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4. Autoregressive, MA and ARMA processes

4.1 Autoregressive processes

Outline:

• Introduction
• The first-order autoregressive process, AR(1)

• The AR(2) process

• The general autoregressive process AR(p)

• The partial autocorrelation function

Recommended readings:

B Chapter 4 of D. Peña (2008).

B Chapter 2 of P.J. Brockwell and R.A. Davis (1996).

B Chapter 3 of J.D. Hamilton (1994).
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Introduction

B In this section we will begin our study of models for stationary processes
which are useful in representing the dependency of the values of a time series
on its past.

B The simplest family of these models are the autoregressive, which generalize
the idea of regression to represent the linear dependence between a dependent
variable y (zt) and an explanatory variable x (zt−1), using the relation:

zt = c+ bzt−1 + at

where c and b are constants to be determined and at are i.i.d N (0, σ2). Above
relation define the first order autoregressive process.

B This linear dependence can be generalized so that the present value of
the series, zt, depends not only on zt−1, but also on the previous p lags,
zt−2, ..., zt−p. Thus, an autoregressive process of order p is obtained.
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The first-order autoregressive process, AR(1)

B We say that a series zt follows a first order autoregressive process, or
AR(1), if it has been generated by:

zt = c+ φzt−1 + at (33)

where c and −1 < φ < 1 are constants and at is a white noise process with
variance σ2. The variables at, which represent the new information that is
added to the process at each instant, are known as innovations.

Example 36. We will consider zt as the quantity of water at the end of
the month in a reservoir. During the month, c + at amount of water comes
into the reservoir, where c is the average quantity that enters and at is the
innovation, a random variable of zero mean and constant variance that causes
this quantity to vary from one period to the next.

If a fixed proportion of the initial amount is used up each month, (1− φ)zt−1,
and a proportion, φzt−1 , is maintained the quantity of water in the reservoir
at the end of the month will follow process (33).

Time series analysis - Module 1



122

The first-order autoregressive process, AR(1)

B The condition −1 < φ < 1 is necessary for the process to be stationary.
To prove this, let us assume that the process begins with z0 = h, with h
being any fixed value. The following value will be z1 = c+ φh+ a1, the next,
z2 = c+ φz1 + a2 = c+ φ(c+ φh+ a1) + a2 and, substituting successively, we
can write:

z1 = c+ φh+ a1

z2 = c(1 + φ) + φ2h+ φa1 + a2

z3 = c(1 + φ+ φ2) + φ3h+ φ2a1 + φa2 + a3
... ... ...

zt = c
∑t−1

i=0 φ
i + φth+

∑t−1
i=0 φ

iat−i

If we calculate the expectation of zt, as E[at] = 0,

E [zt] = c
∑t−1

i=0
φi + φth.

For the process to be stationary it is a necessary condition that this function
does not depend on t.
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The first-order autoregressive process, AR(1)

B The mean is constant if both summands are, which requires that on
increasing t the first term converges to a constant and the second is canceled.
Both conditions are verified if |φ| < 1 , because then

∑t−1
i=0 φ

i is the sum of an
geometric progression with ratio φ and converges to c/(1− φ), and the term
φt converges to zero, thus the sum converges to the constant c/(1− φ).

B With this condition, after an initial transition period, when t → ∞, all the
variables zt will have the same expectation, µ = c/(1−φ), independent of the
initial conditions.

B We also observe that in this process the innovation at is uncorrelated with
the previous values of the process, zt−k for positive k since zt−k depends on
the values of the innovations up to that time, a1, ..., at−k, but not on future
values. Since the innovation is a white noise process, its future values are
uncorrelated with past ones and, therefore, with previous values of the process,
zt−k.
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The first-order autoregressive process, AR(1)

B The AR(1) process can be written using the notation of the lag operator,
B, defined by

Bzt = zt−1. (34)

Letting z̃t = zt − µ and since Bz̃t = z̃t−1 we have:

(1− φB)z̃t = at. (35)

B This condition indicates that a series follows an AR(1) process if on applying
the operator (1− φB) a white noise process is obtained.

B The operator (1 − φB) can be interpreted as a filter that when applied to
the series converts it into a series with no information, a white noise process.
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The first-order autoregressive process, AR(1)

B If we consider the operator as an equation, in B the coefficient φ is called
the factor of the equation.

B The stationarity condition is that this factor be less than the unit in absolute
value.

B Alternatively, we can talk about the root of the equation of the operator,
which is obtained by making the operator equal to zero and solving the equation
with B as an unknown;

1− φB = 0

which yields B = 1/φ.

B The condition of stationarity is then that the root of the operator be greater
than one in absolute value.
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The first-order autoregressive process, AR(1)

Expectation

B Taking expectations in (33) assuming |φ| < 1, such that E [zt] = E[zt−1] =
µ, we obtain

µ = c+ φµ

Then, the expectation (or mean) is

µ =
c

1− φ
(36)

Replacing c in (33) with µ(1− φ), the process can be written in deviations to
the mean:

zt − µ = φ (zt−1 − µ) + at

and letting z̃t = zt − µ,
z̃t = φz̃t−1 + at (37)

which is the most often used equation of the AR(1).
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The first-order autoregressive process, AR(1)

Variance

B The variance of the process is obtained by squaring the expression (37) and
taking expectations, which gives us:

E(z̃2
t ) = φ2E(z̃2

t−1) + 2φE(z̃t−1at) + E(a2
t ).

We let σ2
z be the variance of the stationary process. The second term of this

expression is zero, since as z̃t−1 and at are independent and both variables
have null expectation. The third is the variance of the innovation, σ2, and we
conclude that:

σ2
z = φ2σ2

z + σ2,

from which we find that the variance of the process is:

σ2
z =

σ2

1− φ2
. (38)

Note that in this equation the condition |φ| < 1 appears, so that σ2
z is finite

and positive.
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The first-order autoregressive process, AR(1)

B It is important to differentiate the marginal distribution of a variable from
the conditional distribution of this variable in the previous value. The marginal
distribution of each observation is the same, since the process is stationary: it
has mean µ and variance σ2

z. Nevertheless, the conditional distribution of zt if
we know the previous value, zt−1, has a conditional mean:

E(zt|zt−1) = c+ φzt−1

and variance σ2, which according to (38), is always less than σ2
z.

B If we know zt−1 it reduces the uncertainty in the estimation of zt, and this
reduction is greater when φ2 is greater.

B If the AR parameter is close to one, the reduction of the variance obtained
from knowledge of zt−1 can be very important.

Time series analysis - Module 1



129

The first-order autoregressive process, AR(1)

Autocovariance function

B Using (37), multiplying by zt−k and taking expectations gives us γk, the
covariance between observations separated by k periods, or the autocovariance
of order k:

γk = E [(zt−k − µ) (zt − µ)] = E [z̃t−k (φz̃t−1 + at)]

and as E [z̃t−kat] = 0, since the innovations are uncorrelated with the past
values of the series, we have the following recursion:

γk = φγk−1 k = 1, 2, ... (39)

where γ0 = σ2
z.

B This equation shows that since |φ| < 1 the dependence between observations
decreases when the lag increases.

B In particular, using (38):
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γ1 =
φσ2

1− φ2
(40)
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The first-order autoregressive process, AR(1)

Autocorrelation function, ACF

B Autocorrelations contain the same information as the autocovariances, with
the advantage of not depending on the units of measurement. From here
on we will use the term simple autocorrelation function (ACF) to denote the
autocorrelation function of the process in order to differentiate it from other
functions linked to the autocorrelation that are defined at the end of this
section.

B Let ρk be the autocorrelation of order k, defined by: ρk = γk/γ0, using
(39), we have:

ρk = φγk−1/γ0 = φρk−1.

Since, according to (38) and (40), ρ1 = φ, we conclude that:

ρk = φk (41)

and when k is large, ρk goes to zero at a rate that depends on φ.
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The first-order autoregressive process, AR(1)

Autocorrelation function, ACF

B The expression (41) shows that the autocorrelation function of an AR(1)
process is equal to the powers of the AR parameter of the process and decreases
geometrically to zero.

B If the parameter is positive the linear dependence of the present on past
values is always positive, whereas if the parameter is negative this dependence
is positive for even lags and negative for odd ones.

B When the parameter is positive the value at t is similar to the value at t−1,
due to the positive dependence, thus the graph of the series evolves smoothly.
Whereas, when the parameter is negative the value at t is, in general, the
opposite sign of that at t− 1, thus the graph shows many changes of signs.
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Autocorrelation function - Example
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Representation of an AR(1) process
as a sum of innovations

B The AR(1) process can be expressed as a function of the past values of the
innovations. This representation is useful because it reveals certain properties
of the process. Using z̃t−1 in the expression (37) as a function of z̃t−2, we
have

z̃t = φ(φz̃t−2 + at−1) + at = at + φat−1 + φ2z̃t−2.

If we now replace z̃t−2 with its expression as a function of z̃t−3, we obtain

z̃t = at + φat−1 + φ2at−2 + φ3z̃t−2

and repeatedly applying this substitution gives us:

z̃t = at + φat−1 + φ2at−2 + ....+ φt−1a1 + φtz̃1

B If we assume t to be large, since φt will be close to zero we can represent
the series as a function of all the past innovations, with weights that decrease
geometrically.
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Representation of an AR(1) process
as a sum of innovations

B Other possibility is to assume that the series starts in the infinite past:

z̃t =
∑∞

j=0
φjat−j

and this representation is denoted as the infinite order moving average, MA(∞),
of the process.

B Observe that the coefficients of the innovations are precisely the coefficients
of the simple autocorrelation function.

B The expression MA(∞) can also be obtained directly by multiplying the
equation (35) by the operator (1 − φB)−1 = 1 + φB + φ2B2 + . . . , thus
obtaining:

z̃t = (1− φB)−1at = at + φat−1 + φ2at−2 + . . .
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Representation of an AR(1) process
as a sum of innovations - Example

Example 37. The figures show the monthly series of relative changes in the
annual interest rate, defined by zt = log(yt/yt−1) and the ACF. The AC
coefficients decrease with the lag: the first is of order .4, the second close to
.42 = .16, the third is a similar value and the rest are small and not significant.
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The AR(2) process

B The dependency between present and past values which an AR(1) establishes
can be generalized allowing zt to be linearly dependent not only on zt−1 but
also on zt−2. Thus the second order autoregressive, or AR(2) is obtained:

zt = c+ φ1zt−1 + φ2zt−2 + at (42)

where c, φ1 and φ2 are now constants and at is a white noise process with
variance σ2.

B We are going to find the conditions that must verify the parameters for the
process to be stationary. Taking expectations in (42) and imposing that the
mean be constant, results in:

µ = c+ φ1µ+ φ2µ

which implies
µ =

c

1− φ1 − φ2
, (43)

and the condition for the process to have a finite mean is that 1−φ1−φ2 6= 0.
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The AR(2) process

B Replacing c with µ(1 − φ1 − φ2) and letting z̃t = zt − µ be the process of
deviations to the mean, the AR(2) process is:

z̃t = φ1z̃t−1 + φ2z̃t−2 + at. (44)

B In order to study the properties of the process it is advisable to use the
operator notations. Introducing the lag operator, B, the equation of this
process is:

(1− φ1B − φ2B
2)z̃t = at. (45)

B The operator (1− φ1B − φ2B
2) can always be expressed as (1−G1B)(1−

G2B), where G−1
1 and G−1

2 are the roots of the equation of the operator
considering B as a variable and solving

1− φ1B − φ2B
2 = 0. (46)
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The AR(2) process

B The equation (46) is called the characteristic equation of the operator.

B G1 and G2 are also said to be factors of the characteristic polynomial of the
process. These roots can be real or complex conjugates.

B It can be proved that the condition of stationarity is that |Gi| < 1 , i = 1, 2.

B This condition is analogous to that studied for the AR(1).

B Note that this result is consistent with the condition found for the mean to
be finite. If the equation

1− φ1B − φ2B
2 = 0

has a unit root it is verified that 1 − φ1 − φ2 = 0 and the process is not
stationary, since it does not have a finite mean.
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The AR(2) process

Autocovariance function

B Squaring expression (44) and taking expectations, we find that the variance
must satisfy:

γ0 = φ2
1γ0 + φ2

2γ0 + 2φ1φ2γ1 + σ2. (47)

B In order to calculate the autocovariance, multiplying the equation (44) by

z̃t−k and taking expectations, we obtain:

γk = φ1γk−1 + φ2γk−2. k ≥ 1 (48)

B Specifying this equation for k = 1, since γ−1 = γ1, we have

γ1 = φ1γ0 + φ2γ1,

which provides γ1 = φ1γ0/(1−φ2). Using this expression in (47) results in the
formula for the variance:

σ2
z = γ0 =

(1− φ2)σ2

(1 + φ2) (1− φ1 − φ2) (1 + φ1 − φ2)
. (49)

Time series analysis - Module 1



141

The AR(2) process

Autocovariance function

B For the process to be stationary this variance must be positive, which will
occur if the numerator and the denominator have the same sign. It can be
proved that the values of the parameters that make AR(2) a stationary process
are those included in the region:

−1 < φ2 < 1
φ1 + φ2 < 1
φ2 − φ1 < 1
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The AR(2) process

B In this process it is important again to differentiate the marginal and
conditional properties. Assuming that the conditions of stationarity are verified,
the marginal mean is given by

µ =
c

1− φ1 − φ2

and the marginal variance is

σ2
z =

(1− φ2)σ2

(1 + φ2) (1− φ1 − φ2) (1 + φ1 − φ2)
.

B Nevertheless, the conditional mean of zt given the previous values is:

E(zt|zt−1, zt−2) = c+ φ1zt−1 + φ2zt−2

and its variance will be σ2, the variance of the innovations which will always
be less than the marginal variance of the process σ2

z.
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The AR(2) process

Autocorrelation function

B Dividing by the variance in equation (48), we obtain the relationship between
the autocorrelation coefficients:

ρk = φ1ρk−1 + φ2ρk−2 k ≥ 1 (50)

specifying (50) for k = 1, as in a stationary process ρ1 = ρ−1, we obtain:

ρ1 =
φ1

1− φ2
(51)

and specifying (50) for k = 2 and using (51):

ρ2 =
φ2

1

1− φ2
+ φ2. (52)
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The AR(2) process

Autocorrelation function

B For k ≥ 3 the autocorrelation coefficients can be obtained recursively
starting from the difference equation (50). It can be proved that the general
solution to this equation is:

ρk = A1G
k
1 +A2G

k
2 (53)

where G1 and G2 are the factors of the characteristic polynomial of the
process and A1 and A2 are constants to be determined from the initial
conditions ρ0 = 1, (which implies A1+ A2 = 1) and ρ1 = φ1/ (1− φ2).

B According to (53) the coefficients ρk will be less than or equal to the unit if
|G1| < 1 and |G2| < 1, which are the conditions of stationarity of the process.
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The AR(2) process

Autocorrelation function

B If the factors G1 and G2 are complex of type a± bi, where i =
√
−1, then

this condition is
√
a2 + b2 < 1. We may find ourselves in the following cases:

1. The two factors G1 and G2 are real. The decrease of (53)
is the sum of the two exponentials and the shape of the
autocorrelation function will depend on whether G1 and G2

have equal or opposite signs.

2. The two factors G1 and G2 are complex conjugates. It is proved
in Appendix 4.1 that the function ρk will decrease sinusoidally.

B The four types of possible autocorrelation functions for an AR(2) are shown
in the next figure.
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Autocorrelation function - Examples
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Representation of an AR(2) process
as a sum of innovations

B The AR(2) process can be represented, as with an AR(1), as a linear
combination of the innovations. Writing (45) as

(1−G1B)(1−G2B)z̃t = at

and inverting these operators, we have

z̃t = (1 +G1B +G2
1B

2 + ...)(1 +G2B +G2
2B

2 + ...)at (54)

which leads to the MA(∞) expression of the process:

z̃t = at + ψ1at−1 + ψ2at−2 + ... (55)

B We can obtain the coefficients ψi as a function of the roots equating powers
of B in (54) and (55).
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Representation of an AR(2) process
as a sum of innovations

B We can also obtain the coefficients ψi as a function of the coefficients φ1 and
φ2. Letting ψ(B) = 1+ψ1B+ψ2B

2 + ... since ψ(B) = (1−φ1B−φ2B
2)−1,

we have (1− φ1B − φ2B
2)(1 + ψ1B + ψ2B

2 + ...) = 1. (56)

B Imposing the restriction that all the coefficients of the powers of B in (56)
are null, the coefficient of B in this equation is ψ1−φ1, which implies ψ1 = φ1.
The coefficient of B2 is ψ2 − φ1ψ1 − φ2, which implies the equation:

ψk = φ1ψk−1 + φ2ψk−2 (57)

for k = 2, since ψ0 = 1. The coefficients of Bk for k ≥ 2 verify the equation
(57) which is similar to the one that must verify the autocorrelation coefficients.

B We conclude that the shape of the coefficients ψi will be similar to that of
the autocorrelation coefficients.
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Representation of an AR(2) process
as a sum of innovations - Examples

Example 38. The figures show the number of mink sighted yearly in an area
of Canada and the ACF. The series shows a cyclical evolution that could be
explained by an AR(2) with negative roots corresponding to the sinusoidal
structure of the autocorrelation.
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Representation of an AR(2) process
as a sum of innovations - Examples

Example 39. Write the autocorrelation function of the AR(2) process

zt = 1.2zt−1 − 0.32zt−2 + at

B The characteristic equation of that process is:

0.32X2 − 1.2X + 1 = 0

whose solution is:

X =
1.2±

√
1.22 − 4× 0.32
0.64

=
1.2± 0.4

0.64

B The solutions are G−1
1 = 2.5 and G−1

2 = 1.25 and the factors are G1 = 0.4
and G2 = 0.8.
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B The characteristic equation can be written:

0.32X2 − 1.2X + 1 = (1− 0.4X)(1− 0.8X).

Therefore, the process is stationary with real roots and the autocorrelation
coefficients verify:

ρk = A10.4k +A20.8k.

B To determine A1 and A2 we impose the initial conditions ρ0 = 1, ρ1 =
1.2/ (1.322) = 0.91. Then, for k = 0:

1 = A1 +A2

and for k = 1,
0.91 = 0.4A1 + 0.8A2

solving these equations we obtain A2 = 0.51/0.4 and A1 = −0.11/0.4.
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B Therefore, the autocorrelation function is:

ρk = −0.11
0.4

0.4k +
0.51
0.4

0.8k

which gives us the following table:

k 0 1 2 3 4 5 6 7 8
ρk 1 0.91 0.77 0.63 0.51 0.41 0.33 0.27 0.21

B To obtain the representation as a function of the innovations, writing

(1− 0.4B)(1− 0.8B)zt = at

and inverting both operators:

zt = (1 + 0.4B + .16B2 + .06B3 + ...)(1 + 0.8B + .64B2 + ...)at

yields:
zt = (1 + 1.2B + 1.12B2 + ...)at.
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The general autoregressive process, AR(p)

B We say that a stationary time series zt follows an autoregressive process
of order p if:

z̃t = φ1z̃t−1 + ...+ φpz̃t−p + at (58)

where z̃t = zt − µ, with µ being the mean of the stationary process zt and at

a white noise process.

B Utilizing the operator notation, the equation of an AR(p) is:

(1− φ1B − ...− φpB
p) z̃t = at (59)

and letting φp(B) = 1 − φ1B − ... − φpB
p be the polynomial of degree p in

the lag operator, whose first term is the unit, we have:

φp (B) z̃t = at (60)

which is the general expression of an autoregressive process.
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The general autoregressive process, AR(p)

B The characteristic equation of this process is define by:

φp (B) = 0 (61)

considered as a function of B.

B This equation has p roots G−1
1 ,...,G−1

p , which are generally different, and
we can write:

φp (B) =
p∏

i=1

(1−GiB)

such that the coefficients Gi are the factors of the characteristic equation.

B It can be proved that the process is stationary if |Gi| < 1, for all i.

Time series analysis - Module 1



155

The general autoregressive process, AR(p)

Autocorrelation function

B Operating with (58), we find that the autocorrelation coefficients of an
AR(p) verify the following difference equation:

ρk = φ1ρk−1 + ...+ φpρk−p, k > 0.

B In the above sections we saw particular cases in this equation for p = 1 and
p = 2. We can conclude that the autocorrelation coefficients satisfy the same
equation as the process:

φp (B) ρk = 0 k > 0. (62)

B The general solution to this equation is:

ρk =
∑p

i=1
AiG

k
i , (63)

where the Ai are constants to be determined from the initial conditions and
the Gi are the factors of the characteristic equation.
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The general autoregressive process, AR(p)

Autocorrelation function

B For the process to be stationary the modulus of Gi must be less than one
or, the roots of the characteristic equation (61) must be greater than one in
modulus, which is the same.

B To prove this, we observe that the condition |ρk| < 1 requires that there not
be any Gi greater than the unit in (63), since in that case, when k increases
the term Gk

i will increase without limit.

B Furthermore, we observe that for the process to be stationary there cannot
be a root Gi equal to the unit, since then its component Gk

i would not decrease
and the coefficients ρk would not tend to zero for any lag.

B Equation (63) shows that the autocorrelation function of an AR(p) process
is a mixture of exponents, due to the terms with real roots, and sinusoids, due
to the complex conjugates. As a result, their structure can be very complex.
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Yule-Walker equations

B Specifying the equation (62) for k = 1, ..., p, a system of p equations is
obtained that relate the first p autocorrelations with the parameters of the
process. This is called the Yule-Walker system:

ρ1 = φ1 + φ2ρ1 + ...+ φpρp−1

ρ2 = φ1ρ1 + φ2 + ...+ φpρp−2

... ...

ρp = φ1ρp−1 + φ2ρp−2 + ...+ φp.

B Defining:

φφφ′ = [φ1, ..., φp] , ρρρ′ = [ρ1, ..., ρp] , R =

 1 ρ1 ... ρp−1
... ... ...

ρp−1 ρp−2 ... 1


the above system is written as a matrix:

ρρρ = Rφφφ (64)

and the parameters can be determined using: φφφ = R−1ρρρ.
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Yule-Walker equations - Example

Example 40. Obtain the parameters of an AR(3) process whose first
autocorrelations are ρ1 = 0.9; ρ2 = 0.8; ρ3 = 0.5. Is the process stationary?

B The Yule-Walker equation system is: 0.9
0.8
0.5

 =

 1 0.9 0.8
0.9 1 0.9
0.8 0.9 1

 φ1

φ2

φ3


whose solution is: φ1

φ2

φ3

 =

 5.28 −5 0.28
−5 10 −5
0.28 −5 5.28

 0.9
0.8
0.5

 =

 0.89
1

−1.11

 .
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B As a result, the AR(3) process with these correlations is:(
1− 0.89B −B2 + 1.11B3

)
zt = at.

BTo prove that the process is stationary we have to calculate the factors of the
characteristic equation. The quickest way to do this is to obtain the solutions
to the equation

X3 − 0.89X2 −X + 1.11 = 0

and check that they all have modulus less than the unit.

BThe roots of this equation are −1.7930, 0.4515 + 0.6444i and 0.4515 −
0.6444i.

BThe modulus of the complex roots are less than the unit, but the real factor
is greater than the unit, thus we conclude that there is no AR(3) stationary
process that has these three autocorrelation coefficients.
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Representation of an AR(p) process
as a sum of innovations

B To obtain the coefficients of the representation MA(∞) form we use:

(1− φ1B − ...− φpB
p)(1 + ψ1B + ψ2B

2 + ...) = 1

and the coefficients ψi are obtained by setting the powers of B equal to zero.

B It is proved that they must verify the equation

ψk = φ1ψk−1 + ...+ φpψk−1

which is analogous to that which verifies that autocorrelation coefficients of
the process.

B As mentioned earlier, the autocorrelation coefficients, ρk, and the coefficients
of the structure MA(∞) are not identical: although both sequences satisfy the
same difference equation and take the form

∑
AiG

k
i , the constants Ai depend

on the initial conditions and will be different in both sequences.
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The partial autocorrelation function

B Determining the order of an autoregressive process from its autocorrelation
function is difficult. To resolve this problem the partial autocorrelation function
is introduced.

B If we compare an AR(l) with an AR(2) we see that although in both processes
each observation is related to the previous ones, the type of relationship between
observations separated by more that one lag is different in both processes:

• In the AR(1) the effect of zt−2 on zt is always through zt−1, and given
zt−1, the value of zt−2 is irrelevant for predicting zt.

• Nevertheless, in an AR(2) in addition to the effect of zt−2 which is
transmitted to zt through zt−1, there exists a direct effect on zt−2 on zt.

B In general, an AR(p) has direct effects on observations separated by 1, 2, ..., p
lags and the direct effects of the observations separated by more than p lags
are null.
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The partial autocorrelation function

B The partial autocorrelation coefficient of order k, denoted by ρp
k, is

defined as the correlation coefficient between observations separated by k
periods, when we eliminate the linear dependence due to intermediate values.

1. We eliminate from z̃t, the effect of z̃t−1, ..., z̃t−k+1 using the regression:

z̃t = β1z̃t−1 + ...+ βk−1z̃t−k+1 + ut,

where the variable ut contains the part of z̃t not common to z̃t−1,...,z̃t−k+1.

2. We eliminate the effect of z̃t−1, ..., z̃t−k+1from z̃t−k using the regression:

z̃t−k = γ1z̃t−1 + ...+ γk−1z̃t−k+1 + vt,

where, again, vt contains the part of zt−1 not common to the intermediate
observations.

3. We calculate the simple correlation coefficient between ut and vt which, by
definition, is the partial autocorrelation coefficient of order k.
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The partial autocorrelation function

B This definition is analogous to that of the partial correlation coefficient in
regression. It can be proved that the three above steps are equivalent to fitting
the multiple regression:

z̃t = αk1z̃t−1 + ...+ αkkz̃t−k + ηt

and thus ρp
k = αkk.

B The partial autocorrelation coefficient of order k is the coefficient αkk of
the variable zt−k after fitting an AR(k) to the data of the series. Therefore,
if we fit the family of regressions:

z̃t = α11z̃t−1 + η1t

z̃t = α21z̃t−1 + α22z̃t−2 + η2t

... ... ...

z̃t = αk1z̃t−1 + ...+ αkkz̃t−k + ηkt

the sequence of coefficients αii provides the partial autocorrelation function.

Time series analysis - Module 1



164

The partial autocorrelation function

B From this definition it is clear that an AR(p) process will have the first
p nonzero partial autocorrelation coefficients and, therefore, in the partial
autocorrelation function (PACF) the number of nonzero coefficients indicates
the order of the AR process.

B This property will be a key element in identifying the order of an
autoregressive process.

B Furthermore, the partial correlation coefficient of order p always coincides
with the parameter φp.

B The Durbin-Levinson algorithm is an efficient method for estimating the
partial correlation coefficients.
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The partial autocorrelation function - AR(1) models
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The partial autocorrelation function - AR(2) models
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The partial autocorrelation function - Examples

Example 41. The figure shows the partial autocorrelation function for the
interest rates series from example 37. We conclude that the variations in
interest rates follow an AR(1) process, since there is only one significant
coefficient.
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The partial autocorrelation function - Examples

Example 42. The figure shows the partial autocorrelation function for the
data on mink from example 38. This series presents significant partial
autocorrelation coefficients up to the fourth lag, suggesting that the model is
an AR(4).
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The partial autocorrelation function - Examples

Example 43. Examples 41 and 42 using EViews.

Correlogram of RC_IR1YEAR

Date: 01/29/08   Time: 19:01
Sample: 1988M01 2002M03
Included observations: 170

Autocorrelation Partial Correlation AC  PAC  Q-Stat  Prob

1 0.434 0.434 32.582 0.000
2 0.267 0.096 44.948 0.000
3 0.281 0.168 58.800 0.000
4 0.224 0.048 67.648 0.000
5 0.110 -0.054 69.778 0.000
6 0.016 -0.090 69.823 0.000
7 0.054 0.040 70.344 0.000
8 -0.014 -0.065 70.378 0.000
9 0.025 0.079 70.494 0.000

10 -0.040 -0.077 70.790 0.000

Correlogram of MINKS

Date: 01/29/08   Time: 18:55
Sample: 1848 1911
Included observations: 64

Autocorrelation Partial Correlation AC  PAC  Q-Stat  Prob

1 0.621 0.621 25.848 0.000
2 0.262 -0.202 30.511 0.000
3 0.016 -0.092 30.528 0.000
4 -0.256 -0.301 35.148 0.000
5 -0.355 -0.037 44.178 0.000
6 -0.293 0.003 50.417 0.000
7 -0.086 0.188 50.961 0.000
8 0.137 0.098 52.373 0.000
9 0.363 0.230 62.476 0.000

10 0.419 -0.015 76.239 0.000
11 0.213 -0.213 79.848 0.000
12 -0.026 -0.134 79.901 0.000
13 -0.192 0.024 82.948 0.000
14 -0.320 -0.005 91.583 0.000
15 -0.319 0.045 100.36 0.000
16 -0.146 0.096 102.23 0.000
17 0.068 0.041 102.64 0.000
18 0.246 0.008 108.22 0.000
19 0.360 0.021 120.40 0.000
20 0.316 -0.003 129.97 0.000
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Introduction

B The autoregressive processes have, in general, infinite non-zero
autocorrelation coefficients that decay with the lag. The AR processes have a
relatively “long” memory, since the current value of a series is correlated with
all previous ones, although with decreasing coefficients.

B This property means that we can write an AR process as a linear function
of all its innovations, with weights that tend to zero with the lag. The AR
processes cannot represent short memory series, where the current value of the
series is only correlated with a small number of previous values.

B A family of processes that have this “very short memory” property are the
moving average, or MA processes. The MA processes are a function of a finite,
and generally small, number of its past innovations.

B Later, we will combine the properties of the AR and MA processes to
define the ARMA processes, which give us a very broad and flexible family of
stationary stochastic processes useful in representing many time series.
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The first order moving average, MA(l)

B A first order moving average, MA(1), is defined by a linear combination
of the last two innovations, according to the equation:

z̃t = at − θat−1 (65)

where z̃t = zt − µ, with µ being the mean of the process and at a white noise
process with variance σ2.

B The MA(1) process can be written with the operator notation:

z̃t = (1− θB) at. (66)

B This process is the sum of the two stationary processes, at and −θat−1 and,
therefore, will always be stationary for any value of the parameter, unlike the
AR processes.
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The first order moving average, MA(l)

B In these processes we will assume that |θ| < 1, so that the past innovation
has less weight than the present. Then, we say that the process is invertible
and has the property whereby the effect of past values of the series decreases
with time.

B To justify this property, we substitute at−1 in (65) as a function of zt−1:

z̃t = at − θ (z̃t−1 + θat−2) = −θz̃t−1 − θ2at−2 + at

and repeating this operation for at−2 :

z̃t = −θz̃t−1 − θ2(z̃t−2 + θat−3) + at = −θz̃t−1 − θ2z̃t−2 − θ3at−3 + at

using successive substitutions of at−3, at−4..., etc., we obtain:

z̃t = −
t−1∑
i=1

θiz̃t−1 − θta0 + at (67)
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The first order moving average, MA(1)

B Notice that when |θ| < 1, the effect of z̃t−k tends to zero with k and the
process is called invertible.

B If |θ| ≥ 1 it produces the paradoxical situation in which the effect of past
observations increases with the distance. From here on, we assume that the
process is invertible.

B Thus, since |θ| < 1, there exists an inverse operator (1− θB)−1 and we can
write equation (66) as: (

1 + θB + θ2B2 + ...
)
z̃t = at (68)

that implies:

z̃t = −
∑∞

i=1
θiz̃t−1 + at

which is equivalent to (67) assuming that the process begins in the infinite
past. This equation represents the MA(1) process with |θ| < 1 as an AR(∞)
with coefficients that decay in a geometric progression.
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The first order moving average, MA(1)

Expectation and variance

B The expectation can be derived from relation (65) which implies that
E[z̃t] = 0, so

E[zt] = µ.

B The variance of the process is calculated from (65). Squaring and taking
expectations, we obtain:

E(z̃2
t ) = E(a2

t ) + θ2E(a2
t−1)− 2θE(atat−1)

since E(atat−1) = 0, at is a white noise process and E(a2
t ) = E(a2

t−1) = σ2,
then we have that:

σ2
z = σ2

(
1 + θ2

)
. (69)

B This equation tells us that the marginal variance of the process, σ2
z, is always

greater than the variance of the innovations, σ2, and this difference increases
with θ2.
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The first order moving average, MA(1)

Simple and partial autocorrelation function

B The first order autocovariance is calculated by multiplying equation (65) by
z̃t−1 and taking expectations:

γ1 = E(z̃tz̃t−1) = E(atz̃t−1)− θE(at−1z̃t−1).

B In this expression the first term E(atz̃t−1) is zero, since z̃t−1 depends on
at−1, and at−2, but not on future innovations, such as at.

B To calculate the second term, replacing z̃t−1 with its expression according
to (65), gives us

E(at−1z̃t−1) = E(at−1(at−1 − θat−2)) = σ2

from which we obtain:
γ1 = −θσ2. (70)
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The first order moving average, MA(1)

Simple and partial autocorrelation function

B The second order autocovariance is calculated in the same way:

γ2 = E(z̃tz̃t−2) = E(atz̃t−2)− θE(at−1z̃t−2) = 0

since the series is uncorrelated with its future innovations the two terms are
null. The same result is obtained for covariances of orders higher than two.

B In conclusion:
γj = 0, j > 1. (71)

Dividing the autocovariances (70) and (71) by expression (69) of the variance
of the process, we find that the autocorrelation coefficients of an MA(1)
process verify:

ρ1 =
−θ

1 + θ2
, ρk = 0 k > 1, (72)

and the (ACF ) will only have one value different from zero in the first lag.
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The first order moving average, MA(1)

Simple and partial autocorrelation function

B This result proves that the autocorrelation function (ACF ) of an MA(l)
process has the same properties as the partial autocorrelation function
(PACF )of an AR(1) process: there is a first coefficient different from zero and
the rest are null.

B This duality between the AR(1) and the MA(1) is also seen in the partial
autocorrelation function, PACF.

B According to (68), when we write an MA(1) process in autoregressive form
zt−k has a direct effect on zt of magnitude θk, no matter what k is.

B Therefore, the PACF have all non-null coefficients and they decay
geometrically with k.

B This is the structure of the ACF in an AR(l) and, hence, we conclude that
the PACF of an MA(1) has the same structure as the ACF of an AR(1).
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Simple and partial autocorrelation function - Example

Example 44. The left figure show monthly data from the years 1881 - 2002
and represent the deviation between the average temperature of a month and
the mean of that month calculated by averaging the temperatures in the 25
years between 1951 and 1975. The right figure show zt = yt − yt−1, which
represents the variations in the Earth’s mean temperature from one month to
the next.
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B In the autocorrelation function a single coefficient different from zero is
observed, and in the PACF a geometric decay is observed.

B Both graphs suggest an MA(1) model for the series of differences between
consecutive months, zt.
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The MA(q) process

B Generalizing on the idea of an MA(1), we can write processes whose current
value depends not only on the last innovation but on the last q innovations.
Thus the MA(q) process is obtained, with general representation:

z̃t = at − θ1at−1 − θ2at−2 − ...− θqat−q.

B Introducing the operator notation:

z̃t =
(
1− θ1B − θ2B

2 − ...− θqB
q
)
at (73)

it can be written more compactly as:

z̃t = θq (B) at. (74)

B An MA(q) is always stationary, as it is a sum of stationary processes. We
say that the process is invertible if the roots of the operator θq (B) = 0 are, in
modulus, greater than the unit.
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The MA(q) process

B The properties of this process are obtained with the same method used for
the MA(1). Multiplying (73) by z̃t−k for k ≥ 0 and taking expectations, the
autocovariances are obtained:

γ0 =
(
1 + θ21 + ...+ θ2q

)
σ2 (75)

γk = (−θk + θ1θk+1 + ...+ θq−kθq)σ2 k = 1, ..., q, (76)

γk = 0 k > q, (77)

showing that an MA(q) process has exactly the first q coefficients of the
autocovariance function different from zero.

B Dividing the covariances by γ0 and utilizing a more compact notation, the
autocorrelation function is:

ρk =
∑i=q

i=0 θiθk+i∑i=q
i=0 θ

2
i

, k = 1, ..., q (78)

ρk = 0, k > q,

where θ0 = −1, and θk = 0 for k ≥ q + 1.
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The MA(q) process

B To compute the partial autocorrelation function of an MA(q) we express the
process as an AR(∞):

θ−1
q (B) z̃t = at,

and letting θ−1
q (B) = π (B) , where:

π (B) = 1− π1B − ...− πkB
k − ...

and the coefficients of π (B) are obtained imposing π (B) θq (B) = 1. We say
that the process is invertible if all the roots of θq (B) = 0 lie outside the unit
circle. Then the series π (B) is convergent.

B For invertible MA processes, setting the powers of B to zero, we find that
the coefficients πi verify the following equation:

πk = θ1πk−1 + ....+ θqπk−q

where π0 = −1 and πj = 0 for j < 0.
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The MA(q) process

B The solution to this difference equation is of the form
∑
AiG

k
i , where now

the G−1
i are the roots of the moving average operator. Having obtained the

coefficients πi of the representation AR(∞), we can write the MA process as:

z̃t =
∑∞

i=1
πiz̃t−i + at.

B From this expression we conclude that the PACF of an MA is non-null for
all lags, since a direct effect of z̃t−i on z̃t exists for all i. The PACF of an MA
process thus has the same structure as the ACF of an AR process of the same
order.

B We conclude that a duality exists between the AR and MA processes such
that the PACF of an MA(q) has the structure of the ACF of an AR(q) and
the ACF of an MA(q) has the structure of the PACF of an AR(q).
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The partial autocorrelation function - MA(1) models
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The partial autocorrelation function - MA(2) models
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The MA(∞) process and Wold decomposition

B The autoregressive and moving average processes are specific cases of a
general representation of stationary processes obtained by Wold (1938).

B Wold proved that any weakly stationary stochastic process, zt, with finite
mean, µ, that does not contain deterministic components, can be written as a
linear function of uncorrelated random variables, at, as:

zt = µ+ at + ψ1at−1 + ψ2at−2 + ... = µ+
∑∞

i=0
ψiat−i (ψ0 = 1) (79)

where E(zt) = µ, and E [at] = 0; V ar (at) = σ2; E [atat−k] = 0, k > 1.

B Letting z̃t = zt − µ, and using the lag operator, we can write:

z̃t = ψ(B)at, (80)

with ψ(B) = 1 + ψ1B + ψ2B
2 + ... being an indefinite polynomial in the lag

operator B.
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The MA(∞) process and Wold decomposition

B We denote (80) as the general linear representation of a non-deterministic
stationary process.

B This representation is important because it guarantees that any stationary
process admits a linear representation.

B In general, the variables at make up a white noise process, that is, they are
uncorrelated with zero mean and constant variance.

B In certain specific cases the process can be written as a function of normal
independent variables {at} . Thus the variable z̃t will have a normal distribution
and the weak coincides with strict stationarity.

B The series z̃t, can be considered as the result of passing a process of impulses
{at} of uncorrelated variables through a linear filter ψ (B) that determines the
weight of each ”impulse” in the response.
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The MA(∞) process and Wold decomposition

B The properties of the process are obtained as in the case of an MA model.
The variance of zt in (79) is:

V ar (zt) = γ0 = σ2
∑∞

i=0
ψ2

i (81)

and for the process to have finite variance the series
{
ψ2

i

}
must be convergent.

B We observe that if the coefficients ψi are zero after lag q the general model
is reduced to an MA(q) and formula (81) coincides with (76).

B The covariances are obtained with

γk = E(z̃tz̃t−k) = σ2
∑∞

i=0
ψiψi+k,

which for k = 0 provide, as a particular case, formula (81) for the variance.

B Furthermore, if the coefficients ψi are zero after lag q on, this expression
provides the autocovariances of an MA(q) expression.
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The MA(∞) process and Wold decomposition

B The autocorrelation coefficients are given by:

ρk =
∑∞

i=0ψiψi+k∑∞
i=0ψ

2
i

, (82)

which generalizes the expression (78) of the autocorrelations of an MA(q).

B A consequence of (79) is that any stationary process also admits
an autoregressive representation, which can be of infinite order. This
representation is the inverse of that of Wold, and we write

z̃t = π1z̃t−1 + π2z̃t−2 + ...+ at,

which in operator notation is reduced to

π(B)z̃t = at.

B The AR(∞) representation is the dual representation of the MA(∞) and it
is shown that: π(B)ψ(B) = 1 such that by setting the powers of B to zero
we can obtain the coefficients of one representation from those of another.
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The AR and MA processes and the general process

B It is straightforward to prove that an MA process is a particular case of the
Wold representation, as are the AR processes.

B For example, the AR(1) process

(1− φB) z̃t = at (83)

can be written, multiplying by the inverse operator (1− φB)−1

z̃t =
(
1 + φB + φ2B2 + ...

)
at

which represents the AR(1) process as a particular case of the MA(∞) form
of the general linear process, with coefficients ψi that decay in geometric
progression.

B The condition of stationarity and finite variance, convergent series of
coefficients ψ2

i , is equivalent now to |φ| < 1.
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The AR and MA processes and the general process

B For higher order AR process to obtain the coefficients of the MA(∞)
representation we impose the condition that the product of the AR and
MA(∞) operators must be the unit.

B For example, for an AR(2) the condition is:(
1− φ1B − φ2B

2
) (

1 + ψ1B + ψ2B
2 + ...

)
= 1

and imposing the cancellation of powers of B we obtain the coefficients:

ψ1 = φ1

ψ2 = φ1ψ1 + φ2

ψi = φ1ψi−1 + φ2ψi−2, i ≥ 2

where ψ0 = 1.
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The AR and MA processes and the general process

B Analogously, for an AR(p) the coefficients ψi of the general representation
are calculated by:

(1− φ1B − ...− φpB
p)

(
1 + ψ1B + ψ2B

2 + ...
)

= 1

and for i ≥ p they must verify the condition:

ψi = φ1ψi−1 + ...+ φpψi−p, i ≥ p.

B The condition of stationarity implies that the roots of the characteristic
equation of the AR(p) process, φp(B) = 0, must lie outside the unit circle.
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The AR and MA processes and the general process

B Writing the operator φp(B) as:

φp (B) =
∏p

i=1
(1−GiB)

where G−1
i are the roots of φp(B) = 0, it is shown that, expanding in partial

fractions:

φ−1
p (B) =

∑ ki

(1−GiB)
will be convergent if |Gi| < 1.

B Summarizing, the AR processes can be considered as particular cases of the
general linear process characterized by the fact that: (1) all the ψi are different
from zero; (2) there are restrictions on the ψi, that depend on the order of the
process.

B In general they verify the sequence ψi = φ1ψi−1 + ...+ φpψi−p, with initial
conditions that depend on the order of the process.
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The ARMA(1,1) process

B One conclusion from the above section is that the AR and MA processes
approximate a general linear MA(∞) process from a complementary point of
view:

• The AR admit an MA(∞) structure, but they impose restrictions on the
decay patterns of the coefficients ψi.

• The MA require a number of finite terms, however, they do not impose
restrictions on the coefficients.

• From the point of view of the autocorrelation structure, the AR processes
allow many coefficients different from zero, but with a fixed decay pattern,
whereas the MA permit a few coefficients different from zero with arbitrary
values.

B The ARMA processes try to combine these properties and allow us to
represent in a reduced form (using few parameters) those processes whose first
q coefficients can be any, whereas the following ones decay according to simple
rules.
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The ARMA(1,1) process

B The simplest process, the ARMA(1,1) is written as:

z̃t = φ1z̃t−1 + at − θ1at−1,

or, using operator notations:

(1− φ1B) z̃t = (1− θ1B) at, (84)

where |φ1| < 1 for the process to be stationary, and |θ1| < 1 for it to be
invertible.

B Moreover, we assume that φ1 6= θ1. If both parameters were identical,
multiplying both parts by the operator (1− φ1B)−1

, we would have z̃t = at,
and the process would be white noise.

B In the formulation of the ARMA models we always assume that there are
no common roots in the AR and MA operators.
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The ARMA(1,1) process

The autocorrelation function

B To obtain the autocorrelation function of an ARMA(1,1), multiplying (84)
by z̃t−k and taking expectations, results in:

γk = φ1γk−1 + E (atz̃t−k)− θ1E (at−1z̃t−k) . (85)

B For k > 1, the noise at is uncorrelated with the series history. As a result:

γk = φ1γk−1, k > 1. (86)

B For k = 0, E[atz̃t] = σ2 and

E [at−1z̃t] = E [at−1 (φ1z̃t−1 + at − θ1at−1)] = σ2(φ1 − θ1)

replacing these results in (85), for k = 0

γ0 = φγ1 + σ2 − θ1σ
2 (φ1 − θ1) . (87)
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The ARMA(1,1) process

The autocorrelation function

B Taking k = 1 in (85), results in E[atz̃t−1] = 0, E[at−1z̃t−1] = σ2 and:

γ1 = φ1γ0 − θ1σ
2, (88)

solving for (87) and (88) we obtain:

γ0 = σ21− 2φ1θ1 + θ21
1− φ2

1

B To compute the first autocorrelation coefficient, we divide (88) by the above
expression:

ρ1 =
(φ1 − θ1) (1− φ1θ1)

1− 2φ1θ1 + θ21
(89)

B Observe that if φ1 = θ1, this autocorrelation is zero because, as we indicated
earlier, then the operators (1− φ1B) and (1− θ1B) are cancelled out and it
will result in a white noise process.
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The ARMA(1,1) process

The autocorrelation function

B In the typical case where both coefficients are positive and φ1 > θ1 it is easy
to prove that the correlation increases with (φ1 − θ1).

B The rest of the autocorrelation coefficients are obtained dividing (86) by γ0,
which results in:

ρk = φ1ρk−1 k > 1 (90)

which indicates that from the first coefficient on, the ACF of an ARMA(1,1)
decays exponentially, determined by parameter φ1 of the AR part.

B The difference with an AR(1) is that the decay starts at ρ1, not at ρ0 = 1,
and this first value of the first order autocorrelation depends on the relative
difference between φ1 and θ1. We observe that if φ1 ≈ 1 and φ1 − θ1 = ε is
small, we can have many coefficients different from zero but they will all be
small.
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The ARMA(1,1) process

The partial autocorrelation function

B To calculate the PACF, we write the ARMA(1, 1) in the AR(∞) form:

(1− θ1B)−1 (1− φ1B) z̃t = at,

and using (1− θ1B)−1 = 1 + θ1B + θ21B
2 + ..., and operating, we obtain:

z̃t = (φ1 − θ1) z̃t−1 + θ1 (φ1 − θ1) z̃t−2 + θ21 (φ1 − θ1) z̃t−3 + ...+ at.

B The direct effect of z̃t−k on z̃t decays geometrically with θk
1 and, therefore,

the PACF will have a geometric decay starting from an initial value.

B In conclusion, in an ARMA(1,1) process the ACF and the PACF have
a similar structure: an initial value, whose magnitude depends on φ1 − θ1,
followed by a geometric decay.

B The rate of decay in the ACF depends on φ1, whereas in the PACF it
depends on θ1.
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Autocorrelation functions - ARMA(1,1) models
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Autocorrelation functions - ARMA(1,1) models
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The ARMA(p,q) processes

B The ARMA (p, q) process is defined by:

(1− φ1B − ...− φpB
p) z̃t = (1− θ1B − ...− θqB

q) at (91)

or, in compact notation,

φp (B) z̃t = θq (B) at.

B The process is stationary if the roots of φp (B) = 0 are outside the unit
circle, and invertible if those of θq (B) = 0 are.

B We also assume that there are no common roots that can be cancelled
between the AR and MA operators.
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The ARMA(p,q) processes

B To obtain the coefficients ψi of the general representation of the MA(∞)
model we write:

z̃t = φp (B)−1
θq (B) at = ψ (B) at

and we equate the powers of B in ψ (B)φp (B) to those of θq (B).

B Analogously, we can represent an ARMA(p, q) as an AR(∞) model making:

θ−1
q (B)φp (B) z̃t = π (B) z̃t = at

and the coefficients πi will be the result of φp (B) = θq (B)π (B).

Example
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The ARMA(p,q) processes

Autocorrelation function

B To calculate the autocovariances, we multiply (91) by z̃t−k and take
expectations, γk − φ1γk−1 − ...− φpγk−p =

= E [atz̃t−k]− θ1E [at−1z̃t−k]− ...− θqE [at−qz̃t−k]

B For k > q all the terms on the right are cancelled, and dividing by γ0:

ρk − φ1ρk−1 − ...− φpρk−p = 0,

that is:
φp (B) ρk = 0 k > q, (92)

B We conclude that the autocorrelation coefficients for k > q follow a decay
determined only in the autoregressive part.
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The ARMA(p,q) processes

Autocorrelation function

B The first q coefficients depend on the MA and AR parameters and of those,
p provide the initial values for the later decay (for k > q) according to (92).
Therefore, if p > q all the ACF will show a decay dictated by (92).

B To summarize, the ACF :

• have q − p + 1 initial values with a structure that depends on the AR and
MA parameters;

• they decay starting from the coefficient q − p as a mixture of exponentials
and sinusoids, determined exclusively by the autoregressive part.

B It can be proved that the PACF have a similar structure.
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Summary

B The ACF and PACF of the ARMA processes are the result of superimposing
their AR and MA properties:

• In the ACF certain initial coefficients that depend on the order of the MA
part and later a decay dictated by the AR part.

• In the PACF initial values dependent on the AR order followed by the decay
due to the MA part.

• This complex structure makes it difficult in practice to identify the order of
an ARMA process.

ACF PACF
AR(p) Many non-null coefficients first p non-null, the rest 0
MA(q) first q non-null, the rest 0 Many non-null coefficients
ARMA(p,q) Many non-null coefficients Many non-null coefficients
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ARMA processes and the sum of stationary processes

B One reason that explains why the ARMA processes are frequently found in
practice is that summing AR processes results in an ARMA process.

B To illustrate this idea, we take the simplest case where we add white noise
to an AR(1) process. Let

zt = yt + vt (93)

where yt = φyt−1 + at follows an AR(1) process of zero mean and vt is white
noise independent of at, and thus of yt.

B Process zt can be interpreted as the result of observing an AR(1) process
with a certain measurement error. The variance of this addition process is:

γz(0) = E(z2
t ) = E

[
(y2

t + v2
t + 2ytvt)

]
= γy(0) + σ2

v, (94)

since, as the summands are independent, the variance is the sum of the variance
of the components.
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ARMA processes and the sum of stationary processes

B To calculate the autocovariance we take into account that the
autocovariances of process yt verify γy(k) = φkγy(0) and those of process
vt are null. Thus, k ≥ 1,

γz(k) = E(ztzt−k) = E [(yt + vt)(yt−k + vt−k)] = γy(k) = φkγy(0),

since, due to the independence of the components, E [ytvt−k] = 0 for any k
and since vt is white noise E [vtvt−k] = 0. Specifically, replacing the variance
γy(0) with its expression (94) for k = 1, we obtain:

γz(1) = φγz(0)− φσ2
v, (95)

whereas for k ≥ 2
γz(k) = φγz(k − 1). (96)

B If we compare equation (95) with (88), and equation (96) with (86) we
conclude that process zt follows an ARMA(1,1) model with an AR parameter
equal to φ. Parameter θ and the variance of the innovations of the ARMA(1,1)
depend on the relationship between the variances of the summands.
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ARMA processes and the sum of stationary processes

B Indeed, letting λ = σ2
v/γy(0) denote the quotient of variances between the

two summands, according to equation (95) the first autocorrelation is:

ρz(1) = φ− φ
λ

1 + λ

whereas by (96) the remainders verify, for k ≥ 2,

ρz(k) = φρz(k − 1).

B If λ is very small, which implies that the variance of the additional noise or
measurement error is small, the process will be very close to an AR(1), and
parameter θ will be very small.

B If λ is not very small, we have the ARMA(1,1) and the value of θ depends
on λ and on φ.

B If λ → ∞, such that the white noise is dominant, the parameter θ will be
equal to the value of φ and we have a white noise process.
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ARMA processes and the sum of stationary processes

B The above results can be generalized for any AR(p) process. It can be
proved that:

AR(p) +AR(0) = ARMA(p, p),

and also that:

AR(p) +AR(q) = ARMA(p+ q,max(p, q))

B For example, if we add two independent AR(1) processes we obtain a new
process, ARMA(2,1).

B The sum of MA processes is simple: by adding independent MA processes
we obtain new MA processes.
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ARMA processes and the sum of stationary processes

B Let us assume that
zt = xt + yt

where the two processes xt, yt have zero mean and follow independent MA(1)
processes with covariances γx(k), γy(k), that are zero for k > 1.

B The variance of the summed process is:

γz(0) = γx(0) + γy(0), (97)

and the autocovariance of order k

E(ztzt−k) = γz(k) = E [(xt + yt)(xt−k + yt−k)] = γx(k) + γy(k).

B Therefore, all the covariances γz(k) of order higher than one will be zero
because γx(k) and γy(k) are.
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ARMA processes and the sum of stationary processes

B Dividing the equation () by γz(0) and using (97), shows that the
autocorrelations verify:

ρz(k) = ρx(k)λ+ ρy(k)(1− λ)

where:

λ =
γx(0)

γx(0) + γy(0)
is the relative variance of the first summand.

B In the particular case in which one of the processes is white noise we obtain
an MA(1) model whose autocorrelation is smaller than that of the original
process. In the same way it is easy to show that:

MA(q1) +MA(q2) = MA(max(q1, q2)).
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ARMA processes and the sum of stationary processes

B For ARMA processes it is also proved that:

ARMA(p1, q1) +ARMA(p2, q2) = ARMA(a, b)
where

a ≤ p1 + p2, b ≤ max(p1 + q1, p2 + q2)

B These results suggest that whenever we observe processes that are the sum
of others, and some of them have an AR structure, we expect to observe
ARMA processes.

B This result may seem surprising at first because the majority of real series
can be considered to be the sum of certain components, which would mean
that all real processes should be ARMA.

B Nevertheless, in practice many real series are approximated well by means
of AR or MA series.

B The explanation for this paradox is that an ARMA(q + h, q) process with q
similar roots in the AR and MA parts can in practice be well approximated by
an AR(h), due to the near cancellation of similar roots in both members.
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Sum of stationary processes - Examples

Example 45. The figures show the autocorrelation functions of an AR(1)
and an AR(0).

Correlogram of AR1

Date: 01/30/08   Time: 17:02
Sample: 1 200
Included observations: 200

Autocorrelation Partial Correlation AC  PAC  Q-Stat  Prob

1 0.766 0.766 118.97 0.000
2 0.563 -0.056 183.56 0.000
3 0.443 0.075 223.75 0.000
4 0.369 0.044 251.86 0.000
5 0.281 -0.059 268.22 0.000
6 0.226 0.042 278.85 0.000
7 0.177 -0.022 285.41 0.000
8 0.123 -0.037 288.60 0.000
9 0.037 -0.108 288.89 0.000

10 -0.058 -0.110 289.62 0.000
11 -0.097 0.030 291.61 0.000
12 -0.062 0.109 292.43 0.000
13 -0.022 0.046 292.54 0.000
14 0.005 0.038 292.54 0.000
15 -0.009 -0.068 292.56 0.000
16 -0.030 -0.030 292.75 0.000
17 -0.045 -0.010 293.21 0.000
18 -0.046 0.006 293.68 0.000
19 -0.057 -0.050 294.41 0.000
20 -0.043 0.012 294.82 0.000

Correlogram of E2

Date: 01/30/08   Time: 17:03
Sample: 1 200
Included observations: 200

Autocorrelation Partial Correlation AC  PAC  Q-Stat  Prob

1 0.019 0.019 0.0725 0.788
2 -0.103 -0.103 2.2310 0.328
3 -0.076 -0.072 3.4065 0.333
4 -0.044 -0.053 3.8018 0.433
5 0.120 0.108 6.8008 0.236
6 -0.023 -0.042 6.9091 0.329
7 -0.064 -0.048 7.7612 0.354
8 0.055 0.066 8.4085 0.395
9 0.030 0.025 8.5954 0.475

10 -0.005 -0.019 8.6004 0.570
11 -0.072 -0.059 9.7150 0.556
12 0.040 0.065 10.050 0.612
13 0.132 0.107 13.825 0.386
14 0.097 0.090 15.852 0.323
15 -0.024 0.005 15.977 0.384
16 -0.121 -0.073 19.214 0.258
17 -0.005 0.004 19.219 0.316
18 0.042 0.004 19.606 0.355
19 -0.055 -0.076 20.287 0.378
20 -0.034 -0.027 20.541 0.425

Datafile sumofst.wf1
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Sum of stationary processes - Examples

B The figure shows the autocorrelation functions of the sum of AR(1)+AR(0).
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Series: SUM1

Sample 1 200

Observations 200

Mean       0.160213

Median   0.137882

Maximum  5.368475

Minimum -4.071789

Std. Dev.   1.810058

Skewness   0.165114

Kurtosis   2.661889

Jarque-Bera  1.861418

Probability  0.394274

Correlogram of SUM1

Date: 01/30/08   Time: 17:07
Sample: 1 200
Included observations: 200

Autocorrelation Partial Correlation AC  PAC  Q-Stat  Prob

1 0.536 0.536 58.422 0.000
2 0.307 0.028 77.700 0.000
3 0.270 0.133 92.622 0.000
4 0.234 0.052 103.94 0.000
5 0.208 0.056 112.91 0.000
6 0.053 -0.156 113.49 0.000
7 0.004 -0.009 113.50 0.000
8 0.038 0.033 113.79 0.000
9 -0.000 -0.043 113.79 0.000

10 -0.079 -0.087 115.11 0.000
11 -0.068 0.039 116.10 0.000
12 -0.030 0.019 116.29 0.000
13 -0.008 0.014 116.31 0.000
14 -0.046 -0.038 116.77 0.000
15 -0.090 -0.044 118.55 0.000
16 -0.110 -0.079 121.21 0.000
17 -0.020 0.098 121.29 0.000
18 -0.023 -0.025 121.41 0.000
19 -0.048 -0.003 121.93 0.000
20 -0.052 -0.025 122.53 0.000
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Sum of stationary processes - Examples

Example 46. The figures show the autocorrelation functions of two MA(1).
Correlogram of MA1A

Date: 01/30/08   Time: 17:26
Sample: 1 200
Included observations: 199

Autocorrelation Partial Correlation AC  PAC  Q-Stat  Prob

1 0.501 0.501 50.650 0.000
2 0.072 -0.239 51.700 0.000
3 0.079 0.218 52.983 0.000
4 0.075 -0.090 54.146 0.000
5 0.040 0.067 54.473 0.000
6 -0.092 -0.204 56.211 0.000
7 -0.158 0.003 61.412 0.000
8 -0.059 0.017 62.141 0.000
9 0.021 0.042 62.234 0.000

10 -0.005 -0.035 62.240 0.000
11 -0.024 0.025 62.366 0.000
12 0.061 0.088 63.153 0.000
13 0.124 0.024 66.464 0.000
14 0.047 -0.062 66.938 0.000
15 0.028 0.084 67.108 0.000
16 0.001 -0.099 67.109 0.000
17 0.003 0.075 67.111 0.000
18 0.031 -0.031 67.324 0.000
19 -0.037 -0.014 67.621 0.000
20 -0.052 0.005 68.224 0.000

Correlogram of MA1B

Date: 01/30/08   Time: 17:27
Sample: 1 200
Included observations: 199

Autocorrelation Partial Correlation AC  PAC  Q-Stat  Prob

1 0.445 0.445 40.091 0.000
2 -0.035 -0.292 40.344 0.000
3 0.033 0.250 40.571 0.000
4 0.092 -0.082 42.321 0.000
5 0.043 0.064 42.699 0.000
6 -0.041 -0.101 43.046 0.000
7 -0.055 0.024 43.677 0.000
8 0.002 0.001 43.678 0.000
9 -0.019 -0.051 43.757 0.000

10 -0.080 -0.038 45.115 0.000
11 0.010 0.103 45.137 0.000
12 0.080 -0.010 46.509 0.000
13 0.003 -0.024 46.512 0.000
14 -0.083 -0.064 47.984 0.000
15 -0.101 -0.055 50.192 0.000
16 -0.075 -0.043 51.434 0.000
17 -0.077 -0.055 52.743 0.000
18 -0.134 -0.085 56.717 0.000
19 -0.133 -0.029 60.639 0.000
20 -0.050 0.001 61.199 0.000

Datafile sumofst.wf1
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Sum of stationary processes - Examples

B The figure shows the autocorrelation functions of the sum of MA(1)+MA(1).
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Series: SUM2

Sample 1 200

Observations 199

Mean      -0.243565

Median  -0.202751

Maximum  5.289049

Minimum -4.290122

Std. Dev.   1.577313

Skewness   0.019862

Kurtosis   3.397083

Jarque-Bera  1.320471

Probability  0.516730

Correlogram of SUM2

Date: 01/30/08   Time: 17:26
Sample: 1 200
Included observations: 199

Autocorrelation Partial Correlation AC  PAC  Q-Stat  Prob

1 0.440 0.440 39.065 0.000
2 -0.051 -0.303 39.586 0.000
3 -0.055 0.146 40.205 0.000
4 -0.042 -0.128 40.571 0.000
5 -0.012 0.084 40.599 0.000
6 -0.091 -0.191 42.300 0.000
7 -0.115 0.047 45.078 0.000
8 -0.007 -0.002 45.086 0.000
9 -0.002 -0.042 45.088 0.000

10 -0.083 -0.085 46.532 0.000
11 -0.063 0.026 47.389 0.000
12 0.107 0.148 49.853 0.000
13 0.150 -0.027 54.686 0.000
14 0.008 -0.040 54.701 0.000
15 -0.034 0.034 54.945 0.000
16 -0.031 -0.059 55.158 0.000
17 0.017 0.065 55.220 0.000
18 -0.048 -0.152 55.732 0.000
19 -0.142 0.015 60.189 0.000
20 -0.053 -0.014 60.820 0.000
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Sum of stationary processes - Examples
Example 47. The figures show the autocorrelation functions of the two sum
of AR(1)+MA(1).

Correlogram of SUM3

Date: 01/30/08   Time: 17:31
Sample: 1 200
Included observations: 199

Autocorrelation Partial Correlation AC  PAC  Q-Stat  Prob

1 0.612 0.612 75.784 0.000
2 0.275 -0.161 91.114 0.000
3 0.215 0.194 100.54 0.000
4 0.182 -0.024 107.35 0.000
5 0.149 0.061 111.95 0.000
6 0.097 -0.043 113.89 0.000
7 0.022 -0.047 113.99 0.000
8 0.066 0.125 114.91 0.000
9 0.113 0.007 117.59 0.000

10 0.066 -0.030 118.51 0.000
11 0.010 -0.029 118.54 0.000
12 0.059 0.107 119.29 0.000
13 0.130 0.056 122.90 0.000
14 0.165 0.066 128.82 0.000
15 0.150 0.017 133.68 0.000
16 0.119 0.018 136.76 0.000
17 0.075 -0.056 138.00 0.000
18 0.039 -0.032 138.32 0.000
19 -0.000 -0.030 138.32 0.000
20 0.019 0.071 138.41 0.000

Correlogram of SUM4

Date: 01/30/08   Time: 17:32
Sample: 1 200
Included observations: 199

Autocorrelation Partial Correlation AC  PAC  Q-Stat  Prob

1 0.682 0.682 93.851 0.000
2 0.412 -0.099 128.27 0.000
3 0.353 0.210 153.63 0.000
4 0.289 -0.039 170.80 0.000
5 0.251 0.094 183.79 0.000
6 0.235 0.022 195.23 0.000
7 0.175 -0.040 201.64 0.000
8 0.093 -0.063 203.45 0.000
9 0.001 -0.109 203.45 0.000

10 -0.064 -0.054 204.32 0.000
11 -0.006 0.136 204.33 0.000
12 0.060 0.046 205.10 0.000
13 0.030 -0.037 205.30 0.000
14 0.011 0.026 205.32 0.000
15 -0.025 -0.074 205.46 0.000
16 -0.086 -0.061 207.09 0.000
17 -0.135 -0.104 211.09 0.000
18 -0.160 -0.071 216.72 0.000
19 -0.148 -0.004 221.60 0.000
20 -0.143 -0.025 226.19 0.000

Are they expectable results?
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