h

1 + .04(h+ 1)
.

B This function indicates that if h = 1, P (1, 1) = .04/1.08 = .037, and having
an additional observation, or going from two steps to one in the prediction,
reduces the prediction error 3.7%.

B If we have 10 more observations, the error reduction for h = 10 is
of P (1, 10) = .4/(1.44) = .2778, 27.78%. If h = 30, then P (1, 30) =
1.2/(2.24) = .4375, and when h→∞, then P (1, h) → 1.
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