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6. Seasonal ARIMA processes

Outline:

e Introduction

e The concept and types of seasonality
e The ARIMA seasonal model

e Simple autocorrelation function

e Partial autocorrelation function

e Generalizations

Recommended readings:
> Chapter 7 of D. Pefa (2008).
> Chapter 6 of P.J. Brockwell and R.A. Davis (1996).
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Introduction

> In this section we continue the study of non-stationary processes, analyzing
a type of lack of stationarity in the mean that is frequently found in practice:
seasonal behavior.

> Seasonality makes it so that the mean of the observations is not constant,
but instead evolves according to a cyclical pattern:

e For example, in a series of monthly temperatures in Europe the mean
temperature is not constant, since it varies by month, but for the same
month in different years we can expect a constant average value.

> The most typical case is that we can incorporate seasonality into the
ARIMA model multiplicatively, so that we obtain a multiplicative seasonal
ARIMA model.
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The concept and types of seasonality

> We say that a series which has no trend is seasonal when its expected value
is not constant, but varies in a cyclical pattern. Specifically if

E(z) = E(z145)
we say that the series has seasonality of period s.

e For example, a monthly series with no trend has seasonality if the expected
values in different months of the year are different, but the expected value
for the same month in different years is the same.

> In series with trend the seasonality is an additional cause of non-stationarity.
The seasonal pattern is superimposed on the global trend, producing cyclical
behavior that is repeated in the different years of the sample.
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The concept and types of seasonality - Example

Example 58. The figure shows the series of ozone contents in the
atmosphere. It exhibit a very strong seasonal pattern, with peaks and valleys in
the same months of the year. Moreover, the seasonal pattern is superimposed
on the decreasing global trend.
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The concept and types of seasonality

> The seasonal period, s, defines the number of observations that make up
a seasonal cycle. For example, s = 12 for monthly series, s = 4 for quarterly
series, etc.

> We assume that the value of s is fixed in the series.

> However, this may not be precisely true: for example, if we have daily data
and the seasonal period is the length of the month, s will be approximately 30,
but it will vary from month to month.

> There may be more than one type of seasonality. For example, with daily
data we can have weekly seasonality, with s = 7, monthly, with s = 30 and
yearly, with s = 365.

> Initially we will assume that there is only one type of seasonality and at the
end of this section we will see how to extend the methods presented here to
various seasonal periods.
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The concept and types of seasonality

> The simplest model for seasonality is when it is modelled as a constant
effect that is added to the values of the series. For example, let us assume a
series that, except for its seasonal effect, is stationary. We can write the series

as a sum of a seasonal component St(s), and a stationary process, n¢, in such
a way that the model for the series is:

2 = St(s) + ny. (117)

> This series is not stationary, since if we take expectations
E(z) = E(S*) + p.

where (1 is the mean of the process n;.

> Since by definition the seasonal component does not take the same value
in all of the periods, the series is not stationary because it does not have a
constant mean.
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The concept and types of seasonality - Example

Example 59. The figure shows the evolution of the ozone concentration by
months. Each of the series represents the ozone content in that month in
different years of the sample. Notice that the ozone content in January is
always less than in May, and May is generally less than September.
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The concept and types of seasonality - Example

10

OZONE by Season
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> Therefore, each month has a different average behavior, which is what
characterizes a seasonal series.
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The concept and types of seasonality

> We can consider different hypotheses regarding the behavior of the seasonal
process S\

> The first is that seasonality is a deterministic process, that is, a constant
function for the same month in different years:

S =80 k=41,42, .. (118)

> For example, seasonal coefficients can follow a sinusoidal function, which
occurs in climate series due to the Earth’'s rotation. This suggests treating
seasonality with sinusoidal functions but these functions are not very efficient
when the seasonality follows a deterministic, but not sinusoidal, pattern.

> Representing this seasonality using sinusoidal functions would be very
inefficient.

> Deterministic seasonality can always be modeled by introducing 11 dummy
variables, one for each month of the year as you will see in second module.
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The concept and types of seasonality

> Nevertheless, many time series do not have deterministic seasonality.

> Instead, the seasonal pattern, like other properties, also evolves over time.

> The second way to model seasonality is to assume that the evolution
is stationary, that is, the seasonal factors are not constant, but follow a
stationary process, oscillating around an average value in accordance with the
representation:

St(s) = ul®) 4, (119)

where ©(®) is a constant that depends on the month and represents the
deterministic effect of the seasonality and v; is a stationary process of zero
mean that introduces variability into the seasonality of each year.
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The concept and types of seasonality

> The third way to model seasonality is to allow it to change over time with no
fixed average value. In this case, seasonality follows a non-stationary process.
For example, the simplest model is to assume that it evolves according to a

random walk:
S = SV, + v (120)

where v; is a stationary process of zero mean. Of course, more complicated
situations are possible and the seasonality may follow any non-stationary
process.

> We are going to prove that, in the three cases presented here, we can change
a seasonal series into a stationary one by applying a seasonal difference. We
define the seasonal difference operator of period s as:

Ve=1—-B*

> Note that V, # V* = (1 — B)°).
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The concept and types of seasonality

> |f we apply this operator to a series we obtain a transformed series which
is the result of replacing at each point in time, ¢, the value of the series with
the difference between the value at time, ¢, and the value of the series at time
t— s:
Vszt — (1 — BS>Zt — Zt — Rt—g-
> Therefore, if we apply this operator V in (117), we have:
Vszt = VSSt(S) + Vsnt

and we are going to prove that the series Vz; is then stationary.

> Let us consider the three cases we have studied.
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The concept and types of seasonality

Case @: The component S\ is deterministic.

> Thus, according to (118),
VS =51 — 81 =

and

VSZt — vSnt.

> By differentiating a stationary process, Vn;, we always obtain another
stationary process, then the difference Vg transforms the non-stationary series
2z given by (117) into a stationary one.

> We observe that in this case the model for Vz; has a moving average factor
(1 — ©B%) with © = 1.
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The concept and types of seasonality

Case @: The component S§8> follows a stationary process.

> Then, taking a seasonal difference in (119), since VSSt(S) = Vv is
stationary, we again have a stationary process, with:

VSZt = stt + vsnt

> Using the rules for summing two MA(1) processes, we conclude that the
sum process, Vz¢, is an MA(1) in operator B® with coefficient © = 1.
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The concept and types of seasonality

Case ®: The component St(s) follows a non-stationary process.

> If we assume the simplest case of model (120), we have:
Visze = v + Vg

and, again, Vz; is a stationary process sum of two terms: the first is white
noise and the second an MA(1) of type (1 — ©B'?) with © = 1.

> Since the autocorrelation of the sum process is a weighted mean of the
autocorrelations of the summands, the sum will yield an MA(1), (1 — ©B!?),
with an invertible moving average coefficient © < 1.

> In conclusion, in fairly general conditions for the seasonal structure, and for
processes with deterministic as well as stochastic seasonality, the operator V
transforms a seasonal process into a stationary one.
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The ARIMA seasonal model

> We have seen that we can convert non-stationary series into stationary
ones by taking regular differences, that is, the difference from one period with
respect to the next.

> We also saw that we can eliminate seasonality by means of seasonal
differences.

> Combining both results we conclude that, in general, we can convert
a non-stationary series with seasonality into a stationary one by using the

transformation:
Wt = vstdZt,

where D is the number of seasonal differences (if there is seasonality we almost
always have D = 1, if there is no seasonality D = 0) and d is the number of
regular differences (d < 3).
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The ARIMA seasonal model

> When seasonal dependence exists we can generalize the ARMA model for
stationary series incorporating both the regular dependence, which is that
associated with the measurement intervals of the series, as well as the seasonal
dependence, which is that associated with observations separated by s periods.

> We will discuss next how to model these two types of dependence:

e The first solution is to incorporate seasonal dependence into the regular,
adding B® terms to the AR or MA operators in the B operator, in order to
represent the dependence between observations separated by s periods.

e The inconvenience of this formulation is that it would lead to very large
polynomials in the AR and MA part:

¢ For example, with monthly data, s = 12, if a month is related to the
same month in three previous years we need an AR or MA of order 36 to
represent this dependence.
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The ARIMA seasonal model

> A simpler approach, and one which works well in practice, is to model
the regular and seasonal dependence separately, and then construct the model
incorporating both multiplicatively. Thus a multiplicative seasonal ARIMA
model is obtained which has the form:

b (B) 6, (B) VOV'z = 0, (B) Oq (B*) a; (121)
where
o &p(B°) = (1—®B° — ... — CIDPBSP) is the seasonal AR operator of order P;
o ¢, = (1 — 1B — ... — cprP) is the regular AR operator of order p;

o VP = (1 - B*)” represents the seasonal differences and V¢ = (1 — B)? the regular
differences;

e Op(B°) = (1-6:B°— ... — @QBSQ) is the seasonal moving average operator of
order Q;
e ,(B)=(1—-6,B — ... —6,B%) is the regular moving average operator of order g;

® a; is a white noise process.
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The ARIMA seasonal model

> This class of models, introduced by Box and Jenkins (1976), offers a good
representation of many seasonal series that we find in practice and we will write

model (121) in simplified form as the ARIMA model (P, D,Q), x (p,d,q).

> To justify (121) let us consider a seasonal series z; with period s. We denote
these yearly series by yﬁj), where 7 = 1, ..., 12 indicates the month that defines
the series and the time index of the series, 7, is the year, which varies between

T=1,..., h.

> Indeed, these series always refer to the same month, 7, and relate the value
of this month in one year to the month in previous years. The way to obtain
these annual series starting from the original monthly series, z;, is by means
of:

ygj) = RZj4+12(1—1) (T =1,.., h) (122)
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The ARIMA seasonal model

> Now let us assume that each of these 12 yearly series that follow an ARIMA
model:

oW (BY(1-B)”yY) =¢; +0(BWY);  r=1,.,h (123)
where
oU)(B) = (1 - c1>§§'>BP) and OU)(B) = (1 R 98')3@)

have the same common model, i.e., they do not depend on ;.
> Then, this model must necessarily be non-stationary with D =1 .

> Indeed, if D = (0 the series of each month will oscillate around a value
c; # 0 and for that model to be common ¢; = c.

> However, in a stationary model the constant is proportional to the mean of
the process and as the means of the months are different by hypothesis the
constants ¢; must be different. Therefore, we cannot have D = 0 and the
same model.
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The ARIMA seasonal model

> Nevertheless, if the common model has D = 1, by taking this difference in
each series the means of the months disappear, and the differences between
the same month in one year and the previous year follow a stationary process
of zero mean.

> The common model of the yearly series can be written in terms of the
original data as:

(1-®B?—...—@pB™?") (1-B"%) 2z =
= (1-6:B"? - ... —00B"9) o (124)

where t = 1,...,T and now the ARIMA model is formulated in B'? since we
are relating months from different years.
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The ARIMA seasonal model

> As the model is the same for all the months we can apply this model to the
original series z; and obtain the series of residuals «;. This residuals series will
not generally be a white noise process since we have not taken into account
the dependence between one data point and those immediately prior.

> Assuming that a; follows a regular ARIMA process:
¢p (B) Vi, =0, (B) ay, (125)

substituting this regular model (125) in the seasonal model (124) we obtain
the complete model for the observed process, which is the one given in (121).

> To summarize, the multiplicative seasonal ARIMA model is based on the
central hypothesis that the relationship of seasonal dependence (124) is the
same for all periods.

> Experience indicates that this situation, although frequent, is not always
true so it is advisable, whenever sufficient data are available, to test it by
constructing the models (124) and checking to see if all of them are equal.
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The ARIMA seasonal model - Examples

Example 60. The figures give the first autocorrelation coefficients calculated
using the 12 yearly series of each month of the year for gasoline consumption
in Spain.
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> We can conclude that the autocorrelations are similar.
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The ARIMA seasonal model - Examples

Example 61. The figures give the first autocorrelation coefficients calculated
using the 12 yearly series of each month of the year for World temperature.
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> The approximated standard deviation from estimating each coefficient
is 1v/T and in this case 1/v/122 = .09, thus we can conclude that the
autocorrelations are different.
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Simple autocorrelation function

> Let w; = VIVYL 2, denote the stationary process obtained by differentiating
the series regularly d times and D times seasonally. Thus, w; follows a

multiplicative seasonal ARMA process:
Dp (B*) ¢y (B)wr = 0, (B) O (B*) a, (126)

> The autocorrelation function of this process is a mixture of the AC functions
corresponding to the regular and seasonal parts. It can be proved that if we
denote by r; the AC coefficients of the “regular” ARMA(p, q) process:

¢p (B) xy = 0, (B) uy, (127)

Rs; the AC coefficients in the lags s, 2s, 3s, ... of the seasonal ARMA (P, Q)
Process: Op (B*)y: = Og (B®) vy, (128)

and p; the AC coefficients of the complete process (126), it is found that:
_ it i Rei (rsigg 4 Tsizy)

. . , 129
pj 1 + 2 ZiZI TsiRsi ( )
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Simple autocorrelation function

> If we assume s = 12 and allow r; ~ 0 for large lags (for example, for j > 8),
the denominator of (129) is the unit and the autocorrelation function is:

1. In small lags (j = 1,...,6) only the regular part is observed,
that is:

2. In seasonal lags basically the seasonal part is observed, that is:
p12i =~ Rigi (124 +70) + Roai (7365 + 7124)

and assuming that r19; ~ 0 for ¢+ > 1, with ro = 1 this
expression is reduced to:
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Simple autocorrelation function

3. Around the seasonal lags we observe the interaction between
the regular and seasonal part, which shows up in the repetition
of the regular part of the autocorrelation function on both sides
of each seasonal lag.

e Specifically, if the regular part is a moving average of order
¢, on both sides of each non-null seasonal lag there will be ¢
coefficients different from zero.

e If the regular part is autoregressive, we will observe the
decrease imposed by the AR structure on both sides of the
seasonal lags.

> The figure gives some examples of seasonal AR(1) and MA(1) models with
different regular structures. If we combine these structures with a regular
MA(1), we observe interaction only in the lags adjoining seasonal structures,
whereas if we combine them with a regular AR, we have a long interaction
structure where the regular structure is repeated on both sides of the seasonal
lags.
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Simple autocorrelation function - Examples

Example 62. The figure gives the ACF for the Santiago rainfall series. Notice
that in the regular part there is decay in the AR structure, whereas in lags
12,24, 36, a slow decay is observed in the coefficients, indicating the presence
of a 12 period seasonal component.
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> In lags 1,2,3, a weak structure is
now seen that may be an AR(1l) or
MA(1) with a small coefficient and, in
the seasonal part there are significant
coefficients in 12, 24 and 36, indicating
an AR structure that must be at least of
order 2, due to the fact that coefficients
12 and 24 are negative and 36 is
positive.

> The high coefficients that appear
around the seasonal lags confirm
the existence of a regular structure,
particularly the high coefficients in lags
11 and 23 are a clear sign of interaction
between the regular and seasonal part.
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> The figure gives the ACF of the series with one seasonal difference.
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Simple autocorrelation function - Examples

Example 63. The figure gives the ACF of the first regular difference in
the ozone series. This graph clearly shows the existence of strong seasonal
dependency, with high coefficients in 12, 24, 36,. . . which fade slowly with the
lag, suggesting the need for a seasonal difference.
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> The figure gives the ACF of the series with one regular difference and
another seasonal.
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Simple autocorrelation function - Examples

Example 64. Write the simple theoretical autocorrelation function of the
series wy obtained by applying a regular difference and a weekly difference (of
period seven) to the daily series, z;, with weekly seasonality that follows the

model:
wy = VVr7z = (1-05B)(1—0.8B") a.

> The regular component is MA(1) and produces a single non-null
autocorrelation coefficient. The coefficients generated by the regular part

dare. 05

1

> The seasonal component is also MA(1); with generated coefficients:

—0.8

fr =361

= —049; Rj=0 j#7
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> To obtain the coefficients of the process, which are the superimposition of
both parts, using the equation (129) for j = 1:

P R7(rs +16) + Riga (115 + 113) + ...
! 14+ 2(r7R7 +1r14R14 + ...)

and since r; = 0 for 7 > 1, we obtain:
P1=T1 = —0.4.

> Applying the general formula it is analogously obtained that:

p; = 0; 1 =2,...,9

pg =16 + R~ (7“13 + 7“1) + R14(7“20 + 7“8) = R-r1 = 0.195
p7 =17+ Ry (7“14 + ’I“o) +...= Ry = —0.49

ps =13+ Ry (ris+7r1) + ... = Ryrp =0.195

pj =0, 7>8
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> The figure gives the ACF of the series wy:
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Partial autocorrelation function

> The partial autocorrelation function of a multiplicative seasonal process
iIs complex because it depends on the partial autocorrelation functions of
the regular and seasonal parts (127) and (128) as well as on the simple
autocorrelation of the regular part:

1. In the first lags the PACF of the regular structure appears
and in the seasonal lags the PACF of the seasonal structure

appears.

2. To the right of each seasonal coefficient (lags js+1, js+2...) the
PACF of the regular part will appear. If the seasonal coefficient
is positive the regular PACF appears inverted, whereas if it is
negative the PACF appears with its sign.

3. To the left of the seasonal coefficients (lags js — 1, js —2), we
observe the autocorrelation function of the regular part.
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Partial autocorrelation function - Examples

Example 65. The figure gives the PACF of the Santiago rainfall data.
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Generalizations

> The multiplicative model can be easily generalized for more than one type
of seasonality, but the estimation of these models requires special programs
since the commercially available programs usually only assume one type of
seasonality.

> The multiplicative models, while useful in practice are not suitable for all
series and there are situations where the autocorrelation is different in the
different points of time that make up a seasonal period.

e For example, with monthly data we may find that there is very little
correlation between some months whereas there may be very high correlation
with others.

e In these cases we have to model each month independently and later add the
dependency structure month by month. These are called periodic models.

> One field not covered here in this book but which is important in economic
applications is the seasonal adjustment of series.
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Additional references

Periodic models:

e Periodic Time Series Model, by P.H. Franses and R. Paap, Oxford University
Press, 2004.

e Periodicity and Stochastic Trends in Economic Time Series by P.H. Franses,
Oxford University Press, 1996.

Seasonal adjustment:

e Chapter 8 in the book by Pefia, Tiao and Tsay (2001).
e Chapter 2 in the book by Franses (1996).

e Seasonal Adjustment with the X-11 Method, by D. Ladiray and B.
Quenneville, Lecture Notes in Statistics, Springer, 2001.
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