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3. Time series and stochastic processes

Outline:

• Introduction

• The concept of the stochastic process

• Stationary processes

• White noise process

• Estimating the moments of stationary processes

Recommended readings:

B Chapter 3 of D. Peña (2008).

B Chapter 2 of P.J. Brockwell and R.A. Davis (1996).
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Introduction

B The dynamic phenomena that we observe in a time series can be grouped
into two classes:

• The first are those that take stable values in time around a constant level,
without showing a long term increasing or decreasing trend. For example,
yearly rainfall in a region, average yearly temperatures or the proportion of
births corresponding to males. These processes are called stationary.

• A second class of processes are the non-stationary processes, which are
those that can show trend, seasonality and other evolutionary effects over
time. For example, the yearly income of a country, company sales or energy
demand are series that evolve over time with more or less stable trends.

B In practice, the classification of a series as stationary or not depends on
the period of observation, since the series can be stable in a short period and
non-stationary in a longer one.
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The concept of the stochastic process

B A stochastic process is a set of random variables {zt} where the index t
takes values in a certain set C. In our case, this set is ordered and corresponds
to moments of time (days, months, years, etc.).

B For each value of t in set C (for each point in time) a random variable, zt,
is defined and the observed values of the random variables at different times
form a time series. That is, a series of T data, (z1, . . . , zT ), is a sample of
size one of the vector of T random variables ordered in time corresponding to
the moments t = 1, . . . , T, and the observed series is considered a result or
trajectory of the stochastic process.

B The process is characterized by the joint probability distribution of the
random variables (z1, . . . , zT ), for any value of T. These distributions are
called finite-dimensional distributions of the process. We say that we
know the probabilistic structure of a stochastic process when we know these
distributions, which determine the distribution of any subset of variables and,
in particular, the marginal distribution of each variable.
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The concept of the stochastic process - Examples

Example 24. Let us assume that in an industrial company the temperatures
of an oven are measured every minute from the time it starts up, at nine
o’clock, until it is turned off, at five o’clock.

Every day 480 observations are obtained, which correspond to the oven
temperature at times 9h 1m, 9h 2m,...,4h 59m, 5h, that we associate with the
values t = 1, ..., 480.

The set of temperature measurements on any given day constitute the
realization of a stochastic process {zt}, t = 1, ..., 480, where zt is the random
variable: oven temperature at time t.

If we have many trajectories of the process (data from many days) we can
obtain the probability distribution of the variables that comprise it. To do this,
we must assume that the oven temperature at a set time t0, follows a definite
probability distribution.
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The concept of the stochastic process - Examples
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B If this hypothesis is true,
which implies that the situation
of the oven is the same on the
different days, we can obtain the
distribution of each variable zt,
by studying the distribution of
the t−th observation on different
days.

B Analogously, we can study
the joint distribution of two
consecutive variables (zt0, zt0+1),
taking the pairs of observed
values at times t0 and t0 + 1 on
different days. And so on ...
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The concept of the stochastic process - Examples

Example 25. The figure shows 10 realizations of the rainfall series in Santiago
de Compostela over the 12 months of the year. We have 10 values of 12
random variables, one for each month, and the trajectory of the 12 values in a
given year represents a realization of the stochastic process.
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The concept of the stochastic process - Examples

Example 26. Let us consider the stochastic process defined by:

zt = zt−1 + at (20)

which we assume begins at z0 = 0, and where the at are i.i.d. N (0, σ2). This
process is known as a random walk and the figure shows 200 realizations of
the process carried out by computer.
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The concept of the stochastic process - Examples
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Observe that the mean of these distributions is approximately zero in the four cases, but

the variance of the distribution increases with the time period being considered. This result

coincides with the previous figure, where we observe that the realizations of the process tend

to move away from the initial value over time.
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Properties of marginal distributions

B The mean function of the process refers to a function of time representing
the expected value of the marginal distributions zt for each instant:

E [zt] = µt. (21)

B An important particular case, due to its simplicity, arises when all the
variables have the same mean and thus the mean function is a constant. The
realizations of the process show no trend and we say that the process is stable
in the mean.

B If, on the contrary, the means change over time, the observations at different
moments will reveal that change.

B On many occasions we only have one realization of the stochastic process
and we have to deduce from that whether the mean function of the process is,
or is not, constant over time.

Time series analysis - Module 1



82

Properties of marginal distributions - Examples

Example 27. The mean of the random walk variables seem to be constant
and near zero. This can be deduced from the equation of the process, (20),
since for the first variable we can write E [z1] = 0 + E(a1) = 0 and for the
rest we can use that if the expectation of zt−1 is zero so is that of zt, since:
E [zt] = E [zt−1] + E(at) = 0.
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Properties of marginal distributions - Examples

Example 28. The mean of the random walk variables seem to be constant
and near zero. This can be deduced from the equation of the process, (20),
since for the first variable we can write E [z1] = 0 + E(a1) = 0 and for the
rest we can use that if the expectation of zt−1 is zero so is that of zt, since:
E [zt] = E [zt−1] + E(at) = 0.
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Properties of marginal distributions - Examples

Example 29. The population series in the left figure clearly shows an unstable
mean. The temperature series in the right figure does not have a constant
mean either, since the average temperature is different in different months of
the year.
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Properties of marginal distributions

B The variance function of the process gives the variance at each point in
time:

V ar(zt) = σ2
t (22)

and we say that the process is stable in the variance if the variability is
constant over time.

B A process can be stable in the mean but not in the variance and vice versa.
For example, the random walk has a constant mean, as we saw earlier, but the
variance is not constant over time. See the figure in Example 27. In fact, let
us assume that the variance of at is σ2. Hence, the variable z2 will have that:

V ar(z2) = E(z2
2) = E(z2

1 + a2
2 + 2z1a2) = 2σ2

since the variables z1 and a2 are independent because z1 depends only on
a1, which is independent of a2. In general, the variance of zt is tσ2, and it
increases linearly over time.
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Properties of marginal distributions - Examples

B When we have a single realization, the apparent variability of the series may
be approximately constant or change over time.

Example 30. The series in
figure seems to have a constant
mean but variability appears to
be greater in certain periods than
in others.
Thus, the variance of the
series might not be constant
( heteroscedatic series).

Source: Reuters EcoWin
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Properties of marginal distributions

B The structure of linear dependence between random variables is represented
by the covariance and correlation functions. We use the term autocovariance
function of the process to refer to the covariance between two variables of the
process at any two given times:

γ(t, t + j) = Cov(zt, zt+j) = E[(zt − µt)(zt+j − µt+j)] (23)

In particular, we have
γ(t, t) = V ar(zt) = σ2

t .

B The mean function and the autocovariance functions play the same role in
a stochastic process as the mean and variance for a scalar variable.

B The autocovariances have dimensions, the squares of the series, thus it is
not advisable to use them for comparing series measured in different units.
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Properties of marginal distributions

B We can obtain a non-dimensional measurement of the linear dependence
generalizing on the idea of the linear correlation coefficient between two
variables.

B The autocorrelation coefficient of order (t, t + j) is the correlation
coefficient between the variables zt and zt+j and the autocorrelation function
is the function of the two plots that describe these coefficients for any two
values of the variables. This function is

ρ(t, t + j) =
Cov (t, t + j)

σtσt+j
=

γ(t, t + j)
γ1/2(t, t)γ1/2(t + j, t + j)

. (24)

In particular, we have

ρ(t, t) =
Cov (t, t)

σtσt
= 1.
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Properties of conditional distributions

B In addition to the study of marginal distributions in stochastic processes it
is usually of great interest to study conditional distributions.

B An important group of processes are the Markov processes (or Markovian)
which have the following property

f(zt+1|zt, ..., z1) = f(zt+1|zt), t = 1, 2, ...,

that is, the distribution of the random variable at any time given the previous
values of the process depends only on the last value observed.

B Intuitively a process is Markovian if, knowing the current value of the
process, the distribution of the future values depends only on this value and
not on the path followed up to that point.

Example 31. The Gaussian random walk, shown in (20), is a Markovian
process where

f(zt+1|zt, ..., z1) = f(zt+1|zt) = N (zt, σ
2).

Time series analysis - Module 1



90

Properties of conditional distributions

B A property that is weaker than the Markovian is that the conditional
expectation depends solely on the last value observed. In particular, when the
process verifies that:

E(zt|zt−1, ..., z1) = E(zt|zt−1) = zt−1 (25)

the process is called a Martingale.

B A random walk, for example, is a martingale.

B We can see that a martingale is not necessarily a Markov process, because
for that not only the expectation but rather the whole distribution must depend
only on the last value observed.

B Moreover, a Markov process does not imply that condition (25) is satisfied,
since E(zt|zt−1, ..., z1) can be any function g(zt−1) of the last value observed.
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Properties of conditional distributions

B It is interesting to notice the differences between conditional distributions
and the marginal distributions studied in this section.

• The marginal distribution of zt represents what we know about a variable
without knowing anything about its trajectory until time t.

• The conditional distribution of zt given zt−1, ..., zt−k represents what we
know about a variable when we know the k previous values of the process.

• For example, in the random walk (20) the marginal mean is constant and
equal to zero whereas the conditional mean is equal to the last observed
value and the marginal variance grows with time, while the conditional
variance is constant.

• In time series conditional distributions are of greater interest than marginal
ones because they define the predictions that we can make about the future
knowing the past as well as the uncertainty of these predictions.
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Stationary processes

B Obtaining the probability distributions of the process is possible in some
situations, for example with climatic variables, where we can assume that each
year a realization of the same process is observed, or techniques that can be
generated in a laboratory.

B Nevertheless, in many situations of interest, such as with economic or social
variables, we can only observe one realization of the process.

B For example, if we observe the series of yearly growth in the wealth of a
country it is not possible to go back in time to generate another realization.

B The stochastic process exists conceptually, but it is not possible to obtain
successive samples or independent realizations of it.

B In order to be able to estimate the ”transversal” characteristics of the
process (means, variance, etc.) from its ”longitudinal” evolution we must
assume that the ”transversal” properties (distribution of the variables at each
instant in time) are stable over time. This leads to the concept of stationarity.
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Stationary processes

B We say that a stochastic process (time series) is stationary in the strict
sense if:

(1) the marginal distributions of all the variables are identical;

(2) the finite-dimensional distributions of any set of variables depend only on
the lags between them.

B The first condition establishes that, in particular, the mean and the variance
of all the variables are the same.

B The second condition imposes that the dependence between variables
depends only on their lags, that is, v.g. the same dependency exists between
the variables (zt, zt+j) as between the variables (zt+k, zt+j+k).

B These two conditions can be summarized by establishing that the joint
distribution of any set of variables is not changed if we translate the variables
in time, that is:

F (zi, zj, . . . , zk) = F (zi+h, zj+h, . . . , zk+h).
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Stationary processes

B Strict stationarity is a very strong condition, since to prove it we must
have the joint distributions for any set of variables in the process. A weaker
property, but one which is easier to prove, is weak sense stationarity. A
process is stationary in the weak sense if, for all t:

1. µt = µ = cte,

2. σ2
t = σ2 = cte,

3. γ(t, t− k) = E [(zt − µ)(zt−k − µ)] = γk k = 0,±1,±2, . . .

B The first two conditions indicate that the mean and variance are constant.

B The third indicates that the covariance between two variables depends only
on their separation.
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Stationary processes

B In a stationary process the autocovariances and autocorrelations depend
only on the lag between the observations and, in particular, the relationship
between zt and zt−k, is always equal to the relationship between zt and zt+k.

B As a result, in stationary processes:

Cov(zt, zt+k) = Cov(zt+j, zt+k+j) = γk, j = 0± 1,± 2, ...

and for autocorrelations as well since:

ρk =
Cov(zt, zt−k)√
var(zt)var(zt−k)

=
γk

γ0
.

B To summarize, in stationary processes, we have that γ0 = σ2, and γk = γ−k.
For the autocorrelations ρk = ρ−k.
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Stationary processes

B We use the term covariance matrix of the stationary process of order k,
Γk, for the square and symmetric matrix of order k that has the variances in
its principal diagonal and in the next diagonals the autocovariances:

Γk = E




zt − µ
zt−1 − µ

...
zt−k − µ

 [
zt − µ zt−1 − µ · · · zt−k − µ

] =

=


γ0 γ1 · · · γk−1

γ1 γ0 · · · γk−2
... ... . . . ...

γk−1 γk−2 · · · γ0

 (26)

B The square matrices which, like this matrix Γk, have the same elements in
each diagonal are called Toeplitz matrices.
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Stationary processes

B We use the term autocorrelation function (ACF) to refer to the
representation of the autocorrelation coefficients of the process as a function
of the lag and the term autocorrelation matrix for the square and symmetric
Toeplitz matrix with ones in the diagonal and the autocorrelation coefficients
outside the diagonal:

Rk =


1 ρ1 · · · ρk−1

ρ1 1 · · · ρk−2
... ... · · · ...

ρk−1 ρk−2 · · · 1

 . (27)

B Weak stationarity does not guarantee complete stability of the process.
For example, the distribution of the variables zt may be changing over time.
Nevertheless, if we assume that these variables jointly have a normal n-
dimensional distribution, then weak and strict stationarity coincide.

B From this point on, for simplicity’s sake, we will use the expression stationary
process to refer to a stationary process in the weak sense.
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Combinations of stationary processes

B An important property of stationary processes is that they are stable under
linear combinations, that is, the processes obtained using linear combinations
of stationary processes are also stationary.

B Let zt = (z1t, ..., zkt) be a vector of k stationary processes where we assume
that the autocovariances depend only on the lag, and the covariances between
two components at two times depend only on the two components considered
and the lag between the times. In these conditions, the vector series is
stationary.

B Let us consider the scalar process defined by the vector of constants
c′ = (c1, ..., ck) :

yt = c′zt = c1z1t + ... + ckzkt

which will be a linear combination of the components of the vector zt.

B We will prove that yt is also stationary.
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Combinations of stationary processes

• The expectation of this process is

E(yt) = c1E(z1t) + ... + ckE(zkt) = c′µ

where µ = (µ1,..., µk) is the vector of means of the components. Since the
expectations E(zit) = µi are constants, so is E(yt).

• The variance of the process yt is:

var(yt) = E(c′(zt − µ)(zt − µ)c) = c′Γzc (28)

where Γz is the covariance matrix between the components of the vector at
the same time. Since the components are stationary, the covariance matrix
between them is also constant.
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Combinations of stationary processes

• Analogously, it is proved that

cov(ytyt+k) = c′Γz(k)c

where Γz(k) contains the covariances between the components at different
times which, by hypothesis, depend only on the lag.

B Therefore, process yt is stationary.

B If we define the linear combination of the lagged values of the scalar process,
zt, using:

yt = c1zt + c2zt−1 + ... + ckzt−k = c′zt,k

where zt,k = (zt, zt−1, ..., zt−k)′, the variance of the variable yt is given by
c′Γkc, where Γk has the expression (26), and it is a non-negative number.
This implies that the autocovariance matrix of order k of the process zt is
non-negative definite.
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White noise process

B A very important stationary process is that defined by the conditions:

1a. E[zt] = 0, for t = 1, 2, ...

2a. V ar(zt) = σ2 for t = 1, 2, ...

3a. Cov(zt, zt−k) = 0 for k = ±1,±2, ...

which is called the white noise process.

B First condition establishes that the expectation is always constant and equal
to zero.

B Second condition establishes that variance is constant.

B Third condition establishes that the variables of the process are uncorrelated
for all lags.
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White noise process - Example

Example 32. If we generate random normal numbers of mean zero and
constant variance with a computer and we place them in a sequence, we will
have a white noise process.
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B In these processes knowing past values provides no information about the
future since the process has “no memory”.
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White noise process

B An equivalent condition to define a white noise is to assume a stationary
process with marginal finite variance σ2 and the condition:

1b. E(zt|zt−1, ..., z1) = 0 for every t,

since it can be proved that the conditions (1a) and (3a) are then verified
automatically.

B When the process is defined using condition (1b) it is usually called, for
historical reasons, the martingale difference process.

B The reason for this is that if process yt is a martingale, defined by the
condition (25), process zt = yt − yt−1 verifies:

E(zt|zt−1, ..., z1) = E(yt|zt−1, ..., z1)− E(yt−1|zt−1, ..., z1) = 0,

then zt verifies (1b) and its a martingale difference process.
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White noise process

B A white noise process is not necessarily stationary in the strict sense nor
does it have to be formed by independent variables, since only non-correlation
is required.

B If we impose the additional condition that the variables of the process are
independent, and not just uncorrelated, we call this a strict white noise
process.

B If we assume that the variables have a normal distribution, the non-
correlation guarantees independence, and the process is strict white noise. We
call the resulting process the normal white noise process.

B Normality is a strong condition and we can have strict white noise processes
with variables that have non-normal distributions. For example, a process of
uniform independent variables is a strict white noise process, but not a normal
white noise one.
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Estimating the moments of stationary processes

B Let us assume a stationary process with mean µ, variance σ2 and covariances
γk = from which we observe one realization (z1, ..., zT ). We are going to study
how to estimate the mean, variance, covariances and autocorrelations of the
process from this single realization.

Estimating the mean

B An unbiased estimator of the population mean is the sample mean. Letting
z be the sample mean:

z =
∑T

t=1 zt

T
,

it is proved that:

E(z) =
∑T

t=1 E(zt)
T

= µ.
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Estimating the moments of stationary processes

Estimating the mean

B For independent data the variance of the sample mean as an estimator of
the population mean is σ2/T. As a result, when the sample size is increased
the mean square error estimation, given by

E(z − µ)2

which coincides with the variance of z, tends to zero.

B In a stationary stochastic process this property is not necessarily true, and it
is possible that when the sample size is increased the variance of the estimate
of the mean does not tend to zero.

Example
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Estimating the moments of stationary processes

Estimating the mean

B From here on we will assume that the process is ergodic for the estimation
of the mean and this implies that:

lim
T→∞

E(z − µ)2 → 0.

B To identify the conditions for a process to be ergodic for the estimation of
the mean, we are going to calculate the mean square error of the sample mean
for stationary processes:

MSE(z) = var(z) = E(z − µ)2 =
1
T 2

E(
T∑

t=1

(zt − µ))2

which we can write as:

var(z) =
1
T 2

∑T

t=1
E(zt − µ)2 + 2

∑T

i=1

T∑
j=i+1

E((zi − µ)(zj − µ))

 .
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Estimating the moments of stationary processes

Estimating the mean

B The first summation within the square brackets is Tσ2. The second double
summation contains T − 1 times the covariances of order one, T − 2 times
the covariances of order 2 and, in general, T − i times those of order i. As a
result, the variance of the sample mean can be written as:

var(z) =
1
T

[
σ2 + 2

∑T−1

i=1
(1− i

T
)γi

]
(29)

B The condition for var(z) to tend to zero when T increases is that the
summation converges to a constant when T increases. A necessary (although
not sufficient) condition for the sum to converge is:

limi→∞γi → 0

which assumes that the dependence between observations tends to zero when
the lag is increased.
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Estimating the moments of stationary processes

B To summarize, the property of ergodicity, which can be applied to the
estimation of any parameter, is satisfied if the new observations of the process
provide additional information on the parameter, such that when the sample
size increases the estimation error tends to zero.

B In the estimation of the mean this does not occur if there is a dependence so
strong that new observations are predictable from the past and do not provide
new information for estimating the mean.

B From here on we will assume that the processes we consider are ergodic,
meaning that in practice we have eliminated possible deterministic trend terms
of type A cos(ωt + δ) that might exist.
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Example of non-ergodic processes
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Estimating the moments of stationary processes

Estimation of autocovariances and autocorrelations

B If the mean of the process is known, the estimator of the autocovariances
of order k is:

γ̃k =
1

T − k

∑T

t=k+1
(zt − µ)(zt−k − µ) (30)

and it is easy to prove when expectations are taken that this estimator is
unbiased for estimating γk = E((zt − µ)(zt−k − µ)).

B Nevertheless, when µ is unknown and we replace it with its estimator, z, it
is proved that the resulting estimator is biased.

B An alternative estimator of γk, which has better properties when µ is
unknown, is:

γ̂k =
1
T

∑T

t=k+1
(zt − z)(zt−k − z). (31)

Although γ̂k is also a biased estimator of the population autocovariance it has
less squared error of estimation than the previous one.
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Estimating the moments of stationary processes

Estimation of autocovariances and autocorrelations

B An additional advantage to using the estimator (31) is that the sample
autocovariance matrix:

Γ̂k =


γ̂0 γ̂1 ... γ̂k−1

γ̂1 γ̂0 ... γ̂k−2

. . ... .
γ̂k−1 γ̂k−2 ... γ̂0


is always non-negative definite.

B This may not occur if, instead of dividing by the sample size, we do so using
the number of terms in the sum, as in estimator (30).

B Lets remember this property is necessary for the estimated covariances to
be able to correspond to a stationary process.
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Estimating the moments of stationary processes

Estimation of autocovariances and autocorrelations

B The autocorrelations are estimated by

rk = γ̂k/γ̂0

and we can estimate the autocorrelation function representing the estimated
correlation coefficients as a function of the lag. This representation is called a
correlogram or sample autocorrelation function.

B The vector of sample autocorrelations, r = (r1, ..., rk)′ has an approximately
normal distribution for large T with mean ρ, the theoretical vector of
autocorrelations, and covariance matrix Vρ/T .

B The terms of the matrix Vρ are given by Bartlett’s formula.
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Estimating the moments of stationary processes

Estimation of autocovariances and autocorrelations

B Bartlett’s formula have simple expression if the process only has the first q
autocorrelation coefficients different from zero, the variances of the estimated
autocorrelations are approximated by:

var(rk) =
T − k

T (T + 2)
(1 + 2

q∑
j=1

ρ2
j), k > q (32)

Therefore, if all the autocorrelations of the process are null, the asymptotic
variance of the estimated or sample autocorrelation coefficients is:

var(rk) =
T − k

T (T + 2)
,

which can be approximated, for large T , by 1/T.

Time series analysis - Module 1



115

Estimation of autocorrelations - Examples

Example 33. The figure shows the correlogram of a white noise series
including two lines parallel to the x axis at ±2/

√
T . These lines provide,

approximately, a 95% confidence interval for the sample autocorrelation
coefficients if the series has been generated by a white noise process.
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Estimation of autocorrelations - Examples

Example 34. We are going to calculate the sample autocorrelation function
or correlogram for the data on the leagues sailed by Columbus.

Correlogram of DAILYLEAGUES

Date: 01/28/08   Time: 16:28
Sample: 1 36
Included observations: 34

Autocorrelation Partial Correlation AC  PAC  Q-Stat  Prob

1 0.520 0.520 10.038 0.002
2 -0.003 -0.375 10.038 0.007
3 -0.130 0.106 10.710 0.013
4 -0.091 -0.079 11.047 0.026
5 0.071 0.193 11.260 0.046
6 0.158 -0.019 12.352 0.055
7 0.116 0.056 12.964 0.073
8 0.073 0.043 13.214 0.105

Only the first autocorrelation coefficient seems to be significant, indicating that the leagues

travelled on a given day depend on those sailed the day before, but not on the days prior to

that.
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Estimation of autocorrelations - Examples

Example 35. The figure shows the autocorrelation function for the series of
the Madrid Stock Exchange. Notice that all the autocorrelation coefficients are
small, and within the bands of 2/

√
T. This suggests a white noise process, where

past performance gives us no information for predicting future performance.
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Summary

• We have sawn the basic concepts of stochastic processes: realizations, mean
function, variance function, autocorrelation function, stationarity, ergodicity,
martingale, etcetera.

• We have consideres different definitions of stationary processes (in strict
and weak sense).

• We have studied the simplest stationary process: White Noise.

• We have sawn how to estimate the mean, the autocovariances and the
autocorrelations functions (theoretically and using EViews).
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