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ABSTRACT 
 
 
Since Demand and Supply are strictly related in economic life, it might be possible that 

they show a similar behavior over time. Therefore, to test this hypothesis I will analyze 

different series of goods productions and goods sales (as a proxy of demand). Then, I 

will test for the presence of cointegration among two different price index related to 

natural gas and its production. At the end, I will compare the production of grapes, the 

sales of wine and the price of wine, in order to see if it is possible  to find a common 

pattern. Finally, it is important to notice that all series refer to Australia in order to put 

constant the institutional and macroeconomic environment. 
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1. INTRODUCTION 
 
The basic aim of this paper is simply to check if it is possible to identify a common class of forecast 
models for time series referring to demands and supply of goods. Taking into account that firms try 
to produce the exact amount of commodities requested by the market, it is easy to see the 
implications of confirming the existence of a stationary predictable pattern for market demand. Of 
course, many firms already adopt this approach using their internal data and the market forecast, 
however which kind of model is the more parsimonious and exhaustive might depends on the type 
of goods sold. For this reason, in this paper, we will deal with three types of very different physical 
goods: a raw material (gas), a manufacture (cars), and a food (wine). It could be very interesting to 
find a common model for forecast of so different goods. Moreover, it might be interesting to 
observe what happens to the price generated by the interaction of supply and demand, according to 
the neoclassical model. 
 
 
2. USING ARIMA FORECAST MODELS 
 
The basic set of model that I am going to use assumes linearity in the path dependence of the series. 
I mean the ARIMA models, where ARIMA stands for “Auto-Regressive Integrated Moving 
Average.” These type of model, coming from the previous ARMA model (Box and Jenkins), are a 
method for modelling univariate time series that can be used to extend estimates beyond the end of 
a series. Autoregressive models are simply a linear regression of the current value of the series 
against one or more prior values of the series. The value of p is called the order of the model. On 
the other hand, the primary idea behind the moving average model is that the random shocks are 
prorogued to future values of the series. So, lags of the differenced series appearing in the 
forecasting equation are called “auto-regressive” terms, lags of the forecast errors are called 
“moving average” terms, and a time series which needs to be differenced to be made stationary is 
said to be an "integrated" version of a stationary series. A non-seasonal ARIMA model is classified 
as an “ARIMA(p,d,q)” model, where: p is the number of autoregressive terms, d is the number of 
non-seasonal differences, and q is the number of lagged forecast errors in the prediction equation.  
 
Using these forecast models is allowed only in the case of stationary time series, otherwise, the 
basic assumptions of the model are not satisfied. Therefore, since very few empirical series are 
stationary in their original form, we need to stationarize the series through the use of mathematical 
transformations. Let me remind that a stationary time series is one whose statistical properties such 
as mean, variance, autocorrelation, etc. are all constant over time. 
 
 
2.1 How construct the right ARIMA model 
 
If the series has a stable long-run trend and tends to revert to the trend line following a disturbance, 
it may be possible to stationarize it by transforming it into a series of period-to-period and/or 
season-to-season differences. If the mean, variance, and autocorrelations of the original series are 
not constant in time, perhaps the statistics of the changes in the series between periods or between 
seasons will be constant. Such a series is said to be difference-stationary. Sometimes it can be hard 
to tell the difference between a series that is trend-stationary and one that is difference-stationary, 
and a so-called unit root test may be used to get a more definitive answer. 
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The first difference of a time series is the series of changes from one period to the next. If tY  
denotes the value of the time series Y at period t, then the first difference of Y at period t is equal to 
( )1t tY Y −− . Normally, the correct amount of differencing is the lowest order of differencing that 
yields a time series which fluctuates around a well-defined mean value and whose autocorrelation 
function (ACF) plot decays fairly rapidly to zero, either from above or below. One of the most 
common errors in ARIMA modelling is to “over-difference” the series and end up adding extra AR 
or MA terms to undo the damage. If the lag-1 autocorrelation is more negative than -0.5 (and 
theoretically a negative lag-1 autocorrelation should never be greater than 0.5 in magnitude), this 
may mean the series has been over-differenced. The time series plot of an over-differenced series 
may look quite random at first glance, but if you look closer you will see a pattern of excessive 
changes in sign from one observation to the next (i.e., up-down-up-down, etc.): 
 
Others types of mathematical transformations are allowed in order to get stationary the series and, 
then, to forecast theirs future values. For instance, the LOG function has the defining property that 

( ) ( ) ( )ln ln lnx y x y× = + , i.e., the logarithm of a product equals the sum of the logarithms. 
Therefore, logging tends to convert multiplicative relationships to additive relationships, and it 
tends to convert exponential (compound growth) trends to linear trends. By taking logarithms of 
variables which are multiplicatively related and/or growing exponentially over time, we can often 
explain their behaviour  with linear models. Let highlight that the logarithm transformation can be 
applied only to data that are strictly positive, that is you can not take the log of zero or a negative 
number. Logging a series often has another effect: it dampens exponential growth patterns and 
reduces heteroscedasticity (i.e., stabilizes variance). 
 
After a time series has been stationarized by differencing, the next step in fitting an ARIMA model 
is to determine whether AR or MA terms are needed to correct any autocorrelation that remains in 
the differenced series. By looking at the autocorrelation function (ACF) and partial autocorrelation 
(PACF) plots of the differenced series, you can tentatively identify the numbers of AR and/or MA 
terms that are needed. A partial autocorrelation is the amount of correlation between a variable and 
a lag of itself that is not explained by correlations at all lower-order- lags. The autocorrelation of a 
time series Y at lag 1 is the coefficient of correlation between Y(t) and Y(t-1), which is presumably 
also the correlation between Y(t-1) and Y(t-2). But if Y(t) is correlated with Y(t-1), and Y(t-1) is 
equally correlated with Y(t-2), then we should also expect to find correlation between Y(t) and Y(t-
2). (In fact, the amount of correlation we should expect at lag 2 is precisely the square of the lag-1 
correlation.) Thus, the correlation at lag 1 “propagates” to lag 2 and presumably to higher-order 
lags. The partial autocorrelation at lag 2 is therefore the difference between the actual correlation at 
lag 2 and the expected correlation due to the propagation of correlation at lag 1. 
 
If the PACF displays a sharp cutoff while the ACF decays more slowly (i.e., has significant spikes 
at higher lags), we say that the stationarized series displays an “AR signature,” meaning that the 
autocorrelation pattern can be explained more easily by adding AR terms than by adding MA terms. 
In principle, any autocorrelation pattern can be removed from a stationarized series by adding 
enough autoregressive terms (lags of the stationarized series) to the forecasting equation, and the 
PACF tells you how many such terms are likely be needed. However, this is not always the simplest 
way to explain a given pattern of autocorrelation: sometimes it is more efficient to add MA terms 
(lags of the forecast errors) instead.  



 

PhD in Business Administration and Quantitative Methods   2006/07 
Time Series Course  ~  Prof. Regina Kaiser   
FINAL PROJECT 
 
Sara Degli Esposti 

 

 4 

The autocorrelation function (ACF) plays the same role for MA terms that the PACF plays for AR 
terms, that is, the ACF tells you how many MA terms are likely to be needed to remove the 
remaining autocorrelation from the differenced series. If the autocorrelation is significant at lag k 
but not at any higher lags (i.e., if the ACF "cuts off" at lag k) this indicates that exactly k MA terms 
should be used in the forecasting equation. In the latter case, we say that the stationarized series 
displays an “MA signature,” meaning that the autocorrelation pattern can be explained more easily 
by adding MA terms than by adding AR terms. 
 
If a series is grossly either under or over-differenced (i.e., if a whole order of differencing needs to 
be added or cancelled), this is often signalled by a “unit root” in the estimated AR or MA 
coefficients of the model. An AR(1) model is said to have a unit root if the estimated AR(1) 
coefficient is almost exactly equal to 1, that is not significantly different from 1, in terms of the 
coefficient's own standard error. When this happens, it means that the AR(1) term is precisely 
mimicking a first difference, in which case you should remove the AR(1) term and add an order of 
differencing instead. This is exactly what would happen if you fitted an AR(1) model to the 
undifferenced UNITS series, as noted earlier. In a higher-order AR model, a unit root exists in the 
AR part of the model if the sum of the AR coefficients is exactly equal to 1. In this case you should 
reduce the order of the AR term by 1 and add an order of differencing. A time series with a unit root 
in the AR coefficients is nonstationary (i.e., it needs a higher order of differencing). If there is a unit 
root in the AR part of the model (i.e., if the sum of the AR coefficients is almost exactly 1) we 
should reduce the number of AR terms by one and increase the order of differencing by one. 
Similarly, an MA(1) model is said to have a unit root if the estimated MA(1) coefficient is exactly 
equal to 1. When this happens, it means that the MA(1) term is exactly cancelling a first difference, 
in which case, you should remove the MA(1) term and also reduce the order of differencing by one. 
In a higher-order MA model, a unit root exists if the sum of the MA coefficients is exactly equal to 
1. If there is a unit root in the MA part of the model (i.e., if the sum of the MA coefficients is almost 
exactly 1) you should reduce the number of MA terms by one and reduce the order of differencing 
by one. 
A forecasting model with a unit root in the estimated MA coefficients is said to be noninvertible, 
meaning that the residuals of the model cannot be considered as estimates of the true random noise 
that generated the time series. Another symptom of a unit root is that the forecasts of the model may 
blow up or otherwise behave bizarrely. If the time series plot of the longer-term forecasts of the 
model looks strange, you should check the estimated coefficients of your model for the presence of 
a unit root. If the long-term forecasts appear erratic or unstable, there may be a unit root in the AR 
or MA coefficients.  
 
Here, I will try to find out the best model in order to fit my data. In most cases, the best model turns 
out a model that uses either only AR terms or only MA terms, although in some cases a “mixed” 
model with both AR and MA terms may provide the best fit to the data. However, it is possible for 
an AR term and an MA term to cancel each other's effects, even though both may appear significant 
in the model (as judged by the t-statistics of their coefficients). For this reason, ARIMA models 
cannot be identified by "backward stepwise" approach that includes both AR and MA terms. In 
other words, I  will not begin by including several terms of each kind and then throwing out the 
ones whose estimated coefficients are not significant. Instead, I am going to follow a "forward 
stepwise" approach, adding terms of one kind or the other as indicated by the appearance of the  
ACF and PACF plots. 
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According to the frequency of our data, it might be possible to discover pattern also in seasonality. 
A seasonal ARIMA model is classified as an ARIMA(p,d,q)x(P,D,Q) model, where P=number of 
seasonal autoregressive (SAR) terms, D=number of seasonal differences, Q=number of seasonal 
moving average (SMA) terms. In identifying a seasonal model, the first step is to determine whether 
or not a seasonal difference is needed, in addition to or perhaps instead of a non-seasonal 
difference. I shall look at time series plots and ACF and PACF plots for all possible combinations 
of 0 or 1 non-seasonal difference and 0 or 1 seasonal difference. If the seasonal pattern is both 
strong and stable over time (e.g., high in the Summer and low in the Winter, or vice versa), then I 
often will prefer to use a seasonal difference regardless of whether I have used a non-seasonal 
difference, since this will prevent the seasonal pattern from "dying out" in the long-term forecasts. 
For example, a pure SAR(1) process should have spikes in the ACF at lags s, 2s, 3s, etc., while the 
PACF cuts off after lag s. Conversely, a pure SMA(1) process should show spikes in the PACF at 
lags s, 2s, 3s, etc., while the ACF cuts off after lag s. Accordingly, an SAR signature usually occurs 
when the autocorrelation at the seasonal period is positive, whereas an SMA signature usually 
occurs when the seasonal autocorrelation is negative. 
 
Basically, the two kind of ARIMA models that I will apply are the simple exponential smoothing in 
the ordinal and in the seasonal part. The simple exponential smoothing model (i.e. ARIMA(0,1,1)) 
uses an exponentially weighted moving average of past values in order to filter out the noise and 
more accurately estimate the local mean. In other words, rather than taking the most recent 
observation as the forecast of the next observation, it is better to use an average of the last few 
observations. The model can be written as 1 1t t tX X aθ− −= − , where 1ta −  ) denotes the error at period 
t-1. Note that this resembles the prediction equation for the ARIMA(1,1,0) model, except that 
instead of a multiple of the lagged difference it includes a multiple of the lagged forecast error. 
On the other hand, the ARIMA(0,1,1)x(0,1,1) model is basically a Seasonal Random Trend (SRT) 
model fine-tuned by the addition of MA(1) and SMA(1) terms to correct for the mild 
overdifferencing that resulted from taking two total orders of differencing. This is probably the 
most commonly used seasonal ARIMA model, as confirmed also in this analysis.  
 
 
2.2 Using cointegration techniques 
 
For a long time it was common practice to estimate equations involving nonstationary variables in 
macroeconomic models by straightforward linear regression. It was not well understood that testing 
hypotheses about the coefficients using standard statistical inference might lead to completely 
spurious results. In an influential paper, Clive Granger and his associate Paul Newbold (Granger 
and Newbold (1974)1) pointed out that tests of such a regression may often suggest a statistically 
significant relationship between variables where none in fact exists. However, if economic 
relationships are specified in first differences instead of levels, the statistical difficulties due to 
nonstationary variables can be avoided because the differenced variables are usually stationary even 
if the original variables are not. An alternative approach would involve removing a linear time trend 
from the variables and specifying the empirical relationship between them using detrended 
variables. Removing (separate) time trends assumes, however, that the variables follow separate 
deterministic trends, which does not appear realistic, given the awkward long-run implications. 
Dynamic econometric models based on linearly detrended variables may, thus, be able to 

                                                 
1 C.W.J. GRANGER and P. NEWBOLD , “SPURIOUS REGRESSIONS IN ECONOMETRICS.” Journal of Econometrics 2 (1974) 
111-120. (6 North-Holland Publishing Company). 
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characterize short-term dynamics of economic variables but not their long-run relationships. The 
same is true for models based solely on first differences.  
Therefore, if we consider the following bivariate autoregressive system of order p : 
 

1 1 1
1 1

p p

t j t j j t j t
j j

x x yγ δ ε− −
= =

= + +∑ ∑      2 2 2
1 1

p p

t j t j j t j t
j j

y x yγ δ ε− −
= =

= + +∑ ∑  

 
where tx  and ty  are I(1) and cointegrated, and 1tε  and 2tε  are white noise; the Granger 
representation theorem says that in this case, the system can be written as: 

( )
1 1

* *
1 1 1 1 1 1

1 1

p p

t t t j t j j t j t
j j

x y x x yα β γ δ ε
− −

− − − −
= =

∆ = − + ∆ + ∆ +∑ ∑  ( )
1 1

* *
2 1 1 2 1 2

1 1

p p

t t t j t j j t j t
j j

y y x x yα β γ δ ε
− −

− − − −
= =

∆ = − + ∆ + ∆ +∑ ∑  

where at least one of parameters 1α  and 2α  deviates from zero. Both equations of the system are 
“balanced”, that is, their left-hand and right-hand sides are of the same order of integration, since 

( )1 1 0t ty x Iβ− −− ∼ . Suppose that 0t ty xβ− = defines a dynamic equilibrium relationship between 

the two economic variables, y and x. Then t ty xβ−  is an indicator of the degree of disequilibrium. 
The coefficients 1α  and 2α  represent the strength of the disequilibrium correction, and the system 
is now said to be in error-correction form. A system characterized by these two equations is thus in 
disequilibrium at any given time, but has a built- in tendency to adjust itself towards the equilibrium. 
 
Engle and Granger (1987) consider the problem of testing the null hypothesis of no cointegration 
between a set of I(1) variables. They estimate the coefficients of a static relationship between these 
variables by ordinary least squares and apply well-known unit root tests to the residuals. Rejecting 
the null hypothesis of a unit root is evidence in favour of cointegration. The performance of a 
number of such tests is compared in the paper. In other words, the nonstationary time series in Yt 
are cointegrated if there is a linear combination of them that is stationary or I(0). 
 
Cointegration naturally arises in economics and finance. In economics, cointegration is most often 
associated with economic theories that imply equilibrium relationships between time series 
variables. For instance: (a) the permanent income model implies cointegration between 
consumption and income, with consumption being the common trend; (b) money demand models 
imply cointegration between money, income, prices and interest rates; (c) growth theory models 
imply cointegration between income, consumption and investment, with productivity being the 
common trend; (d) purchasing power parity implies cointegration between the nominal exchange 
rate and foreign and domestic prices; (e) covered interest rate parity implies cointegration between 
forward and spot exchange rates; (f) the Fisher equation implies cointegration between nominal 
interest rates and inflation; (g) the expectations hypothesis of the term structure implies 
cointegration between nominal interest rates at different maturities. 
The equilibrium relationships implied by these economic theories are referred to as long-run 
equilibrium relationships, because the economic forces that act in response to deviations from 
equilibrium may take a long time to restore equilibrium. As a result, cointegration is modeled using 
long spans of low frequency time series data measured monthly, quarterly or annually. 
 
In this study, I will use cointegration to test the relationships between production and price of 
goods. 
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3. DATA AND ANALYSIS 
 
I deal with three types of different goods produced in Australia: natural gas, cars, and wine. The 
large distance among these categories of goods ought help us to test the validity of an ARIMA 
(0,1,1) as forecast model using economic variables. 
 
 
3.1 GAS 
 
Australia has large identified resources of fossil fuels and uranium. It is ranked in the top six 
countries in the world for economic demonstrated resources (EDR) of black and brown coal, and 
has the world’s largest EDR of uranium. Australia also has significant reserves of natural gas and 
crude oil.  
Even tough, energy sources might 
be both renewable (energy 
sources for which the supply is 
essentially inexhaustible, i.e. 
solar, wind, hydro-electricity, 
geothermal and biomass) and non-
renewable (energy sources with a 
finite supply), however, most of 
Australia’s energy comes from 
non-renewable sources, which 
include the fossil fuels of oil, 
natural gas and coal. The Map on 
the right, shows the extent of 
access to gas resources and major 
transmission pipelines in 
Australia (2004). 
 
In 2004–05 Australia’s total 
primary energy production was 
estimated at 17,524 PJ of which 
black coal accounted for nearly 

 
   Geoscience Australia, last viewed August 2006 <http://www.ga.gov.au> 

half (46%), followed by uranium (30%), natural gas (9%) and crude oil (6%). Renewable energy 
production (including wood, bagasse, biofuel, hydro-electricity and solar thermal energy) 
accounted for only 2% (261 PJ) of total production in 2004–05. Let point out that in 2004–05 
Australia’s total domestic energy use was 5,841 PJ, less than one third of the total energy it 
produced (17,524 PJ) 
 

 
I am going to analyze a series about gas production with three different frequency: monthly, 
quarterly and annual. As we will see, all these series show the same behavior over time, and, so, 
they might be forecasted using the same ARIMA model. 
Then, I will deal with series about the price of these produced gas and the price of the gas imported 
in the country, in order to test if these series might be forecast using the same ARIMA model and if 
there is a common tendency between production, as a proxy of supply, and price. 
 



 

PhD in Business Administration and Quantitative Methods   2006/07 
Time Series Course  ~  Prof. Regina Kaiser   
FINAL PROJECT 
 
Sara Degli Esposti 

 

 8 

Australia monthly production of gas (million megajoules) 

Monthly production of gas (1956-1995)
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Source: ABS 8301.0 
(Jan 1956 - Aug 1995) 

After taking the first difference of the logging 
series, I have observed the following pattern in 
the ACF and in the PACF. Of course, 
something is happening in the seasonal part, 
since the sine-cosine behaviour is clearly 
showed with decreasing picks in 12, 24 etc. 
That is obvious the need of differentiating in 
the seasonal part. 
The ACF, in which the red lines represent the 
squared residuals, on the right, represents 
residuals before taking the first difference in 
the ordinal part.  

 

  
 
The model finally chosen is an ARIMA (0,1,1) (0,1,1), in which log transformation is needed, also, 
trading day correction. Moreover, it is required to apply an outliers correction in order to avoid 
behaviours that seem to be not linear. As showed later, all the outliers are significant, and, also, 
there are level shifts, which need to be treated as additive outliers. 
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OUTLIERS              ST. ERROR     T VALUE 
 447 AO    ( 3 1993) (     0.00045)    4.48 
 170 LS    ( 2 1970) (     0.03224)   -9.31 
 149 TC    ( 5 1968) (     0.03528)    7.21 
 468 AO    (12 1994) (     0.03530)    4.57 
 163 LS    ( 7 1969) (     0.03348)   -4.60 
 309 AO    ( 9 1981) (     0.03528)    4.17 
 301 LS    ( 1 1981) (     0.03160)   -3.79 
 205 AO    ( 1 1973) (     0.03526)    3.76 
 192 LS    (12 1971) (     0.03166)    3.83 
 
 METHOD OF ESTIMATION: EXACT MAXIMUM LIKELIHOOD            
 PARAMETER      ESTIMATE           STD ERROR      T RATIO   LAG   
 MA1  1         -.37608          0.44189E-01       -8.51      1 
 MA2  1         -.77810          0.32668E-01      -23.82     12 
 
The model appear to fit very well with the data without having problems about normality. Due to 
outliers and the large difference between the first part of the series and the subsequent tendency, 
there are still some trouble in the squared residuals, as pointed out in the Ljung-Box test. 
 
AIC  -1635.4877   and   BIC  -6.2874 
DURBIN-WATSON=  1.8909 
LJUNG-BOX Q VALUE OF ORDER 24 IS  35.88 < 36.415 
(Squared)  LJUNG-BOX Q VALUE OF ORDER 24 IS  44.99 > 36.415 
 
The model finally chosen, an ARIMA (0,1,1)x(0,1,1), is also confirmed when applied at the same 
series, but with different unit measurement, as it will be shown later. 

Quarterly production of gas 
(Mar. 1956 - Sept. 2006)
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When used in 
conjunction with 
differencing, logging 
converts absolute 
differences into relative 
(i.e., percentage) 
differences. Thus, the 
series DIFF(LOG(Y)) 
represents the 
percentage change in Y 
from period to period. 
Strictly speaking, the 
percentage change in Y 
at period t is defined as 
(Y(t)-Y(t-1))/Y(t-1), 
which is only 
approximately equal to 

LOG(Y(t)) - LOG(Y(t-1)), but the approximation is almost exact if the percentage change is small, 
as happened in this case. 

The model, which was finally chosen is the ARIMA (0,1,1)(0,1,1), in which LOGS are Selected and 
nothing more. Since there is just on outlier (131 AO [ 3 1988] with a t-value of 3.76) the problems 
about non-linearity saw in the previous model, are solved. 
 
PARAMETER      ESTIMATE           STD ERROR      T RATIO   LAG   
MA1  1         -.33646          0.68486E-01       -4.91      1 
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MA2  1         -.58153          0.57901E-01      -10.04      4 
AIC   -1040.8677 and BIC      -8.0540 
DURBIN-WATSON=  1.8554 
 
The Ljung-Box test used here is based on the autocorrelation plot, but, instead of testing 
randomness at each distinct lag, it tests the “overall” randomness based on a number of lags. 
 
LJUNG-BOX Q VALUE OF ORDER 16 IS  19.81 < 26.296 
Squared LJUNG-BOX Q VALUE OF ORDER 16 IS  19.68 < 26.296 

Annual gas production (1956 - 2005)
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MODEL 
FINALLY 
CHOSEN:  
(0,1,1)(0,1,1) 
 
In which LOGS 
are Selected 
WITH MEAN,  
WITHOUT 
TRADING DAY 
CORRECTION,  
WITHOUT 
EASTER 
CORRECTION 
NO OUTLIERS 
DETECTED 
 

PARAMETER     ESTIMATE        STD ERROR      T RATIO    LAG   
 MA1  1       0.78143          0.10259         7.62      1 
 MA2  1      -.95004          0.51320E-01      -18.51     12 
 
AIC  -59.4871   and   BIC  -4.7485 
DURBIN-WATSON=  1.4462 
LJUNG-BOX Q VALUE OF ORDER 24 IS    36.96 
(Squared) LJUNG-BOX Q VALUE OF ORDER 24 IS    45.01 

 
Now, I want to check if the behaviour of the series about the price at which gas has been sold and 
the price of the imported same raw material, may be forecast using the same ARIMA model. 
 
IMPORT PRICE INDEXES OF MINERALS FUELS, ETC., QUARTERLY - By SITC sections 

Quarterly price of imported minerals 
(Mar. 1982 - Mar. 2007)
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The red line shows the outliers corrected 
series. 

Source: Australian Bureau of Statistics (Jul 2007 Australian Economic Indicators) 
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The model finally chosen is an ARIMA(0,1,1)(0,0,0), so without seasonal part. Again, the logs 
transformation is needed, but without anything else. Just three significant outliers are detected: 
 
PARAMETER           VALUE          ST. ERROR     T VALUE 
 OUT 1 ( 18)        -.49389        (     0.08023)   -6.16   TC    ( 2 1986) 
 OUT 2 ( 36)        0.36072        (     0.08023)    4.50   TC    ( 4 1990) 
 OUT 3 ( 76)        0.20328        (     0.05581)    3.64   AO    ( 4 2000) 
 
METHOD OF ESTIMATION: EXACT MAXIMUM LIKELIHOOD            
PARAMETER      ESTIMATE           STD ERROR      T RATIO   LAG   
MA1  1         0.30754          0.95154E-01        3.23      1 
 
AIC    -183.2731 
BIC      -4.5674 
DURBIN-WATSON=  2.0598 
LJUNG-BOX Q VALUE OF ORDER 16 IS    14.02 < 26.296 
(Squared) LJUNG-BOX Q VALUE OF ORDER 16 IS    13.59 < 26.296 
 
As we can see, this model fits very well our data, without non-linearity problems. 
 

   
 
Finally, we want to test if there is a relations between the series about quarterly gas production and 
the price of imported gas. Actually, we should expected an inverse relation between the two. So, I 
suggest that we should not find cointegration between these series. As showed in the table below, 
the hypothesis about the absence of cointegration between the two logged series is confirmed.  

Is there cointegration between gas imported 
price (red) and prduction of gas (blue)?

(Quarterly series)
March 1982 - September 2006

2,00

4,00

6,00

8,00

10,00

Serie1 Serie2

 

Before looking at the cointegration test 
results, let us make a summary about how 
we should interpret cointegration and what 
we mean for it.  
The starting point is the definition of 
degree of integration among series. We 
called a series integrated of order p, if 

tt
p XD ε=)( , that is the series obtained 

after p differences is a stationary one. 
Considering these set of variables such 
that 0...2211 =+++ txxx nntt βββ , 

),...,,( 21 nββββ = , and 
)',...,,( 21 ntttt xxxX = . If the condition 

above stated is satisfied, we can say that 
)',...,,( 21 ntttt xxxX =  is in a long run 

equilibrium. 
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Otherwise, changes in the equilibrium condition are called equilibrium error, which is defined as 
tt Xe β= . When this equilibrium error appears to be stationary, we can say that the set of variables 

)',...,,( 21 ntttt xxxX =  is in equilibrium. Therefore, for cointegration we mean a linear combination of 
non-stationary variables. We will focus our attention on the case in which each variable is 
integrated of order 1, that is I(1), such that its first difference is of type I(0), which is stationary. 
Here, I will use Johansen methodology in order to test if there is cointegration among the variables 
under study. Let us consider an autoregressive vector of order p, such that 

ttptptt BXYAYAY ε++++= −− ...11 , where tY  is a k-dimensional vector of non-stationary variables 

of type I(1), tX  is a vector of deterministic variables, and tε  is a innovations vector. We can 

rewrite the autoregressive vector as ∑
−

−− ++∆Γ+=∆
1

1:
1

p

i
ttititt XYYY εβπ , where ∑

=

−=
p

i
i IA

1

π , 

∑
+

−=Γ
p

ij
ji A

1:

, and I is the identity matrix. According to Granger’s theorem, if the coefficient matrix 

π  has got rank r < k, then there are two matrices (of k x r dimensions) α and β , each of them of rank  
r, such that 'αβπ = , with stationary tY'β . Here, r represents the cointegrating rank, where each 
column of β  is a cointegrating vector, whilst the elements presents in α are known as adjusting 
parameters. The Johansen’s method estimates matrix π  in order to verify if we can reject the null 
hypothesis due to the restricted rank of π . To verify the rank of the matrix π  is applied a 2χ  test, 
before whom we should specify some elements of the model, as the presence of intercept and/or 
trend in the cointegration space. We can chose among the following 5 possibilities applying 
Johnson’s methodology us ing EViews: 

1. neither deterministic trends nor intercept in the series under study, that is in tY  (VAR). 

112 ':)( −− =+ ttt YBXYrH αβπ ; 

2. no deterministic trends in tY , but intercepts in the cointegrating equations (EMC) 

)'(:)( 11
*
1 ottt YBXYrH ρβαπ +=+ −− ; 

3. tY  has linear trends and the ECM has intercept 0111 )'(:)( γαρβαπ ⊥−− ++=+ ottt YBXYrH  
where a⊥  is non-singular matrix of dimension k x (k - r) such that a’a = 0 and the rank of    
a | a⊥  is equal to k; 

4. both tY  and ECM have liner trends 0111 )'(:)(* γαρρβαπ ⊥−− +++=+ tYBXYrH ottt ; 

5. tY  has a quadratic trend, whilst ECM has a linear trend such that 
)()'(:)( 10111 ttYBXYrH ottt γγαρρβαπ ++++=+ ⊥−− . 

 
These five cases are link each other according to the following relationship 

)()()()()( 2
*

212
*
122 rHrHrHrHrH

rkrrkr −−

⊂⊂⊂⊂
χχχχ

, from which we can identify the 2χ  distribution 

needed. Thus, the first step is to choose the series under study, that is tY , then we can construct the 
test statistics in order to test the eventual presence of cointegration. We will use the following 
statistics, taking into account each of the cases selected. 
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* 2

: 1

* 2

1

CASES  3  and  5      log((1 )/(1 ))

CASES  1, 2, and 4    log((1 )/(1 ))

k

i i k r
i r

r

i i r
i

n

n

λ λ χ

λ λ χ

−
+

=


− − ≈


 − − ≈


∑

∑
where iλ and *

iλ  represent the biggest self-

values for models H(r) and )(* rH  respectively. 
 
 

 

 
The cointegration test is applied on the 
logged series about respectively the price 
of imported minerals and the Australian 
production of gas from march 1982 to 
September 2006. 
 
 
Here, cointegration is not found, because 
the unit root test does not reject the 
hypothesis about the no existence of 
cointegration. 
 
 
 
 
 
 
The next series used in the analysis is 
about the paid price of household 
contents and services, among which there 
is gas provision. 

 
Australian Bureau of Statistics: Australian Economic Indicators (2007) 
CONSUMER PRICE INDEX of Household contents and services, QUARTERLY - By group 
Original (1989–90 = 100.0) 

Quaterly gas consumer price 
(Sept. 1972 - Sept. 2006)
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The model finally 
chosen is an ARIMA  
(0, 1, 1)(0, 1, 0), which 
is different from the 
ARIMA (2,1,1) model 
suggested by the 
TRAMO automatic 
procedure. As showed 
in the following table, 
the unit root test 
confirms that TRAMO 
was deceived by the AR 
coefficient.  
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PARAMETER      ESTIMATE           STD ERROR      T RATIO   LAG   
MA1  1         0.17981          0.84352E-01        2.13      1 
ESTIMATES OF REGRESSION PARAMETERS CONCENTRATED OUT OF THE LIKELIHOOD  
PARAMETER           VALUE          ST. ERROR     T VALUE 
MU                 0.76967        (     0.07151)   10.76 
OUT 1 (131)        -2.5270        (     0.69610)   -3.63   LS    ( 1 4107) 

 

MODEL SUPPOSED: (0, 1, 1)(0, 1, 0) 
 
AIC      294.189 
 BIC      -0.6107 
DURBIN-WATSON=  1.8128 
LJUNG-BOX Q VALUE OF ORDER  8 IS    
93.63 
(SQUARED) LJUNG-BOX Q VALUE OF ORDER  
8 IS    36.28 
 
For any size level of the test, we can not 
reject the unit root hypothesis. 
As showed in the ACF and in  the PCF 
there is still some presence of path 
dependence impossible to avoid also using 
an ARIMA (0,1,1)(0,1,1). 

 
 

Cointegration between gas consumer price and production 
of gas - Quarterly data (Sept. 1972 - Sept.  2006) 
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Now, let us check if the quarterly series 
about gas production and this series about a 
consumer price index on expenses, among 
which there is also the gas expenditure, 
might be cointegrated, as suggested in the 
following graph. 
 
Therefore, we can test whether they are 
cointegrated, that is, whether a linear 
function of these is I(0). As showed in the 
table in the newt page, the alternative 
hypothesis seems to be rejected, that is 
there is integration. 
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QUARTERLY GAS PRODUCTION CONSUMER PRICE INDEX ABOUT GAS 
Testing for stationarity in the quarterly data 
about gas production after took the logarithm, 
arrives to this result: the series is an I(1) 
variable. 

The same happens for the series about consumer 
price index: the series is an I(1) variable. 

 
 

 
 

 

 

Also here, we can not find out any 
cointegration between the price of gas and 
its production. 
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3.2 CARS 
The Manufacturing industry contributed a little over 11% to Australia’s gross domestic product in 
2004–05. Although the value of Manufacturing industry gross value added has grown by 19% over 
the last ten years, the industry’s share of the total production of goods and services in the economy 
has fallen from 14% to its current level over the period. 
In the period 2000–01 to 2004–05, the largest increase in production was for Non-metallic mineral 
product manufacturing (26%), followed by Other manufacturing (15%) and Machinery and 
equipment manufacturing (14%). The largest increases between 2001–02 and 2004–05 were 
experienced in the production of cars and station wagons for fewer than ten persons and Portland 
cement. Production of these commodities increased by 25% and 23% respectively. Production of 
unfortified wine continued to increase over this period (22%) whereas the manufacture of beer 
experienced a slight decrease (3%). On the other hand, Between 2001–02 and 2005–06, the value of 
exports for transport equipment (excluding road vehicles) fell by 43% ($0.8b). Of course, the major 
commodity imported into Australia between 2001–02 and 2005–06 was petroleum, but road 
vehicles (including air cushion vehicles) made up 12% of imports. 
 
The automotive industry is one of Australia’s key manufacturing sectors and an important source of 
employment, and research and development. The increasing exposure of the Australian automotive 
industry to international competition has seen it develop to where it is now competing successfully 
in global markets. There is also a strong inter-dependence between the car makers and their 
suppliers, and strong linkages with the rest of the economy. The Australian automotive industry 
consists of four motor vehicle producers - Ford, Holden, Mitsubishi and Toyota - which produce 
large passenger motor vehicles (PMV) and variants, light commercial vehicles and sports utility 
vehicles. There are also over 200 motor vehicle component manufacturers. The four motor vehicle 
producers are based in Victoria and South Australia. 
 
Nominal prices of transport equipment (including motor vehicles) are rising at a slower rate than the 
consumer price index (CPI), indicating a fall in 'real' prices. Over the five years prior to 2000-01, 
transport equipment prices grew by 7%, whereas the CPI increased by more than 11%. In addition, 
average weekly earnings increased by over 17% over the same time period, indicating that vehicles 
are becoming more affordable. Australian production contributes around 55% to total automotive 
supply. The high proportion of imports in total supply highlights the high level of import 
penetration in the Australian market. Household consumption and private sector investment provide 
the primary sources of domestic demand for total automotive output. 
 

Monthly production of cars and station wagons (1961 - 1995)
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What we are going to test 
here if that the same ARIMA 
model can be applied to 
model both demand and 
supply of cars, even if the 
series seem to be very 
different in theirs original 
shape. 
 
 
 
Source:  ABS  8301.0 Jul 1961 - 
Aug 1995 
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Model finally chosen is an ARIMA (0,1,1)(0,1,1) 
PARAMETER      ESTIMATE           STD ERROR      T RATIO   LAG   
MA1  1         -.57221          0.41690E-01      -13.73      1 
MA2  1         -.79431          0.35938E-01      -22.10     12 
 
AIC     7608.407 and BIC      16.3158 
DURBIN-WATSON=  1.9775 
LJUNG-BOX Q VALUE OF ORDER 24 IS    71.68 > 36.415 
(squared) LJUNG-BOX Q VALUE OF ORDER 24 IS    28.19 < 36.415 

 

Actually, there are some problems to apply this model to 
this data, in the sense that the fit does not perform well as 
before. In any case, I was not able to find a model able to 
fit better this data, neither in their entire collection, nor 
using a part of the series. The suggestion of the TRAMO 
automatic procedure was an ARIMA (2,1,1) (0,1,1), but 
the second AR coefficient proposed was too near the unit 
root to be accepted, so I tested an ARIMA (1,1,1) (0,1,1), 
which had a better performance in term of AIC (- 491.957) 
and BIC (- 4.0263), but again problems with randomness: 
LJUNG-BOX Q value of order 24 was 59.82 > 36.415, 
and for the squared residuals LJUNG-BOX Q value of 

 order 24 was 57.74 > 36.415. Finally, I preferred to use the first model proposed, I mean the 
ARIMA (0,1,1) (0,1,1). 

 
 
Series Title: Motor vehicle sales: Passenger vehicles (thousands, SA): Australia 

 

Annual cars' sales (1994-2004)
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The red line showed the outlier corrected 
series 

MODEL FINALLY CHOSEN:  ARIMA(0,1,1)(0,0,0) in which logs have been selected. 
WITHOUT MEAN, WITHOUT TRADING DAY CORRECTION, WITHOUT EASTER CORRECTION 
 
OUTLIERS  
PARAMETER           VALUE          ST. ERROR     T VALUE 
 OUT 1 ( 79)        0.54456        (     0.02823)   19.29   TC    ( 7 2000) 
 OUT 2 ( 78)        -.23754        (     0.02822)   -8.42   TC    ( 6 2000) 
 OUT 3 ( 84)        0.16599        (     0.02479)    6.69   AO    (12 2000) 
 OUT 4 ( 17)        0.14218        (     0.02477)    5.74   AO    ( 5 1995) 
 OUT 5 ( 45)        0.11658        (     0.02788)    4.18   LS    ( 9 1997) 
 OUT 6 ( 54)        0.11728        (     0.02785)    4.21   TC    ( 6 1998) 
 OUT 7 (108)        -.88081E-01    (     0.02477)   -3.56   AO    (12 2002) 
 OUT 8 ( 63)        0.95058E-01    (     0.02785)    3.41   TC    ( 3 1999) 
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METHOD OF ESTIMATION: EXACT MAXIMUM LIKELIHOOD            
PARAMETER      ESTIMATE           STD ERROR      T RATIO   LAG   
MA1  1         -.36635          0.83559E-01       -4.38      1 
 
AIC    -509.2271 and BIC      -6.7410 
DURBIN-WATSON=  1.9736 
LJUNG-BOX Q VALUE OF ORDER 24 IS    12.56 < 36.415 
LJUNG-BOX Q VALUE OF ORDER 24 IS    12.09 < 36.415 
 

   
 
Thus, in the case of the price of cars we can apply the ARIMA (0,1,1) (0,1,1) obtaining an optimal 
fit with the data and respect for the residuals randomness assumption. 
 

Quarterly produced cars price (March 1983 - March 2007)
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The model finally chosen by TRAMO automatic procedure is 
an ARIMA (1,1,1)(0,0,0), with the following results 
 
LEVELS are Selected, WITH MEAN, WITHOUT TRADING DAY 
CORRECTION, WITH EASTER CORRECTION 
 
OUTLIERS  
  97 AO    ( 1 2007) 
  49 AO    ( 1 1995) 
  64 LS    ( 4 1998) 
 
METHOD OF ESTIMATION: EXACT MAXIMUM LIKELIHOOD  

 

 
PARAMETER      ESTIMATE           STD ERROR      T RATIO   LAG   
AR1  1         -.89253          0.63868E-01      -13.97      1 
MA1  1         -.43893          0.12931           -3.39      1 
 
AIC     188.9918 and  BIC      -0.6907 
DURBIN-WATSON=  2.0425 
LJUNG-BOX Q VALUE OF ORDER 16 IS     8.07 < 26.296 
(Squared) LJUNG-BOX Q VALUE OF ORDER 16 IS    44.19 > 26.296 

I propose a model that shows to fit better the data, that is an ARIMA (0,1,1)(0,1,0) 
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PARAMETER           VALUE          ST. ERROR     T VALUE 
 MU                 -.35799E-01    (     0.10931)   -0.33 
 OUT 1 ( 84)        -2.2118        (     0.36693)   -6.03   LS    ( 4 2003) 
 OUT 2 ( 49)        -1.4696        (     0.20280)   -7.25   AO    ( 1 1995) 
 OUT 3 ( 64)        -2.1485        (     0.36373)   -5.91   LS    ( 4 1998) 
 OUT 4 ( 96)         1.3363        (     0.34378)    3.89   AO    ( 4 2006) 
 OUT 5 ( 71)        -1.2540        (     0.21164)   -5.93   AO    ( 3 2000) 
 OUT 6 ( 86)         1.0686        (     0.20796)    5.14   AO    ( 2 2004) 
 OUT 7 ( 77)         1.1171        (     0.32625)    3.42   TC    ( 1 2002) 
 OUT 8 (  9)        -.69270        (     0.20471)   -3.38   AO    ( 1 1985) 
 OUT 9 ( 94)         1.5004        (     0.50941)    2.95   LS    ( 2 2006) 
 

 
 

METHOD OF ESTIMATION: EXACT MAXIMUM LIKELIHOOD           
PARAMETER   ESTIMATE   STD ERROR    T RATIO   LAG  
MA1  1      0.69343   0.75119E-01    9.23      1 
 
AIC      184.231 and  BIC      -0.5410 
DURBIN-WATSON=  2.2293 
LJUNG-BOX Q VALUE OF ORDER 16 IS 15.33 < 26.296 
(Squared) LJUNG-BOX Q VALUE OF ORDER 16 IS  
7.24 < 26.296 
 
 

 
 
 
3.3  WINE 
 
Grapes are a temperate crop requiring predominantly winter rainfall and warm to hot summer 
conditions for ripening. Almost all grape production in Australia depends on irrigation water as a 
supplement to rainfall. An absence of late-spring frosts is essential if the loss of the developing fruit 
is to be prevented. Grapes are grown for winemaking, drying, and to a lesser extent, for table use. 
The better known grape producing areas include the Adelaide Hills, Barossa Valley, Clare Valley, 
Riverland, McLaren Vale and Coonawarra (all in South Australia); Sunraysia and the Yarra Valley 
(Victoria); the Hunter and Riverina (New South Wales); the Swan Valley and Margaret River 
(Western Australia); and the Tamar Valley and Coal River Valley (Tasmania). The gross value of 
grape production for 2004–05 fell by 11% from the previous year, to $1,508m.  
In contrast, Australian wine has won an international reputation for quality and value. Australian 
wines have taken key international awards, competing favourably against longer-established 
national wine industries. Australia produces a full range of wine styles from full-bodied reds and 
deep fruity whites through to sparkling, dessert and fortified styles. In global terms, Australia was 
ranked 7th in the list of world wine producers in 2003, producing 1,085 million litres of wine.  
Wine-grape growing and winemaking are carried out in each of the six States and two mainland 
Territories of Australia. The principal production areas are located in the south-east quarter of the 
Australian continent, in the states of South Australia, New South Wales and Victoria. However, 
wine is produced in over 60 regions, reflecting the wide range of climates and soil types available in 
the continent. In 2003-04 Shiraz was the most-produced variety, followed by Chardonnay and 
Cabernet Sauvignon. Premium white varieties other than Chardonnay include Semillon, Riesling 
and Colombard.  
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Now, wine is very much a part of Australian life, closely associated with both business and leisure. 
Wine consumption is often linked to the country's outdoor-oriented lifestyle as well as to the 
cosmopolitan urban way of life of the bulk of the Australian population. Wine festivals are a feature 
of cultural life in the major wine producing regions of Australia and draw many Australian 
holidaymakers and international visitors each year. From an historical point of view, the end of the 
Second World War saw a rapid influx of migrants from Europe who brought with them a strong 
culture related to wine and provided an important impetus to the Australian wine industry. However 
it is the period 1996 to 2004 that has seen spectacular growth in exports following rapidly 
increasing appreciation of Australian wines overseas. Major wine producers from abroad have 
invested in Australian wineries and Australian companies have taken controlling interests in 
wineries in countries such as France and Chile.  
In 2003-04 sales of Australian wine totaled approximately 999 million litres, with 414 million litres 
sold domestically and 584 million litres exported. Australian wine exports were worth $2.5 billion, 
with represented an increase of 12.7% over the previous year.  
 
 
Monthly Australian sales of red wine: thousands of liters. 
Jan 1980 - Jul 1995. Source: ABS. 

Monthly sales of wine (1980 - 1995)
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MODEL FINALLY CHOSEN: ARIMA(0,1,1)(0,1,1) in which logs are selected 
WITHOUT MEAN, WITHOUT TRADING DAY CORRECTION, WITHOUT EASTER CORRECTION 
 
METHOD OF ESTIMATION: EXACT MAXIMUM LIKELIHOOD            
PARAMETER      ESTIMATE           STD ERROR      T RATIO    LAG   
MA1  1         -.81312          0.47548E-01      -17.10      1 
MA2  1         -.74146          0.66648E-01      -11.13     12 
 
AIC    -261.4457  and  BIC      -4.3480 
DURBIN-WATSON=  1.9507 
PARAMETER           VALUE            ST. ERROR    T VALUE 
OUT 1 ( 67)        -.34845        (     0.09769)   -3.57     AO    ( 7 1985) 
 
LJUNG-BOX Q VALUE OF ORDER 24 IS  11.66 < 36.415 
(Squared)  LJUNG-BOX Q VALUE OF ORDER 24 IS  20.01 < 36.415 
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It is very clear how much this model fit well with our data: the BIC and AIC are very low, there are 
no problems with normality nor with linearity. Thus, this model also allows to forecast the values of 
future lags of the series. 

 
 
 
Wine grapes (thousand tonnes): Australia 1961-2006 

In this case the green line represents 
the outliers corrected series, as in the 
following graph about consumer price 
for alcohol and tobacco. 
 
The model finally chosen is an 
ARIMA (1,1,0) with mean correction. 
 
 

OUTLIERS 
PARAMETER    VALUE         ST. ERROR    T VALUE 
MU           0.50792E-01   (0.01233)     4.12 
OUT 1 (40)  -2.2629        (0.10427)   -21.70  
AO (1 2000) 
 
METHOD OF ESTIMATION: EXACT MAXIMUM LIKELIHOOD  
PARAMETER  ESTIMATE   STD ERROR   T RATIO   LAG   
AR1  1    0.56000     0.12350     4.53      1 
 
AIC     -54.0321 and  BIC      -3.9265 
DURBIN-WATSON=  1.9968 
LJUNG-BOX Q VALUE OF ORDER  8 IS 6.30 
(Squared) LJUNG-BOX Q VALUE OF ORDER  8 IS  
10.69 < 15.507 
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Consumer Price Index: Alcohol and Tobacco  
Australia – Quarterly data from June 1969 to March 2006 
 

Quarterly consumer price of wine 
(Sept. 1972 - Mar. 2007 )
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The green line represents the outliers corrected 
series. 

The model finally chosen is an ARIMA (1,1,1) (0,1,1), instead the model selected by the TRAMO 
automatic procedure was an ARIMA (2,1,1) (0,0,0), with a worst fit that our model, and, also, 
trouble in the unit roots, as showed later. 
 
METHOD OF ESTIMATION: EXACT MAXIMUM LIKELIHOOD            
   
 PARAMETER      ESTIMATE           STD ERROR      T RATIO   LAG   
   
 AR1  1         -.62954          0.18066           -3.48      1 
 MA1  1         -.26735          0.22439           -1.19      1 
 MA2  1         -.79714          0.69028E-01      -11.55      4 
 
PARAMETER           VALUE          ST. ERROR     T VALUE 
 MU                 0.44825E-01    (     0.02357)    1.90 
 OUT 1 (125)         9.3880        (     0.55997)   16.77   LS    ( 1 2000) 
 OUT 2 ( 38)         4.7678        (     0.48083)    9.92   TC    ( 2 1978) 
 OUT 3 ( 26)         4.0179        (     0.54974)    7.31   LS    ( 2 1975) 
 OUT 4 (104)         3.5928        (     0.57737)    6.22   LS    ( 4 1994) 
 OUT 5 (127)         2.4041        (     0.55261)    4.35   LS    ( 3 2000) 
 OUT 6 (105)         3.0381        (     0.60277)    5.04   LS    ( 1 1995) 
 OUT 7 (121)        -1.6157        (     0.34801)   -4.64   AO    ( 1 1999) 
 OUT 8 ( 58)         2.3452        (     0.54732)    4.28   LS    ( 2 1983) 
 OUT 9 (113)        -1.4652        (     0.34647)   -4.23   AO    ( 1 1997) 
 OUT10 (106)         2.1771        (     0.57924)    3.76   LS    ( 2 1995) 
 OUT11 (137)         2.0191        (     0.57097)    3.54   LS    ( 1 2003) 
 OUT12 ( 86)         1.8923        (     0.54751)    3.46   LS    ( 2 1990) 
 
AIC      278.845 and  BIC   -0.5227 
DURBIN-WATSON=  2.0024 
LJUNG-BOX Q VALUE OF ORDER 16 IS    15.24 < 26.296 
LJUNG-BOX Q VALUE OF ORDER 16 IS    16.67 < 26.296 
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The Durbin-Watson statistic is a test for first-order serial correlation, that is the DW statistic 
measures the linear association between adjacent residuals from a regression model. If there is no 
serial correlation, the DW statistic will be around 2. The DW statistic will fall below 2 if there is 
positive serial correlation (in the worst case, it will be near zero). If there is negative correlation, the 
statistics will lie somewhere between 2 and 4. Positive serial correlation is the most commonly 
observed form of dependence. As a rule of thumb, with 50 or more observations and only a few 
independent variables, a DW statistic below about 1.5 is a strong indication of positive first order 
serial correlation. 
 
 
 
4. CONCLUSIONS 
 
We can summarize our analysis saying that series about production or sales are easy to forecast 
because of their linear behaviour. The model that best fits with the data, independently of the nature 
of goods sold or produced, is an ARIMA (0,1,1), that is an exponential smoothing model either in 
the regular or in the seasonal part or in both of them. Focusing our attention on the indexes price 
series, we have discovered that, with small changes, we can again apply ARIMA (0,1,1) or mixed 
ARIMA model, like an ARIMA (1,1,1). Finally, we found out that cointegration among series about 
production and series about the price of this production is a complex one, and maybe it needs much 
more knowledge about the phenomenon under study and its evolution over time. 
 


