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2. Descriptive analysis of a time series

Outline:

• Introduction

• Analysis of deterministic trends

• Smoothing methods

• Decomposition methods for seasonal series

• Seasonality and seasonal adjustment

• Exploration of multiple cycles

Recommended readings:

B Chapter 2 of D. Peña (2008).

B Chapter 1 of P.J. Brockwell and R.A. Davis (1996).
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Introduction

B In this topic we present the descriptive procedures developed between 1940
and 1970 for time series analysis.

B The purpose of those procedures is to explain the past evolution of a series
in terms of simple patterns and to forecast its future values.

• Models with deterministic trend which constitute an extension of regression
methods.

• Smoothing methods which carry out predictions by imposing a structure
where the dependency between the observations diminishes over time.

• The extension of these methods for seasonal series.

Time series analysis - Module 1
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Analysis of deterministic trends

B We begin with series without seasonality, such as those in Examples 1 to 5.

B We assume that the observed series, zt, is represented by

zt = µt + at, (1)

where the first component
µt = f(t, β)

is the level of the series which is a known deterministic function of the time
that depends on the instant being studied and on a parameter vector, β. These
parameters must be estimated from the data, as we will see next.

The second component, at, is usually called as the innovation and is a random
component which contains the rest of the effects that affect the series.

It is assumed that the random variables at’s have zero mean, constant variance,
normal distribution and at and as are independent when t 6= s.

Time series analysis - Module 1
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Analysis of deterministic trends

B The prediction of the series with model (1) for future period, T + k, is
obtained by extrapolating the level of the series µt, since the prediction of the
innovation is its expectation, which is always zero.

B Letting ẑT (k) be the prediction carried out from the origin T for k periods
ahead, that is, the prediction of the value zT+k with the information available
until the moment T, we have

ẑT (k) = µT+k = f(T + k, β). (2)

B The form that we establish for the evolution of the level of the series over
time determines the specific model to be used.

Time series analysis - Module 1
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Analysis of deterministic trends

Example 13. The simplest model assumes that the level of the series is
constant in time, that is µt = µt−1 = µ, and it is known as the model of
constant level or detrended series.

Thus the equation (1) is reduced to:

zt = µ + at (3)

and the series moves around its mean, µ, which is constant.

The series in Examples 1 and 2 are detrended and could be explained by this
model.

Since the level of the series is constant and it does not depend on t, and the
expected value of the innovation is zero, the prediction with this model for any
horizon will be the mean, µ.

Time series analysis - Module 1
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Analysis of deterministic trends

Example 14. A more general model, which is applied to series with upward
or downward trends is the linear trend model. Example 3 shows a series that
might have this property.

The model for µt in (1) is:

µt = β0 + β1t (4)

where β1 now represents the slope of the line that describes the evolution
of the series. This slope corresponds to the expected growth between two
consecutive periods.

The prediction with this model of the value of the series at time T + k with
information up to T , will be

ẑT (k) = β0 + β1(T + k) (5)

Time series analysis - Module 1
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Analysis of deterministic trends

B These two models are special cases of polynomial trends, where the level of
the series evolves according to a polynomial of order r:

µt = β0 + β1t + ... + βrt
r (6)

B Fitting these models to a time series requires the estimation of the parameter
vector, β = (β0, ..., βr). The estimations are obtained using the least squares
criterion, that is by minimizing the differences between the observed values
and those predicted up to horizon one by the model:

Minimize
T∑

t=1

(zt − µt)2. (7)

Time series analysis - Module 1
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Analysis of deterministic trends - Example 1

Dependent Variable: DAILYLEAGUES
Method: Least Squares
Date: 01/25/08   Time: 17:22
Sample: 1 34
Included observations: 34
DAILYLEAGUES = C(1)

Coefficient Std. Error t-Statistic Prob.  

C(1) 31.82353 2.844286 11.18858 0.0000

R-squared 0.000000     Mean dependent var 31.82353
Adjusted R-squared 0.000000     S.D. dependent var 16.58490
S.E. of regression 16.58490     Akaike info criterion 8.483833
Sum squared resid 9076.941     Schwarz criterion 8.528726
Log likelihood -143.2252     Durbin-Watson stat 0.869676

Time series analysis - Module 1
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Analysis of deterministic trends - Example 1
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Analysis of deterministic trends - Example 1
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Analysis of deterministic trends - Example 1

B We fit the constant level or mean model (3) to the series of leagues sailed
daily by Columbus’s fleet. The mean of the observed data of the series is

zt =
9 + ... + 49

34
= 31.82

which is also, the prediction of the distance to be sailed the following day.

B The errors of this forecast within the sample are the residuals, ât, estimated
as the difference between the value of the series and its mean.

B The dispersion of these residuals measures the expected forecast error with
this model.

σ̂a =

√
(−22.82)2 + ... + (17.18)2

34
= 16.6

which indicates that the average forecasting error with this model is 16.6 daily
leagues.

Time series analysis - Module 1
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Analysis of deterministic trends - Example 3

Dependent Variable: POPULATIONOVER16
Method: Least Squares
Date: 01/25/08   Time: 18:07
Sample: 1977Q1 2000Q4
Included observations: 96
POPULATIONOVER16 = C(1) +C(2)*TIME

Coefficient Std. Error t-Statistic Prob.  

C(1) 29693292 21446.05 1384.558 0.0000
C(2) 79696.88 773.9096 102.9796 0.0000

R-squared 0.991214     Mean dependent var 29693292
Adjusted R-squared 0.991120     S.D. dependent var 2229916.
S.E. of regression 210127.5     Akaike info criterion 27.36943
Sum squared resid 4.15E+12     Schwarz criterion 27.42285
Log likelihood -1311.733     Durbin-Watson stat 0.011995

Time series analysis - Module 1
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Analysis of deterministic trends - Example 3
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Analysis of deterministic trends - Example 3
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Analysis of deterministic trends - Example 3

B We fit the linear trend model to the population data of people in Spain over
16 years of age. We have the prediction equation

ẑt = 29693292 + 797696.88t

This line indicates that, in the period being studied, the number of people
over 16 is, on average, 29,693 million people and that each year this number
increases by approximately 79700 people.

B The model seems to have good fit, since the correlation coefficient is .995.

B Nevertheless, if we look at the data and the fitted model, we can see that
the fit is not good because the trend is not exactly constant and has changed
slightly over time. In particular, the predictions generated in the year 2000 for
the two following years are considerably higher than the observed data.

Time series analysis - Module 1
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Analysis of deterministic trends - Example 3

B One might think that the problem is that the trend is following a second
degree polynomial and that the shape of the residuals indicates the need for a
second degree equation in order to reflect this curvature.

Dependent Variable: POPULATIONOVER16
Method: Least Squares
Date: 01/25/08   Time: 18:38
Sample (adjusted): 1977Q1 2000Q4
Included observations: 96 after adjustments

Variable Coefficient Std. Error t-Statistic Prob.  

C(1) 29910092 11686.80 2559.306 0.0000
TIME 79696.88 281.1305 283.4872 0.0000

TIME^2 -282.3216 11.34427 -24.88671 0.0000

R-squared 0.998853     Mean dependent var 29693292
Adjusted R-squared 0.998828     S.D. dependent var 2229916.
S.E. of regression 76330.93     Akaike info criterion 25.35430
Sum squared resid 5.42E+11     Schwarz criterion 25.43443
Log likelihood -1214.006     Durbin-Watson stat 0.050897

Time series analysis - Module 1
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Analysis of deterministic trends - Example 3
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B A second degree of the polynomial does not solve the problem. The
prediction errors for the last data in the sample are quite high. The problem is
the lack of flexibility of the deterministic models.

Time series analysis - Module 1
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Limitations in deterministic trends

B As we saw in the above example, the main limitation of these methods is
that, although series of constant levels are frequent, it is unusual for a real
series to have a linear deterministic trend, or in general, a polynomial trend
with r ≥ 1.

B One possibility is to try to fit linear trends by intervals, that is divide the
series into parts that have, approximately, a constant trend and to fit a linear
or constant model in each part.

B Although these models signify a clear advance in explaining the historic
evolution of some series, they are less useful in predicting future values, since
we do not know how many past observations to use in order to fit the future
level of the series.

B An additional difficulty of fitting a linear trend by intervals is that the
implicit growth model is unreasonable.

Time series analysis - Module 1
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Limitations in deterministic trends

B Let us look at the implications of assuming that a series follows a
deterministic trend model in an interval.

Example 15. Let us assume a series zt with 5 data points at times t =
0,±1,±2. Let z−2, z−1, z0, z1, z2 be the values of the series. Applying the
formulas for the estimation of the slope gives us∑2

t=−2
t2 = (−2)2 + (−1)2 + (0)2 + (1)2 + (2)2 = 10∑2

t=−2
t2tzt = −2z−2 − z−1 + z1 − 2z2 = 2 (z−1 − z−2) + 3 (z0 − z−1)

+3 (z1 − z0) + 2 (z2 − z1)

and therefore:

β̂1 = 0.2∇z−1 + 0.3∇z0 + 0.3∇z1 + 0.2∇z2.

Time series analysis - Module 1
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Limitations in deterministic trends

B This results indicates that the prediction of future growth is a weighted mean
of observed growth in each one of the periods, with symmetric weights with
respect to the center such that the minimum weight corresponds to growth in
the extreme periods.

B If we accept that a series has a linear deterministic trend in an interval we
are saying that the future prediction of its growth must be done weighting
the observed past growths, but giving minimum weight to the last growth
observed. This weight is also equal to that which is attributed to growth
farthest back in time, that is, to the first growth observed in the sample.

B Moreover, if we increase the size of the interval, the weight of last observed
growth diminishes, but always remains equal to the weight of the first growth
observed. For instance, with a sample of 100 yearly data points, we fit the
model in this sample, the weight of the last growth observed becomes a very
small value, and equal to the growth observed 100 years ago!

Time series analysis - Module 1
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Smoothing methods

B To find a solution to the limitations of deterministic trend models, smoothing
methods were introduced in the 1960s. The idea behind these methods is to
allow that the last data points in the series have more weight in the forecasts
than the older values.

The path followed by the indicator
shows the boom of activity during the
“new economy” phase and the subse-
quent drop after September 2001. The
index reached its lowest value in May
and November 2003, although the level
of activity in these months was roughly
equal to the start value, for January
2000. After this, the index fluctuated
considerably but showed an overall up-
ward trend. By July 2005 the value was
up by 50 percent.

Although worldwide M&A activity
had cooled off somewhat by the end of
2006, the value of the index in Decem-

ber 2006 was nevertheless a good 25
percent over the basis value, at 125.8
points. Mergers and acquisition deals
planned and announced in 2006, such
as the takeover of the Spanish electrici-
ty supplier Endesa by German E.ON,
could point to a marked upturn in M&A
in the coming months of 2007. How-
ever, there is little chance that the
highs of January 2001 and July 2005 will
be repeated in the near future.

The ZEW ZEPHYR M&A Index is calcu-
lated on the basis of both the number
and the volume of mergers and acquisi-
tions concluded worldwide, as recorded

in BvDEP’s ZEPHYR Database. The index
uses the monthly rates of change of
both the number and volume of M&A
transactions, combined and adjusted
for volatility. As a result, the Index offers
a much more precise picture of the level
of M&A activity in the world than can be
attained by observing transaction vol-
umes alone. The reason for this is that a
firm’s value on the stock exchange has
a strong influence on the transaction 
value, particularly as many acquisitions
are paid for by means of an exchange of
shares. Consequently, the share price
could have a disproportionately strong
influence on estimations of the trends
in M&A transactions. If, however, the 
total volume is spread over a larger
number of transactions within the
month, this increases the value of the
M&A Index, although the aggregate
transaction value remains unchanged.
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The worldwide mergers and acquisitions (M&A) climate went through something of
a cooling-off period in 2006. The ZEW-ZEPHYR M&A Index experienced a correspond-
ing low between the start of 2006 and December 2006, sinking by around 11 percent
to 125.8 points (see illustration below). Compared with the high reached in
January 2001, M&A activity was well down, by a total of around 20 percent. The ZEW
ZEPHYR M&A Index, which the ZEW and Bureau van Dijk Electronic Publishing (BvDEP)
presented in January for the first time, tracks the development of M&A transactions
concluded worldwide from the start of the year 2000 onwards.
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From the 60s but they are still used in practice.
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Simple exponential smoothing method

B Let us assume that we have made a prediction of the value of a variable for
time period T that we will denote as ẑT and afterwards we observe its value,
zT .

How do we generate the next prediction?

B Holt (1956) proposed making a linear combination of the last prediction and
the last observed value, such that the prediction of the next period, T + 1, is
given by:

ẑT+1 = θẑT + (1− θ)zT (8)

where 0 < θ < 1 determines the weight that we give to each of the two
components to generate the predictions.

B If we take θ near the unit, the predictions for both periods are very similar,
and change little with the new information. However, if θ is small, near zero,
the prediction adapts itself as a function of the last observed value.

Time series analysis - Module 1
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Simple exponential smoothing method

B In order to better understand this model, suppose that, ẑT , also follows
equation (8) and we group terms, thus:

ẑT+1 = θ(θẑT−1 + (1− θ)zT−1) + (1− θ)zT = θ2ẑT−1 + (1− θ)(zT + θzT−1),

repeating this substitution process, we have:

ẑT+1 = θT ẑ1 + (1− θ)(zT + θzT−1 + θ2zT−2 + ....)

B Assuming that T is large and θ < 1 the first term will be very small, and we
can write the prediction equation as:

ẑT+1 = (1− θ)(zT + θzT−1 + θ2zT−2 + ....) (9)

which is a weighted mean of all the previous observations with decreasing
weights that add up to one, since (1 + θ + θ2 + ....) = 1

1−θ.

Time series analysis - Module 1
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Simple exponential smoothing method

B The predictions generated by the simple smoothing model are a weighted
mean of the previous values of the series with geometrically decreasing weights.

B Using this model requires that the parameter θ be determined. In the
first applications this parameter was set a priori, usually between .70 and .99,
but progressively better results were obtained by permitting a wider range of
possible values and estimating their size from the data of the series with the
criterion of minimizing prediction errors.

B This can be done trying a value grid, like 0.1, 0.2, ..., 0.9 for θ, calculating
the prediction errors within the sample ât = zt − ẑt and taking the value of θ
that leads to a smaller value of

∑
â2

t , the residual sum of squares or prediction
errors.

B The book of Hyndman, Koehler, Ord and Snyder (2008), Forecasting with
exponential smoothing: the state space approach, provides a very recent view
of these methods.

Time series analysis - Module 1
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Simple exponential smoothing method - Example

Example 16. With the EViews program we can determine the best value for
the smoothing parameter θ for the series of leagues sailed by Columbus’s fleet.

Date: 01/27/08   Time: 11:12
Sample: 1 34
Included observations: 34
Method: Single Exponential
Original Series: DAILYLEAGUES
Forecast Series: DAILYLSM

Parameters: Alpha 0.9990
Sum of Squared Residuals 8363.125
Root Mean Squared Error 15.68357

End of Period Levels: Mean 49.00997

θ 1.0 0.9 0.8 0.7 0.6
SSE 8414.9 8478.6 8574.0 8686.9 8798.8
θ 0.5 0.4 0.3 0.2 0.1
SSE 8891.3 8957.1 9018.8 9141.6 9360.5

Time series analysis - Module 1
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Holt’s double exponential smoothing

B The above ideas can be applied to linear trend models. Instead of assuming
that the parameters are fixed we can allow them to evolve over time and
estimate them giving decreasing weight to the observations. Suppose the
model:

zt = µt + at

but now instead of assuming a deterministic trend we allow the level to evolve
linearly over time, but with a slope that may differ in different periods:

µt = µt−1 + βt−1,

such that the difference between the levels of two consecutive times, t− 1 and
t, is βt−1 the slope at time t− 1.

B Notice that if βt−1 = β, constant over time, this model is identical to that
of the linear deterministic trend. By allowing the slope to be variable this
model is much more flexible.

Time series analysis - Module 1
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Holt’s double exponential smoothing

B The prediction of zt with information to t − 1, that we denote as ẑt−1(1),
is obtained as follows

ẑt−1(1) = µ̂t|t−1 = µ̂t−1|t−1 + β̂t−1

where the estimation of the level of the series at time t is the sum of the last
estimations of the level and of the slope with information to t− 1.

B The notation µ̂t|t−1 indicates that we are estimating the level at time t, but
with information available up to time t− 1, that is, data point zt−1.

B The prediction is µ̂T+1|T = µ̂T |T +β̂T , where µ̂T |T and β̂T are the
estimations of the level and growth with information up to time T.

Time series analysis - Module 1



48

Holt’s double exponential smoothing

B By observing the value zT+1 we can calculate the forecasting error (zT+1−
µ̂T+1|T ), and, as with the simple smoothing method, correct the previous
estimation by a fraction of the error committed. As a result, the estimation
µ̂T+1|T+1 with information up to T + 1, will be

µ̂T+1|T+1 = µ̂T+1|T + (1− θ)(zT+1 − µ̂T+1|T ) =

= µ̂T |T + β̂T + (1− θ)(zT+1 − µ̂T |T − β̂T )

where θ <1 is a discount factor.

B The new estimation of future growth with information up to T + 1, β̂T+1 is
made by modifying the last estimation by a fraction of the last error committed:

β̂T+1 = β̂T + (1− γ)(µ̂T+1|T+1 − µ̂T |T − β̂T )

where γ < 1 is another discount factor over the previous error in the growth
estimation.

Time series analysis - Module 1
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Holt’s double exponential smoothing - Example

B The parameters θ and γ are determined as in the above case, testing with
a grid of values and choosing those that minimize the sum of the squared
prediction errors.

Example 17. With the EViews program we can determine the values for θ
and γ for the series of Spanish population over 16 years.

Date: 01/27/08   Time: 11:47
Sample: 1977Q1 2000Q4
Included observations: 96
Method: Holt-Winters No Seasonal
Original Series: POPULATIONOVER16
Forecast Series: POPULASM

Parameters: Alpha 1.0000
Beta 0.3600

Sum of Squared Residuals 2.02E+10
Root Mean Squared Error 14500.58

End of Period Levels: Mean 32876100
Trend 31971.10

Time series analysis - Module 1
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Holt’s double exponential smoothing - Example
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B If we compare these results with the linear model, we see that the forecasting
errors are much smaller and that now the residuals do not show a marked trend
and the predictions are fairly good in many periods.

Time series analysis - Module 1
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Decomposition methods for seasonal series

B When a series has not only a trend and a random component but seasonality
as well, the decomposition methods assume that the data are generated as a
sum of these three effects:

zt = µt + St + at

where µt is the level of the series, St is the seasonal component and at is
the purely random component.

B The classical decomposition methods assume that both the level as well as
the seasonality are deterministic.

B The level µt is modelled using a deterministic time polynomial of order less
than or equal to two.

B The seasonality is modelled as a periodic function, which satisfies the
condition:

St = St−s

where s is the period of the function depending on the data’s seasonality.

Time series analysis - Module 1
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Decomposition methods for seasonal series

B The procedure for constructing the model for the series is carried out in the
three following steps:

�  Estimate the level of the observed series as in the deterministic trend model.
Next the estimated level , µ̂t, is subtracted from the series in order to
obtain a residual series, Et = zt − µ̂t, which will contain seasonality plus
the random component. This is called a detrended series.

�  The seasonal coefficients, S1, . . . , Ss, are defined as a set of coefficients
that add up to zero and are repeated each year. They are estimated in the
detrended series as the difference between the mean of the seasonal periods
and the general mean.

Ŝj = Ej − E.

� The series of estimated innovations is obtained by subtracting the seasonal
coefficient of each observation from the detrended series. For example, for
monthly data, using the above notation: â12i+j = E12i+j − Ŝj.

Time series analysis - Module 1
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Decomposition methods for seasonal series

B The prediction of the series is done by adding the estimations of the trend
and the seasonal factor that corresponds to each observation that month. If
we subtract the seasonal coefficient of the month from the original series we
obtain the deseasonalized series.

B As we have seen in the above sections, there are series that clearly have no
constant trend and for which fitting a deterministic trend is not suitable.

B A possible alternative is to estimate the level of the series locally using a
moving average of twelve months as follows:

µ̂t =
zt−5 + ... + zt+5 + zt+6

12

that is, we construct a mean of twelve observations.

B Applying this method we obtain an estimation of the level of the series at
times t = 6, ..., T − 6.. Next we carry out the decomposition of the series, as
explained above, using steps �  and � .

Time series analysis - Module 1
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Decomposition methods for seasonal series - Example

Example 18. We are going to analyze the series of unemployment in Spain.
Notice that EViews use the following MA expression for quarterly data:

µ̂t =
0.5zt−2 + zt−1 + zt + zt+1 + 0.5zt+2

4
.

Date: 01/27/08   Time: 13:12
Sample: 1977Q1 2000Q4
Included observations: 96
Difference from Moving Average
Original Series: UNEMP
Adjusted Series: UNEMPSA

Scaling Factors:

 1  34388.36
 2 -26700.20
 3 -21094.95
 4  13406.79
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Decomposition methods for seasonal series - Example
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Decomposition methods for seasonal series - Example
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Seasonality and seasonal adjustment

B An alternative procedure for modelling seasonality is to represent it using a
harmonic function with period s. Assuming that we have eliminated the trend,
we consider series that have only a seasonal component, with structure:

zt = St + at.

B The simplest alternative for representing St as a periodic function, with
St = St−s, is to assume a harmonic function, such as the sine or cosine:
sin(2πt/s) and cos(2πt/s)

B s is called period of the periodic function; its inverse f = 1/s is called
frequency and w = 2πf = 2π/s is the angular frequency.

Example 19. In a quarterly series (s = 4), the frequency is f = 1/4 = .25,
indicating that between two observations, a quarter, .25 of the period of
the function has gone by or 25% of a full cycle. The angular frequency is
w = 2π/4 = π/2, indicating that in one quarter an angle of π/2 is covered
with respect to the full cycle of 2π.
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Representation of seasonality by a cycle

B We assume a series (z1, ..., zT ) that has cyclical seasonality of period s, and
in which we observe j complete cycles, that is T = js, with j an integer. We
are going to model the seasonality using a sine function with angular frequency
w = 2π/s.

B The first observation of the series will not be, in general, the average of the
cycle, as corresponds to the sine function. Instead, the sinusoidal wave which
describes the seasonality will start in the first observation with a certain angle
θ of difference, which is unknown, with relation to the start of the cycle.

B Furthermore, the cycle will also have an unknown amplitude that we will
denote as R.

B The model for the series is:

zt = µ + R sin(wt + θ) + at. (10)
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Representation of seasonality by a cycle

B To fit the model (10) to the data we are going to write it in a more
convenient form. We will take the sine of the sum of the two angles as the
sum of the products of the sines plus the product of the cosines, with which
we can write the above equation as

zt = µ + Rsin(wt) sin [θ]R cos(wt) cos [θ] + at

and letting A = R sin θ and B = R cos θ, we have:

zt = µ + A sin(wt) + B cos(wt) + at. (11)

This expression is simpler than (10) since it represents the series as the sum of
two sinusoidal functions of known angular frequency.

B Model (11) is linear in the three unknown parameters, µ, A and B, and we
can estimate it using least squares.
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Representation of seasonality by a cycle

B Assuming that T is an integer number of cycles, we can obtain the following
expressions:

µ̂ =
1
T

∑T

t=1
zt

and

Â =
2
T

∑T

t=1
zt sin(wt) (12)

B̂ =
2
T

∑T

t=1
zt cos(wt) (13)

Then, an estimator of the amplitude, R, is:

R̂2 = Â2 + B̂2 (14)

and, and estimator of the phase, θ, is:

θ = arctan A/B (15)
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Representation of seasonality by a cycle

B The residuals of the model are calculated using:

ât = zt − µ̂ + Â sin(wt) + B̂ cos(wt)

and they have zero mean and variance σ̂2 = 1
T

∑T
t=1 â2

t .

B The variance of the variable, z is

1
T

∑T

t=1
(zj − µ̂)2 =

1
T

∑T

t=1
(Â sin(wt) + B̂ cos(wt) + ât)2

and using the properties that the variables sin(wt) and cos(wt) have zero
mean, variance 1/2 and they are uncorrelated, gives us:

1
T

∑T

t=1
(xj − µ̂)2 =

Â2

2
+

B̂2

2
+ σ̂2 =

R̂2

2
+ σ̂2, (16)

which can be interpreted as a decomposition of the variance into two orthogonal
components of variability.
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Representation of seasonality by a cycle - Example

Example 20. We fit a 12 period sinusoidal function, or angular frequency
2π/12, to the average monthly temperature in Santiago de Compostela (Spain):

Dependent Variable: TEMPERATURE
Method: Least Squares
Date: 01/27/08   Time: 20:18
Sample (adjusted): 1997M01 2001M11
Included observations: 59 after adjustments

Variable Coefficient Std. Error t-Statistic Prob.  

C(1) 13.27567 0.204400 64.94950 0.0000
SINE -3.335080 0.286562 -11.63823 0.0000

COSINE -4.135446 0.291546 -14.18452 0.0000

R-squared 0.857379     Mean dependent var 13.34576
Adjusted R-squared 0.852285     S.D. dependent var 4.083834
S.E. of regression 1.569567     Akaike info criterion 3.788985
Sum squared resid 137.9582     Schwarz criterion 3.894623
Log likelihood -108.7751     Durbin-Watson stat 1.428331

Datafile tempsantiago.wf1
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Representation of seasonality by a cycle - Example
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B The amplitude of the wave is
R̂ = 5.36. The initial angle is
θ = −0.6727 radians.

B The temperature in Santiago can
be represented by a sine wave whose
amplitude is 5.36 degrees centigrade
and which begins in January with an
angle difference of -0.6727 radians.

B Twice the amplitude of the wave
indicates the average maximum
difference between the coldest and
warmest months, 10.7 degrees in this
case.
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Representation of seasonality by a cycle - Example

Example 21. We fit a 12 period sinusoidal function, or angular frequency
2π/12, to the average monthly rainfall in Santiago de Compostela (Spain):

Dependent Variable: RAINFALL
Method: Least Squares
Date: 01/27/08   Time: 21:48
Sample: 1988M01 1997M12
Included observations: 120
RAINFALL = C(1) + C(2)*SINE + C(3)*COSINE

Coefficient Std. Error t-Statistic Prob.  

C(1) 145.3224 9.078518 16.00728 0.0000
C(2) 3.046136 12.84079 0.237223 0.8129
C(3) 88.27209 12.83713 6.876309 0.0000

R-squared 0.288063     Mean dependent var 145.3500
Adjusted R-squared 0.275893     S.D. dependent var 116.8703
S.E. of regression 99.45017     Akaike info criterion 12.06187
Sum squared resid 1157169.     Schwarz criterion 12.13156
Log likelihood -720.7124     Durbin-Watson stat 1.578078

Datafile rainfall.wf1
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Representation of seasonality by a cycle - Example
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B Although the sinusoidal model
explains part of the variability of the
series, the fit now is not as good
as in the temperature series in the
above example.

B This is because the sinusoidal
function is not able to pick up the
asymmetries or the peaks in the
observed series.
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Exploration of multiple cycles

B The representation of a seasonal series using equation (11) is adequate
when the seasonality from period s is exactly sinusoidal, but it does not help
us describe general periodic functions.

B A generalization of this analysis is to allow the periodic function to be the
sum of various harmonic functions with different frequencies.

B Given a series of length T , we use the terms basic periods or Fourier
periods to describe those that are exact period fractions of the sample size.
That is, the basic periods are defined by:

sj =
T

j
, for j = 1, 2, ..., T/2

The maximum value of the basic period is obtained for j = 1 and is T, the
sample size. Hence, we observe the wave only once. The minimum value of
the basic period is obtained for j = T/2 and is 2, because we cannot observe
periods that last fewer than two observations.
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Exploration of multiple cycles

B In fitting the cycle we usually work with frequencies instead of periods, and
the basic frequencies, or Fourier frequencies, are defined as the inverses of
the basic periods:

fj =
j

T
, for j = 1, 2, ..., T/2,

which gives us 1/2 ≥ fj ≥ 1/T, and the maximum value of the frequency we
can observe is f = .5.

B We can obtain a general representation of a periodic function as a sum of
waves associated with all the basic frequencies, using:

zt = µ +
T/2∑
j=1

Aj sin(wjt) +
T/2∑
j=1

Bj cos(wjt). (17)

This equation contains as many parameters as observations, thus it will always
exactly fit any series being observed.
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Exploration of multiple cycles

B Therefore, we have to find a procedure for selecting the frequencies that we
must include in this equation in order to explain the evolution of the series.
This is the purpose of the periodogram.

B The equation (17) allows us to decompose exactly an observed time series as
a sum of harmonic components. According to equation (16), the contribution
of a wave to the variance of a series is the square of the amplitude divided by
two.

B Therefore, waves with a high estimated amplitude will be important in
explaining the series, whereas those waves with low amplitude contribute little
to its explanation.

B To select the important frequencies we can calculate the parameters Aj and
Bj for all the basic frequencies and represent the contribution to the variance
of the series, that is the amplitude of the wave squared and divided by two, as
in a frequency function.
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Exploration of multiple cycles

B Given the estimated coefficients Âj and B̂j for frequency wj we calculate

R̂j = Â2
j + B̂2

j , and using equation (17), we decompose the variance of the
series in components associated with each one of the harmonic functions.
Letting s2

z be the sample variance of the series, we write:

Ts2
z =

T∑
t=1

(zt − µ)2 =
T/2∑
j=1

T

2
R̂j

2
(18)

B The periodogram is the representation of the contribution of each frequency,

TR̂j

2
/2, as a function of the frequency wj or fj:

I(fj) =
TR̂j

2

2
, with 1/T ≤ fj ≤ .5. (19)
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Exploration of multiple cycles - Examples

Example 22. We are going to calculate the periodogram for the series of
temperature in Santiago.
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B As expected, a high and isolated peak is observed in the monthly seasonal
frequency, f = 1/12 = .083.
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Exploration of multiple cycles - Examples

Example 23. We are going to calculate the periodogram for the series of
rainfall in Santiago.
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B A peak is observed in the
monthly seasonal frequency, f =
1/12 = .083.

B The graph also shows peaks in
frequencies around 1/6=.16 and
1/3=.33, which are associated
with seasonal frequencies.

B This result indicates that
seasonality is modelled better
as a sum of these three
harmonic components than with
a deterministic 12 period wave.
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Summary

• We have sawn how to fit deterministic trend models and their limitations in
representing real series.

• The smoothing methods based on giving decreasing weight to the past work
better, but they involve a dependence structure that, while flexible, is not
applicable to all real series.

• Decomposition methods are useful, but more flexible methods are needed
for the components.

• The periodogram is a valuable tool for detecting deterministic sinusoidal
components in a series, such as cyclical seasonal effects.
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