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10. Model diagnosis and prediction

Outline:

• Introduction

• Autocorrelation tests

• Zero mean, homoscedasticity and normality tests

• Model stability test

• Predictions

Recommended readings:

B Chapter 11 of D. Peña (2008).

B Chapter 5 of P.J. Brockwell and R.A. Davis (1996).

B Chapter 4 of J.D. Hamilton (1994).

Time series analysis - Module 1 Andrés M. Alonso



479

Introduction

B The diagnosis of the model requires confirming that basic hypotheses made
with respect to the residuals are true:

1. Marginal mean equal to zero.

2. Constant marginal variance.

3. No correlation for any lag.

4. Normal distribution.

B Moreover, these properties must be verified not only with respect to the
marginal distributions but also to the distributions conditional on any set of
information of past values in the series.

B For example, for the mean the condition is:

E(at|zt−1, ..., z1) = E(at|at−1, ..., a1) = 0.

which is much stronger than the condition of zero marginal mean.
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Introduction

B We also assume that:

V ar(at|zt−1, ..., z1) = V ar(at|at−1, ..., a1) = σ2

which generalizes the condition of constant marginal variance for any
conditional distribution.

B Of the four conditions established for marginal distributions

• Condition (1) is not very restrictive. It is possible for a model to be very
incorrect, and yet (1) is verified.

• The condition (2) of marginal variance is stronger.

• Condition (3), lack of correlation for any lag, is central to ensuring that the
model is suitable.

• Finally, the condition of normality is useful, because it guarantees us that
the non-correlation implies independence, and that we are not leaving
information to be modelled.
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Introduction

B The diagnosis is related, but not identical, to the model selection studied in
the previous section:

• It is possible that the best model selected within a class leads to residuals
that do not verify the above hypotheses, and thus we will have to search
for a new one in a wider class.

• It is also possible to have various models whose residuals do verify the above
hypotheses, and we can then select the best one using a selection criterion.

• We see, therefore, that the diagnosis of the model is a complementary step
to selecting the best model from within a class using a selection criterion.

B Finally, in this section we will study the calculation of predictions using an
ARIMA model when the parameters have been estimated in a sample and there
is some uncertainty as well regarding the correct model followed by the data.
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Autocorrelation tests

B The first test to run is to see whether the estimated residuals are uncorrelated.
To do this, we calculate their ACF by means of:

r̂k =

T−k∑
t=1

(ât − a) (ât+k − a)

T∑
t=1

(ât − a)2
(206)

where a is the mean of the T residuals.

B If the residuals are independent, the coefficients, r̂k, for a k which is not
very small, are approximately random variables with zero mean, asymptotic
variance 1/T and normal distribution.

B The asymptotic variance is valid for large k, but not for the first lags.
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Autocorrelation tests

B For example, it can be proved that if the series follows an AR(1) process
the asymptotic standard deviation of the first order autocorrelation for the
residuals, r̂1, is

√
(1− φ2)/T , which may be much less than 1/

√
T .

B As a result, the value 1/
√
T must be considered as a maximum limit of the

standard deviation of the residual autocorrelations.

B The usual procedure is to plot two parallel lines at a distance of 2/
√
T from

the origin in its autocorrelation functions or partial autocorrelation functions,
and check to see whether all the coefficients r̂k are within the confidence limits.

B Since these intervals are, approximately, 95%, on average one out of
every twenty estimated autocorrelation coefficients will lie outside, thus the
appearance of a significant value in a high lag is to be expected.

B Nevertheless, since according to the above these limits overestimate the
variance in small lags, a value close to the confidence limits ±2/

√
T in the

initial lags should be considered a clear indication that the model is unsuitable.
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Autocorrelation tests

The Ljung-Box test

B A global test that the first h coefficients are zero (h must be large) is the
Ljung-Box test.

B If the residuals are really white noise, then the estimated correlation
coefficients are asymptotically normal, with zero mean and variance (T −
k)/T (T + 2).

B Therefore, the statistic

Q (h) = T (T + 2)
h∑

j=1

r̂2j
T − j

(207)

is distributed, asymptotically, as a χ2 with degrees of freedom equal to
the number of coefficients in the sum (h) minus the number of estimated
parameters, n.
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The Ljung-Box autocorrelation tests

B For non-seasonal models n = p+ q + 1, or n = p+ q, according to whether
the model has a constant or not.

B For seasonal models, which usually do not have a constant, n = P+p+Q+q.

B We will conclude that the model is unsuitable if the value of Q(h) obtained
using (207) is greater than the 0.95 percentile of the χ2 distribution with h−n
degrees of freedom, which we will denote by χ2

.95(h− n).

B In general, we reject the hypothesis of non-correlation of the residuals when
the probability:

Pr
(
χ2(h− n) > Q(h)

)
is small (less than 0.05 or 0.01).
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Autocorrelation tests

The determinant test

B The Ljung-Box test has the drawback of giving, approximately, the
same weight to all the autocorrelation coefficients and being invariant to
permutations of these coefficients.

B Nevertheless, intuitively we should give more weight to the low order
coefficients than to high. Peña and Rodŕıguez (2003) have proposed a more
powerful test than that of Ljung-Box which has this property.

B The test is based on the autocorrelation matrix of the residuals:

Rm =


1 r̂1 ... r̂m−1

r̂1 1 ... r̂m−2

... ... 1 ...
r̂m−1 r̂m−2 ... 1
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The determinant autocorrelation test

B The statistic of the test is:

Dm = − T

m+ 1
log |R̂m|,

which follows, asymptotically, a gamma distribution with parameters

α =
3(m+ 1) {m− 2 (p+ q)}2

2 {2m (2m+ 1)− 12(m+ 1) (p+ q)}

β =
3 (m+ 1) {m− 2 (p+ q)}

2m (2m+ 1)− 12 (m+ 1) (p+ q)
.

B The distribution has mean α/β = (m+ 1) /2− (p+ q) and variance:

α/β2 = (m+ 1) (2m+ 1) /3m− 2(p+ q).

B The percentiles of Dm are easily obtained by calculating the parameters of
the gamma with the above formulas and using the tables of this distribution
(many computer programs include this function).
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The determinant autocorrelation test

B Alternatively, the variable

ND∗
m = (α/β)−1/4

(
4/
√
α
) (

(Dm)1/4 − (α/β)1/4

(
1− 1

6α

))
, (208)

distributed, approximately, as a normal standard variable.

B It can be proved that this statistic can be written as:

Dm = T
m∑

i=1

(m+ 1− i)
(m+ 1)

π̂2
i , (209)

where π̂2
i is the square of the partial correlation coefficient of order i.

B This test can be seen as a modified Ljung-Box test, where instead of utilizing
the auto correlation coefficients we use the partial AC, but with weightings
(m+1−i)

m . These weightings decrease linearly with the lag, such that π̂2
1 has

weight one and π̂2
m weight 1/m.
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Overfitting tests based on BIC criterion

B A complementary technique to the above tests is the overfitting technique,
which consists in estimating a model of an order higher than the one being
analyzed and checking whether significant estimated coefficients are obtained.

B With this it is possible to pick up small remaining structures that can
improve the predictions, but that might not have been clearly detected in the
analysis of residuals.

B In general, if we have fitted an ARIMA(p, d, q) that seems suitable, the
overfitting is applied estimating the ARIMA (p+r, d, q) and ARIMA (p, d, q+r)
models for a low value of r, normally 1 or 2, and checking whether the
additional parameters are significant.

B It is not advisable to expand the AR and MA parts at the same time, since
this might produce a compensation of effects.
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Overfitting tests based on BIC criterion

B If the model fitted initially is:

φ (B) zt = θ (B) at (210)

we will obtain an equally good fit with:

φ∗ (B) zt = θ∗ (B) at (211)

with φ∗ (B) = φ (B) (1− φB) and θ∗ (B) = θ (B) (1− θB) and φ being
approximately equal to θ.

B Therefore, if the correct model is (210) and we estimate (211) we obtain
all the significant parameters and we will only notice the over-parameterizing
when factorizing the AR and MA operators.

B As a result, it is always advisable to obtain the roots of the AR and MA
operators in mixed models and check that there are no factors that cancel each
other out on both sides.
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Overfitting tests based on BIC criterion

B An automatic way of carrying out the overfitting is to adjust AR models up
to a pmax order preset to the residuals of the model and select the best AR
model by means of the BIC criterion.

• If the best model selected is an AR(0), that is, a white noise, we accept
that the residuals are uncorrelated.

• In the opposite case, we reject the model as inadequate and the degree of
the best model selected tells us how we should modify the current one.

B Since the BIC criterion is consistent, that is for large sample sizes it tends to
select the correct model with a probability that tends to zero, this procedure
works well in practice if we have large samples.

B With smaller samples sizes, it is always recommendable to run a determinant
test on the estimated residuals.
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Zero mean, homoscedasticity and normality tests

Test for zero mean

B The estimated residuals of an ARIMA model are not in principle subject to
the restriction

∑T
t=1 ât = 0.

B This condition is only imposed when we have an AR model and its parameters
(including a constant) have been estimated by least squares, but in the exact
maximum likelihood estimation this restriction does not exist.

B To test the hypothesis of zero mean in the general case, assuming T
residuals and p + q parameters, we calculate the mean a = T−1

∑T
t=1 ât and

and variance σ̂2 = T−1
∑T

t=1 (ât − a)2, and we conclude that E [ât] 6= 0, if

a

σ̂/
√
T

is significantly large.

B This test must be applied after checking that the residuals are uncorrelated,
to ensure that σ̂2 is a reasonable estimator of the variance.
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Zero mean, homoscedasticity and normality tests

Test for homoscedasticity

B The stability of the marginal variance of the residuals is confirmed by
studying the graph of the residuals over time.

B If in view of the estimated residuals there seems to be a change of variance
from a point t = n1 on, we can divide the sample interval into two parts and
apply a test of variances.

B In the hypothesis under which both sections have the same variance, the
statistic

F =
∑n1

t=1 â
2
t/n1∑T

t=n1+1 â
2
t/(T − n1)

=
s21
s22

will be distributed approximately as an F with n1 and T − n1 degrees of
freedom.
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Zero mean, homoscedasticity and normality tests

Test for homoscedasticity

B In the same way, if we suspect h changes in variance in the periods n1, ..., nh

the test of variance equality is

λ = T log σ̂2 −
h∑

i=1

ni log s2i

where σ̂2 is the variance of the residuals in the entire sample and s2i is the
variance in section i of length ni observations.

B Under the hypothesis that the variance is the same in all the sections it is
proved that this statistic is, asymptotically, a chi-square with h− 1 degrees of
freedom.

B To apply this test it is advisable to have at least 10 observations in each
section.
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Zero mean, homoscedasticity and normality tests

Test for normality

B The hypothesis that the residuals have a normal distribution is checked
using any of the usual tests.

B A simple test is to calculate the coefficient of asymmetry

α1 =
∑

(ât − a)3

σ̂3

and kurtosis
α2 =

∑
(ât − a)4

σ̂4

of the residuals and use the condition that, under the hypothesis of normality,
the variable:

X =
Tα2

1

6
+
T (α2 − 3)2

24
is a χ2 with two degrees of freedom.

B Finally, it is always recommendable to study the graph of the estimated
residuals ât over time.
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Model diagnosis - Examples

Example 91. Lets begin with a classical example: The airline time series.
The figure gives the graph of the residuals of the series estimated using an
ARIMA(0, 1, 1)× (0, 1, 1)12 model.
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Example 91. The figure
gives ACF of the residuals.

B No coefficient is significant
and also Q statistic is not
significant for all lags.

B Thus we conclude that,
with this test, we find no
evidence of serial dependence
in the residuals.

Correlogram of Residuals

Date: 02/20/08   Time: 10:57
Sample: 1950M02 1960M12
Included observations: 131
Q-statistic probabilities adjusted for 2 ARMA term(s)

Autocorrelation Partial Correlation  Q-Stat  Prob

1 0.1204
2 0.1804
3 2.2844 0.131
4 5.2684 0.072
5 5.5496 0.136
6 6.0438 0.196
7 6.8403 0.233
8 7.1001 0.312
9 8.4610 0.294

10 9.3103 0.317
11 9.4385 0.398
12 9.4432 0.491
13 9.6473 0.562
14 9.9598 0.619
15 10.258 0.673
16 14.120 0.441
17 14.175 0.512
18 14.179 0.585
19 16.012 0.523
20 17.708 0.475
21 17.896 0.529
22 17.993 0.588
23 25.775 0.215
24 26.077 0.248
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B The mean of the residuals is not significantly different from zero and the
variability of the residuals, except for one possible outlier, seems constant over
time.
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-0.10 -0.05 -0.00 0.05 0.10

Series: Residuals

Sample 1950M02 1960M12

Observations 131

Mean       0.000342

Median  -0.002962

Maximum  0.097408

Minimum -0.122032

Std. Dev.   0.036358

Skewness  -0.082868

Kurtosis   3.475025

Jarque-Bera  1.381596

Probability  0.501176

B Is normally distributed? Yes
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Model diagnosis - Examples

Example 92. The figure gives the graph of the residuals of the vehicle
registration series estimated using an ARIMA(0, 1, 1)×(1, 1, 1)12 model. Some
noticeable outliers are observed.
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Example 92. The figure gives ACF of the residuals.

Correlogram of Residuals

Date: 02/18/08   Time: 14:49
Sample: 1962M02 1999M12
Included observations: 455
Q-statistic probabilities adjusted for 3 ARMA te

Autocorrelation AC  Q-Stat  Prob

1 -0.049 1.1092
2 -0.004 1.1163
3 0.075 3.7297
4 -0.098 8.1915 0.004
5 0.005 8.2039 0.017
6 0.029 8.5845 0.035
7 -0.083 11.783 0.019
8 0.042 12.607 0.027
9 0.031 13.066 0.042

10 -0.081 16.169 0.024
11 0.060 17.839 0.022
12 0.025 18.135 0.034
13 -0.023 18.383 0.049
14 0.007 18.409 0.073
15 -0.005 18.423 0.103
16 -0.068 20.632 0.081
17 0.029 21.019 0.101
18 -0.053 22.371 0.098
19 0.011 22.430 0.130
20 -0.029 22.826 0.155
21 -0.051 24.092 0.152
22 -0.000 24.092 0.193
23 0.071 26.540 0.149
24 0.024 26.822 0.177

B No coefficient is clearly
significant but the Q statistic
is significant for lags 4 to 14.

B Thus, we conclude that,
with this test, we reject the
serial independence of the
residuals.

Time series analysis - Module 1



501

B The mean of the residuals is not significantly different from zero and the
variability of the residuals, except for some possible outliers, seems constant
over time.
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Series: RESID

Sample 1960M01 1999M12

Observations 467

Mean      -0.007667

Median  -0.002161

Maximum  0.432698

Minimum -0.618389

Std. Dev.   0.116063

Skewness  -0.626473

Kurtosis   6.050075

Jarque-Bera  211.5672

Probability  0.000000

B Is normally distributed?
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B Is normally distributed? No.

B But, if we omit three atypical observations, we obtain the following residual
statistics:
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Series: RESID

Sample 1960M01 1999M12

Observations 464

Mean      -0.005988

Median  -0.002014

Maximum  0.276686

Minimum -0.338763

Std. Dev.   0.107378

Skewness  -0.200384

Kurtosis   3.208056

Jarque-Bera  3.942107

Probability  0.139310

B Thus we conclude that outliers can influence the autocorrelation and
normality test’s results.
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Example 92. The outliers detection will be studied in the Module 2, but
here we will use the TRAMO/SEATS automatic detection:

type: {’TC’ ’TC’ ’TC’ ’LS’}
date: {’01-86’ ’01-93’ ’04-60’ ’07-61’}

7
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11

12

13

1960 1965 1970 1975 1980 1985 1990 1995

Linearized series from TRAMO LREG

B So, we will repeat the analysis using the outlier-free series.
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Model diagnosis - Examples

Example 93. The figure gives the graph of the residuals of the corrected
vehicle registration series estimated using an ARIMA(2, 1, 0)×(1, 1, 1)12 model.
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Example 93. The figure gives ACF of the residuals.

Correlogram of Residuals

Date: 02/18/08   Time: 15:12
Sample: 1962M04 1999M12
Included observations: 453
Q-statistic probabilities adjusted for 4 ARMA te

Autocorrelation AC  Q-Stat  Prob

1 -0.010 0.0479
2 -0.027 0.3897
3 -0.049 1.5024
4 -0.020 1.6842
5 0.009 1.7256 0.189
6 0.001 1.7258 0.422
7 -0.101 6.4085 0.093
8 0.020 6.5934 0.159
9 0.045 7.5193 0.185

10 -0.068 9.6546 0.140
11 0.074 12.188 0.095
12 -0.009 12.223 0.142
13 -0.035 12.787 0.172
14 -0.033 13.288 0.208
15 -0.009 13.331 0.272
16 -0.073 15.860 0.198
17 0.042 16.681 0.214
18 -0.030 17.115 0.250
19 0.049 18.278 0.248
20 -0.036 18.912 0.273
21 -0.012 18.976 0.330
22 -0.001 18.977 0.393
23 0.109 24.683 0.171
24 0.022 24.909 0.205

B No coefficient is significant
and also Q statistic is not
significant for all lags.

B Thus we conclude that,
with this test, we find no
evidence of serial dependence
in the residuals.

Time series analysis - Module 1



506

B The mean of the residuals is not significantly different from zero and the
variability of the residuals seems constant over time.
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Series: Residuals

Sample 1962M04 1999M12

Observations 453

Mean       0.001240

Median  -0.001309

Maximum  0.297403

Minimum -0.309538

Std. Dev.   0.101856

Skewness  -0.124903

Kurtosis   3.189402

Jarque-Bera  1.854970

Probability  0.395547

B Is normally distributed? Yes
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Model diagnosis - Examples

Example 94. The figure gives the graph of the residuals of the the work
related accidents series in logs estimated using an ARIMA(2, 1, 0)× (0, 1, 2)12
model. Again, some noticeable outliers are observed.
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Example 94. The figure gives ACF of the residuals.

Correlogram of Residuals

Date: 02/18/08   Time: 15:21
Sample: 1980M04 1998M12
Included observations: 225
Q-statistic probabilities adjusted for 4 ARMA te

Autocorrelation AC  Q-Stat  Prob

1 -0.013 0.0356
2 -0.024 0.1663
3 -0.029 0.3625
4 0.029 0.5575
5 -0.039 0.9122 0.340
6 0.055 1.6196 0.445
7 -0.091 3.5709 0.312
8 0.109 6.3584 0.174
9 0.109 9.1827 0.102

10 -0.041 9.5743 0.144
11 0.030 9.7879 0.201
12 -0.005 9.7949 0.280
13 -0.063 10.765 0.292
14 0.173 17.973 0.055
15 0.001 17.973 0.082
16 -0.128 21.969 0.038
17 0.076 23.387 0.037
18 -0.061 24.299 0.042
19 -0.048 24.867 0.052
20 0.059 25.741 0.058
21 0.024 25.885 0.077
22 0.096 28.200 0.059
23 0.112 31.386 0.037
24 -0.002 31.387 0.050

B No coefficient is significant
but the Q statistic is
significant for lags ≥ 16.

B Thus we conclude that,
with this test, we reject the
serial independence of the
residuals.
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Example 94. These atypical observations may leads to the rejection of any
test of normality.
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Series: RESID

Sample 1979M01 2000M12

Observations 225

Mean       0.001720

Median   0.001828

Maximum  0.262545

Minimum -0.191480

Std. Dev.   0.062037

Skewness   0.306754

Kurtosis   4.752281

Jarque-Bera  32.31450

Probability  0.000000

type: {’AO’ ’LS’}
date: {’11-88’ ’02-88’}

B The presence of noticeable outliers suggests studying these effects before
trying more complex models for this series.
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Model stability test

B If the model is suitable, the prediction errors for one step ahead are normal
random variables of zero mean, and constant variance.

B As a result, if we have estimated the model with data up to t = T and
next we generate predictions. Let âT+1, ..., âT+h denote the one step ahead
prediction errors, the variable

Q =
∑h

j=1
â2

T+j/σ
2

is a χ2 with h degrees of freedom.

B Since σ2 is estimated by means of σ̂2, the variable

Q

h
=

∑h
j=1 â

2
T+j/h

σ̂2
(212)

is an F with h and T − p− q degrees of freedom, with T being the number of
initial data points and p+ q the number of estimated parameters.

B Hence, if Q/h is significantly large, this suggests that the model is not
suitable.
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Predictions

Punctual predictions

B Predictions of the estimated model can be carried using the estimated
parameters as if they were the true ones.

B Moreover, if the model is correct the estimated parameters, which are those
that minimize the one step ahead prediction errors, are also those that minimize
the prediction error to any horizon.

B Nevertheless, if the model is not correct this property is not necessarily true.

B To illustrate this aspect, let us assume that a series has been generated by
an AR(2) but it has been estimated, erroneously, as an AR(1). If we use least
squares the parameter is estimated with:

min
∑

(zt − αzt−1)2

and the estimator α̂ obtained minimizes the quadratic one step ahead prediction
error.
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Punctual predictions

B The result is α̂ = r1, with r1 being the first order autocorrelation coefficient
of the data.

B Let us assume that we are interested in a two-step ahead prediction. We
could state that if the data have been generated by an AR(1) the optimum
predictor is, the conditional expectation, φ2zt−1 and use α̂2zt−1.

B Alternatively, we could directly obtain the β coefficient of an AR(1) predictor
that minimizes the quadratic two-step ahead prediction error, minimizing:

min
∑

(zt − βzt−2)2

and we find that β̂ = r2, the second order autocorrelation coefficient.

B If the data had been generated with an AR(1) since the theoretical values
would verify ρ2 = ρ2

1 = φ2, the predictor of zt+2 from zt−1 assuming an AR(1),
α̂2zt−2, would coincide approximately for samples with r2zt−2.

Time series analysis - Module 1



513

Punctual predictions

B Nevertheless, since the true model is the AR(2), both predictors will be
quite different and the second will have a smaller mean square prediction error.

B Indeed, as the true model is AR(2), r1 estimates the theoretical value of the
first autocorrelation coefficient of this process, which is φ1/(1− φ2), and r2
will estimate φ2

1/(1− φ2) + φ2. The prediction r2zt−2 is closer to the optimal
than to the α̂2zt−2.

B To summarize, if the model is correct, the prediction to any horizon is
obtained using the parameters estimated to one horizon.

B Nevertheless, if the model is not correct, we can improve the predictions by
estimating the parameters for each horizon.

B This idea has been researched by some authors estimating the parameters
at different horizons. If the model is correct, the parameters obtained will
be approximately equal, but if the model is incorrect, we will find that it is
necessary to use different parameters for different horizons.
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Predictions

Prediction intervals

B The prediction intervals that we studied in section 7 were calculated assuming
known parameters and only taking into account the uncertainty due to the
future innovations.

B In practice, when the parameters of the model are estimated with the data,
there are four types of uncertainty in the prediction, associated with the lack
of knowledge about:

1. Future innovations.

2. The distribution of the innovations.

3. The true values of the parameters.

4. The model that generated the data.

Time series analysis - Module 1



515

Prediction intervals

B The first source of uncertainty is inevitable and does not depend on the
sample size. As the future values of the series depend on future unknown
innovations, we will have uncertainty which grows with the prediction horizon.

B The importance of the three remaining sources of uncertainty depend on
the size of the sample. In general the effect of these uncertainties is small for
large samples (long series), but can be significant in smaller samples (fewer
than 50 data points).

B If we have a long series we can run a reliable test to see whether the
distribution of the innovations is normal and, if we reject it, we can estimate
and use a closed to real distribution of the innovations starting from the
residuals.

B With short series, the power of a normality test is low, thus there is always
greater uncertainty with respect to the distribution of the innovations. A
possible solution is to use bootstrap techniques.
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Prediction intervals

B The third source of uncertainty: the effect of the estimation of the parameters
also increases with short series, since the estimation error diminishes with the
sample size.

B Finally, with short series it is difficult to choose between similar models since
the confidence intervals of the parameters are wide.

B For example, if the data have been generated with (1− .7B− .15B2)zt = at

it will be difficult to choose with a sample of T = 50 between an AR(1)
and an AR(2), since the estimation error of the parameters is of order
1/
√
T = 1/

√
50 = .14, a similar size to that of the parameter, hence the usual

test will indicate that this parameter is not significant.

B With small or medium sample sizes there are usually several models which
are compatible with the observed series, and we cannot ignore the fact that
the selected model may be wrong. A possible solution is the model average
procedures
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Predictions

Prediction intervals for large samples

B If the sample size is large, the main uncertainty is that which is due to
innovations and the others sources:

2. The distribution of the innovations.

3. The true values of the parameters.

4. The model that generated the data.

can be ruled out.

B Assuming normality, we can construct confidence intervals in large samples
for the prediction of 95% taking the estimators as parameters and calculating
the interval as in the case in which the parameters are known. For example,
for 95% the interval is:

zT+k ∈ ẑT (k)± 1, 96 σ̂
(
1 + ψ̂2

1 + ...+ ψ̂2
k−1

)1/2

.
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Prediction intervals for large samples

Example 95. The figure shows the predictions generated for the work related
accident series in the hypothesis of large samples and assuming normal
distributions. Notice that the confidence intervals grow as the prediction
horizon increases.
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Predictions

Bootstrap prediction intervals

B If the innovations are not normal, or if the sample size is not large and we
do not wish to ignore the uncertainty due to the estimation of parameters, we
can use bootstrap techniques to generate the predictions.

B A simple bootstrap procedure that takes into account the uncertainty due
to the estimation of the parameters is the following (see, v.g. Thombs and
Shucany (1990); Alonso, Peña and Romo (2002) and Pascual, Romo and Ruiz
(2004)):

Outline of the resampling procedure:

(X1, . . . , XN) V ÂR(p) V


X
∗(1)
1 , . . . , X

∗(1)
N V ÂR(p)

∗(1)

......... .........

X
∗(B)
1 , . . . , X

∗(B)
N V ÂR(p)

∗(B)
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Bootstrap prediction intervals

1. Given XXX, we obtain some estimates of the autoregressive parameters:
φ̂φφ = (φ̂1, . . . , φ̂p).

2. We calculate the residuals: ε̂t = Xt −
∑p

i=1 φ̂iXt−i, for t = p + 1, p +
2, . . . , N .

3. We obtain the empirical distribution function of the centered residuals
ε̃t = ε̂t − (N − p)−1

∑N
t=p+1 ε̂t by:

F ε̃
N(x) =

1
N − p

∑N

t=p+1
I (ε̃t ≤ x) .

4. We obtain N − p i.i.d. observations from F ε̃
N denoted by (ε∗(b)p+1, . . . , ε

∗(b)
N ).
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Bootstrap prediction intervals

5. We fix the first p values (X∗(b)
1 , . . . , X

∗(b)
p ) and we obtain the remaining

N − p observations (X∗(b)
p+1, . . . , X

∗(b)
N ) by:

X
∗(b)
t =

∑p

i=1
φ̂iX

∗(b)
t−i + ε

∗(b)
t .

6. Given XXX∗(b) = (X∗(b)
1 , . . . , X

∗(b)
n ), we can calculate the bootstrap

φ̂φφ
∗(b)

= (φ̂∗(b)1 , . . . , φ̂
∗(b)
p ) or some other statistics of interest.

A fundamental remark on the above resampling procedure:

BBB This resampling method must be modified if the goal is to construct
prediction intervals since it does not replicate the conditional distribution of
the future observations XT+h given the observed data XXX.
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Bootstrap prediction intervals

Outline of the resampling procedure:

(X1, . . . , XN) V ÂR(p) V


X
∗(1)
1 , . . . , X

∗(1)
N V ÂR(p)

∗(1)

......... .........

X
∗(B)
1 , . . . , X

∗(B)
N V ÂR(p)

∗(B)

V (XT−p, . . . , XT ) X
∗(1)
T+1, . . . , X

∗(1)
T+h

......... .........

V (XT−p, . . . , XT )︸ ︷︷ ︸
Observed

X
∗(B)
T+1 , . . . , X

∗(B)
T+h︸ ︷︷ ︸

futures

7. Compute future bootstrap observations by the recursion:

X∗
T+h − X̄ = −

∑p

j=1
φ̂ ∗j (X∗

T+h−j − X̄) + ε∗t ,

where h > 0, and X∗
t = Xt, for t ≤ T .
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Bootstrap prediction intervals

B This approach can be generalized to take into account as well the uncertainty
in the selection of the model.

B If we can find a distribution for the possible orders of the model, we can
generate realizations of the process using different orders and in each one
calculate the prediction errors.

B In this way we obtain a distribution generated from prediction errors that
we can use to construct prediction intervals.

B See:

• Alonso, Peña and Romo (2004): A model average approach.

• Alonso, Peña and Romo (2002): A nonparametric approach.
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Predictions

Prediction by model average

B Let us assume that k models have been estimated for a series and that we
have the BIC values for each model.

B The BIC values are, except for constants, −2logP (Mi|D), where P (Mi|D)
is the probability of model Mi given the data D. Then,

P (Mi|D) = ce−
1
2BICi,

where c is constant.

B With these results, we can transform the BIC values into a posteriori
probabilities of different models by means of

P (Mi|D) =
e−

1
2BICi∑k

j=1 e
−1

2BICj
.
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Prediction by model average

B The probability distribution of a new observation is then a mixed distribution∑
P (Mi|D)f(z|Mi) (213)

where f(z|Mi) is the density function of the new observation in accordance
with the model Mi.

B For example, for one period ahead if we generate predictions with each

model and let ẑ
(i)
T (1) be the prediction for the period T + 1 with model Mi,

the expectation of the distribution (213) is:

ẑT (1) =
∑k

i=1
ẑ
(i)
T (1)P (Mi|D)

which is the result of combining the predictions of all the models to obtain a
single aggregate prediction.
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Prediction by model average

B This way of calculating predictions is known as Bayesian Model Average.

B In general this prediction is more accurate, on average, than that generated
by a single model.

B Moreover, it allows us to construct more realistic prediction intervals than
those obtained by ignoring the uncertainty of the parameters and the model.

B Letting σ̂2
i denote the variance of the innovations of the model Mi, which

coincides with the one step ahead prediction error using this model, the variance
of the combination of models is:

var(ẑT (1)) =
∑k

i=1
σ̂2

iP (Mi|D)+
∑k

i=1
(ẑ(i)

T (1)− ẑT (1))2P (Mi|D)

which allows a construction of more realistic prediction intervals.
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Example 96. We are going to see how to combine the predictions for the
vehicle registration series. Let us assume that the three possible models are
those indicated in table:

Model BICEviews Pr(M |Data)
ARIMA(0,1,1)×(0, 1, 1)12 -1.398 0.335
ARIMA(0,1,1)×(1, 1, 1)12 -1.466 0.347
ARIMA(0,1,1)×(2, 1, 0)12 -1.292 0.318

B We can calculate the a posteriori probabilities of each model by means of

Pr(M1|D) =
exp(−1

2 ×−1.398)
exp(−1

2×) + exp(−1
2 ×−1.466) + exp(−1

2 ×−1.292)
= 0.335

and analogously for other models.

B In this case the uncertainty with respect to the model is big and the
predictions obtained by means of the combination are not similar to those of
the best model.
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