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Insights from Australia

ABSTRACT

Since Demand and Supply are strictly related in economic life, it might be possible that

they show a similar behavior over time. Therefore, to test this hypothesis | will analyze
different series of goods productions and goods sales (as a proxy of demand). Then, |
will test for the presence of cointegration among two different price index related to
natural gas and its production. At the end, | will compare the production of grapes, the

sales of wine and the price of wine, in order to see if it is possible to find a common

pattern. Finally, it is important to notice that all series refer to Australia in order to put
constant the institutional and macroeconomic environment.



PhD in Business Administration and Quantitative Methods 2006/07
Time Series Course ~ Prof. Regina Kaiser
FINAL PROJECT

Sara Degli Esposti

1. INTRODUCTION

The basic aim of this paper is smply to check if it is possible to identify a common class of forecast
models for time series referring to demands and supply of goods. Taking into account that firms try
to produce the eact amount of commodities requested by the market, it is easy to see the
implications of confirming the existence of a stationary predictable pattern for market demand. Of
course, many firms aready adopt this approach using their internal data and the market forecast,
however which kind of model is the more parsmonious and exhaustive might depends on the type
of goods sold. For this reason, in this paper, we will deal with three types of very different physical
goods. arav material (gas), a manufacture (cars), and a food (wine). It could be very interesting to
find a common model for forecast of so different goods. Moreover, it might be interesting to
observe what happens to the price generated by the interaction of supply and demand, according to
the neoclassical model.

2. USING ARIMA FORECAST MODELS

The basic set of model that | am going to use assumes linearity in the path dependence of the series.
I mean the ARIMA models, where ARIMA stands for “Auto-Regressive Integrated Moving
Average.” These type of model, coming from the previous ARMA model (Box and Jenkins), are a
method for modelling univariate time series that can be used to extend estimates beyond the end of
a series. Autoregressive models are ssmply a linear regression of the current value of the series
against one or more prior values of the series. The value of p is caled the order of the model. On
the other hand, the primary idea behind the moving average model is that the random shocks are
prorogued to future values of the series. So, lags of the differenced series appearing in the
forecasting equation are called “auto-regressive” terms, lags of the forecast errors are called
“moving average” terms, and a time series which needs to be differenced to be made stationary is
said to be an "integrated" version of a stationary series. A non-seasonal ARIMA model is classified
as an “ARIMA(p,d,q)” model, where: p is the number of autoregressive terms, d is the number of
nonseasonal differences, and q is the number of lagged forecast errors in the prediction equation.

Using these forecast models is alowed only in the case of stationary time series, otherwise, the
basic assumptions of the model are not satisfied. Therefore, since very few empirical series are
stationary in their original form, we need to stationarize the series through the use of mathematical
transformations. Let me remind that a stationary time series is one whose statistical properties such
as mean, variance, autocorrelation, etc. are al constant over time.

2.1 How construct the right ARIMA model

If the series has a stable long-run trend and tends to revert to the trend line following a disturbance,
it may be possible to stationarize it by transforming it into a series of period-to-period and/or
seasonto-season differences. If the mean, variance, and autocorrelations of the original series are
not constant in time, perhaps the statistics of the changes in the series between periods or between
seasons will be constant. Such a series is said to be difference-stationary. Sometimes it can be hard
to tell the difference between a series that is trend-stationary and one that is difference-stationary,
and a so-called unit root test may be used to get a more definitive answer.
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The first difference of a time series is the series of changes from one period to the next. If Y,
denotes the value of the time series Y at period t, then the first difference of Y at period t is equal to
(\q - Yt_l). Normally, the correct amount of differencing is the lowest order of differencing that

yields a time series which fluctuates around a well-defined mean value and whose autocorrelation
function (ACF) plot decays fairly rapidly to zero, either from above or below. One of the most
common errors in ARIMA modelling is to “over-difference” the series and end up adding extra AR
or MA terms to undo the damage. If the lag-1 autocorrelation is more negative than -0.5 (and
theoretically a negative lag-1 autocorrelation should never be greater than 0.5 in magnitude), this
may mean the series has been over-differenced. The time series plot of an over-differenced sries
may look quite random at first glance, but if you look closer you will see a pattern of excessive
changes in sign from one observation to the next (i.e., up-down-up-down, etc.):

Others types of mathematical transformations are alowed in order to get stationary the series and,
then, to forecast theirs future values. For instance, the LOG function has the defining property that

In(x" y)=In(x)+In(y), i.e, the logarithm of a product equals the sum of the logarithms.

Therefore, logging tends to mnvert multiplicative relationships to additive relationships, and it
tends to convert exponential (compound growth) trends to linear trends. By taking logarithms of
variables which are multiplicatively related and/or growing exponentially over time, we can often
explain their behaviour with linear models. Let highlight that the logarithm transformation can be
applied only to data that are strictly positive, that is you can not take the log of zero or a negative
number. Logging a series often has another effect: it dampens exponential growth patterns and
reduces heteroscedasticity (i.e., stabilizes variance).

After a time series has been stationarized by differencing, the next step in fitting an ARIMA model
is to determine whether AR or MA terms are needed to correct any autocorrelation that remainsin
the differenced series. By looking at the autocorrelation function (ACF) and partial autocorrelation
(PACF) plots of the differenced series, you can tentatively identify the numbers of AR and/or MA
terms that are needed. A partiad autocorrelation is the amount of correlation between a variable and
alag of itself that is not explained by correlations at all lower-order-lags. The autocorrelation of a
timeseries Y at lag 1 is the coefficient of correlation between Y (t) and Y (t-1), which is presumably
also the correlation between Y (t-1) and Y (t-2). But if Y (t) is correlated with Y (t-1), and Y (t-1) is
equally correlated with Y (t-2), then we should also expect to find correlation between Y (t) and Y (t-
2). (In fact, the amount of correlation we should expect at lag 2 is precisely the square of the lag-1
correlation.) Thus, the correlation at lag 1 “propagates’ to lag 2 and presumably to higher-order
lags. The partial autocorrelation at lag 2 is therefore the difference between the actual correlation at
lag 2 and the expected correlation due to the propagation of correlation at lag 1.

If the PACF displays a sharp cutoff while the ACF decays more slowly (i.e., has significant spikes
a higher lags), we say that the stationarized series displays an “AR signature,” meaning that the
autocorrelation pattern can be explained more easily by adding AR terms than by adding MA terms.
In principle, any autocorrelation pattern can be removed from a stationarized series by adding
enough autoregressive terms (lags of the stationarized series) to the forecasting equation, and the
PACEF tells you how many such terms are likely be needed. However, this is not always the simplest
way to explain a given pattern of autocorrelation: sometimes it is more efficient to add MA terms
(lags of the forecast errors) instead.
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The autocorrelation function (ACF) plays the same role for MA terms that the PACF plays for AR
terms, that is, the ACF tells you how many MA terms are likely to be needed to remowe the
remaining autocorrelation from the differenced series. If the autocorrelation is significant at lag k
but not at any higher lags (i.e., if the ACF "cuts off" at lag k) this indicates that exactly k MA terms
should be used in the forecasting equation. In the latter case, we say that the stationarized series
displays an “MA signature,” meaning that the autocorrelation pattern can be explained more easily
by adding MA terms than by adding AR terms.

If aseriesis grosdy either under or over-differenced (i.e., if a whole order of differencing needs to
be added or cancelled), this is often signaled by a “unit root” in the estimated AR or MA
coefficients of the model. An AR(1) modd is said to have a unit root if the estimated AR(1)
coefficient is aimost exactly equal to 1, that is not significantly different from 1, in terms of the
coefficient's own standard error. When this happens, it means that the AR(1) term is precisely
mimicking a first difference, in which case you should remove the AR(1) term and add an order of
differencing instead. This is exactly what would happen if you fitted an AR(1) model to the
undifferenced UNITS series, as noted earlier. In a higher-order AR model, a unit root exists in the
AR part of the model if the sum of the AR coefficients is exactly equal to 1. In this case you should
reduce the order of the AR term by 1 and add an order of differencing. A time series with a unit root
in the AR coefficients is nonstationary (i.e., it needs a higher order of differencing). If there is a unit
root in the AR part of the model (.e., if the sum of the AR coefficients is almost exactly 1) we
should reduce the number of AR terms by one and increase the order of differencing by one.
Similarly, an MA(1) model is said to have a unit root if the estimated MA(1) coefficient is exactly
equal to 1. When this happens, it means that the MA(1) term is exactly cancelling afirst difference,
in which case, you should remove the MA (1) term and also reduce the order of differencing by one.
In a higher-order MA model, a unit root exists if the sum of the MA coefficients is exactly equal to
1. If there is a unit root in the MA part of the model (i.e, if the sum of the MA coefficients is almost
exactly 1) you should reduce the number of MA terms by one and reduce the order of differencing
by one.

A forecasting model with a unit root in the estimated MA coefficients is said to be noninvertible,
meaning that the residuals of the model cannot be considered as estimates of the true random noise
that generated the time series. Another symptom of a unit root is that the forecasts of the model may
blow up or otherwise behave bizarrely. If the time series plot of the longer-term forecasts of the
model 1ooks strange, you should check the estimated coefficients of your model for the presence of
aunit root. If the long-term forecasts appear erratic or unstable, there may be a unit root in the AR
or MA coefficients.

Here, | will try to find out the best model in order to fit my data. In most cases, the best model turns
out a model that uses either only AR terms or only MA terms, although in some cases a “mixed”
model with both AR and MA terms may provide the best fit to the data. However, it is possible for
an AR term and an MA term to cancel each other's effects, even though both may appear significant
in the model (as judged by the tstatistics of their coefficients). For this reason, ARIMA models
cannot be identified by "backward stepwise" approach that includes both AR and MA terms. In
other words, | will not begin by including severa terms of each kind and then throwing out the
ones whose estimated coefficients are not significant. Instead, | am going to follow a "forward
stepwise” approach, adding terms of one kind or the other as indicated by the appearance of the
ACF and PACEF plots.
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According to the frequency of our data, it might be possible to discover pattern also in seasonality.
A seasonad ARIMA modd is classified as an ARIMA(p,d,g)x(P,D,Q) model, where P=number of
seasonal autoregressive (SAR) terms, D=number of seasonal differences, Q=number of seasona
moving average (SMA) terms. In identifying a seasonal model, the first step is to determine whether
or not a seasonal difference is needed, in addition to or perhaps instead of a non-seasonal
difference. | shall look at time series plots and ACF and PACF plots for all possible combinations
of 0 or 1 non-seasonal difference and O or 1 seasona difference. If the seasonal pattern is both
strong and stable over time (e.g., high in the Summer and low in the Winter, or vice versa), then |
often will prefer to use a seasonal difference regardiess of whether | have used a nonseasonal
difference, since this will prevent the seasonal pattern from "dying out" in the long-term forecasts.
For example, a pure SAR(1) process should have spikes in the ACF at lags s, 2s, 3s, €tc., while the
PACEF cuts off after lag s. Conversely, a pure SMA(1) process should show spikes in the PACF at
lags s, 2s, 3s, etc., while the ACF cuts off after lag s. Accordingly, an SAR signature usually occurs
when the autocorrelation at the seasona period is positive, whereas an SMA signature usually
occurs when the seasonal autocorrelation is negative.

Basically, the two kind of ARIMA models that | will apply are the simple exponential smoothing in
the ordinal and in the seasona part. The ssimple exponential smoothing model (i.e. ARIMA(0,1,1))
uses an exponentially weighted moving average of past values in order to filter out the noise and
more accurately estimate the local mean. In other words, rather than taking the most recent
observation as the forecast of the next observation, it is better to use an average of the last few
observations. The model can be written as X, = X,_, - qa,_,, where a,_, ) denotes the error at period

t-1. Note that this resembles the prediction equation for the ARIMA(1,1,0) model, except that
instead of a multiple of the lagged difference it includes a multiple of the lagged forecast error.

On the other hand, the ARIMA(0,1,1)x(0,1,1) model s basically a Seasonal Random Trend (SRT)
model fine-tuned by the addition of MA(1) and SMA(1) terms to correct for the mild
overdifferencing that resulted from taking two total orders of differencing. This is probably the
most commonly used seasonal ARIMA model, as confirmed also in thisanalysis.

2.2 Using cointegration techniques

For a long time it was common practice to estimate equations involving nonstationary variables in
macroeconomic models by straightforward linear regression. It was not well understood that testing
hypotheses about the coefficients using standard statistical inference might lead to completely
spurious results. In an influential paper, Clive Granger and his associate Paul Newbold (Granger
and Newbold (1974)%) pointed out that tests of such a regression may often suggest a statistically
significant relationship between variables where none in fact exists. However, if economic
relationships are specified in first differences instead of levels, the statistical difficulties due to
nonstationary variables can be avoided because the differenced variables are usually stationary even
If the original variables are not. An alternative approach would involve removing a linear time trend
from the variables and specifying the empirical relationship between them using detrended
variables. Removing (separate) time trends assumes, however, that the variables follow separate
deterministic trends, which does not appear redlistic, given the awkward long-run implications.
Dynamic econometric models based on linearly detrended variables may, thus, be able to

1 C.W.J. GRANGER and P. NEWBOLD , “SPURIOUS REGRESSIONS IN ECONOMETRICS.” Journal of Econometrics 2 (1974)
111-120. (6 North-Holland Publishing Company).
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characterize short-term dynamics of economic variables but not their long-run relationships. The
same is true for models based solely on first differences.
Therefore, if we consider the following bivariate autoregressive system of order p :

_9 d 8 P
X=a X ;tad;y. te, Yi=a 9% ta dy Y tey
= j=1 j=1 j=1

where x, and y, are I(1) and cointegrated, and e, and e, are white noise; the Granger
representation theorem says that in this case, the system can be writtenas:

Bl Bl . Bt . B .
DXt :al(yt-l' le_l)+ a glj D(t— j +ta dle/t— j tey Dy, =a2(yt-1' bxt-l)+ a gsz& j +a dlijt-J tex
j=1 j=1 =1 =
where at least one of parameters a, and a, deviates from zero. Both equations of the system are
“balanced”, that is, their left-hand and right-hand sides are of the same order of integration, since
Yo, bx.~1 (O) Suppose that Yy, - b x =0defines a dynamic equilibrium relationship between
the two economic variables, y and x. Then y, - bx is an indicator of the degree of disequilibrium.

The coefficients a, and a, represent the strength of the disequilibrium correction, and the system

is now said to be in error-correction form. A system characterized by these two equations is thus in
disequilibrium at any given time, but has a built-in tendency to adjust itself towards the equilibrium.

Engle and Granger (1987) consider the problem of testing the null hypothesis of no cointegration
between a set of 1(1) variables. They estimate the coefficients of a static relationship between these
variables by ordinary least squares and apply well-known unit root tests to the residuals. Rejecting
the null hypothesis of a unit root is evidence in favour of cointegration. The performance of a
number of such tests is compared in the paper. In other words, the nonstationary time series in Y;
are cointegrated if there is alinear combination of them that is stationary or 1(0).

Cointegration naturally arises in economics and finance. In economics, cointegration is most often
associated with economic theories that imply equilibrium relationships between time series
variables. For instance: (a) the permanent income model implies cointegration between
consumption and income, with consumption being the common trend; (b) money demand models
imply cointegration between money, income, prices and interest rates; (c) growth theory models
imply cointegration between income, consumption and investment, with productivity being the
common trend; (d) purchasing power parity implies cointegration between the nomina exchange
rate and foreign and domestic prices; () covered interest rate parity implies cointegration between
forward and spot exchange rates; (f) the Fisher equation implies cointegration between nominal
interest rates and inflation; (g) the expectations hypothesis of the term structure implies
cointegration between nominal interest rates at different maturities.

The equilibrium relationships implied by these economic theories are referred to as long-run
equilibrium relationships, because the economic forces that act in response to deviations from
equilibrium may take a long time to restore equilibrium. As a result, cointegration is modeled using
long spans of low frequency time series data measured monthly, quarterly or annually.

In this study, | will use cointegration to test the relationships between production and price of
goods.
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3. DATA AND ANALYSIS

| deal with three types of different goods produced in Australia: natura gas, cars, and wine. The
large distance among these categories of goods ought help us to test the validity of an ARIMA
(0,1,1) as forecast model using economic variables.

3.1 GAS

Australia has large identified resources of bssil fuels and uranium. It is ranked in the top six
countries in the world for economic demonstrated resources (EDR) of black and brown coal, and
has the world's largest EDR of uranium. Australia also has significant reserves of natura gas and
crude ail.

Even tough, energy sources might
be both renewable (energy
sources for which the supply is
essentialy  inexhaustible, i.e.
solar, wind, hydro-electricity,
geothermal and biomass) and non
renewable (energy sources with a
finite supply), however, most of
Australias energy comes from
norrrenewable  sources, which
include the fossil fuels of ail,
natural gas and coa. The Map on
the right, shows the extent of
access to gas resources and major
transmission pipelines in
Australia (2004).

|:| HaniRl gs Mmsena 25 3 parantgs of 101 msares

In 2004-05 Augtraias total T e
primary energy production was
estimated at 17,524 PJ of which Sourcs: Geokcinces Ausirals, 2004

black coa accounted for near|y Geoscience Australia, last viewed August 2006 <http://www.ga.gov.au>

half (46%), followed by uranium (30%), natural gas (9%) and crude oil (6%). Renewable energy
production (including wood, bagasse, biofuel, hydro-electricity and solar thermal energy)
accounted for only 2% (261 PJ) of total production in 2004-05. Let point out that in 2004-05
Australia’s total domestic energy use was 5,841 PJ, less than e third of the total energy it
produced (17,524 PJ)

| am going to analyze a series about gas production with three different frequency: monthly,
quarterly and annual. As we will see, all these series show the same behavior over time, and, so,
they might be forecasted using the same ARIMA mode.

Then, | will deal with series about the price of these produced gas and the price of the gas imported
in the country, in order to test if these series might be forecast using the same ARIMA model and if
there is a common tendency between production, as a proxy of supply, and price.
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Australia monthly production of gas (million megaj oules)

70000

Monthly production of gas (1956-1995)

20000

10000

3 Source: ABS 8301.0
g (Jan 1956 - Aug 1995)

After taking the first difference of the logging
series, | have observed the following pattern in
the ACF and in the PACF. Of course,
something is happening in the seasona part,
since the gne-cosine behaviour is clearly
showed with decreasing picks in 12, 24 etc.
That is obvious the need of differentiating in
the seasonal part.

The ACF, in which the red lines represent the
squared residuals, on the right, represents
residuals before taking the first difference in
the ordinal part.
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The model finally chosen isan ARIMA (0,1,1) (0,1,1), in whichlog transformation is needed, also,
trading day correction. Moreover, it is required to apply an outliers correction in order to avoid
behaviours that seem to be not linear. As showed later, all the outliers are significant, and, aso,
there are level shifts, which need to be treated as additive outliers.
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QUTLI ERS ST. ERROR T VALUE

447 AO (3 1993) ( 0. 00045) 4.48

170 LS ( 2 1970) ( 0.03224) -9.31

149 TC  ( 5 1968) ( 0. 03528) 7.21

468 AO (12 1994) ( 0. 03530) 4.57

163 LS (7 1969) ( 0.03348) -4.60

309 AO (9 1981) ( 0. 03528) 4.17

301 LS (1 1981) ( 0.03160) -3.79

205 AO (1 1973) ( 0. 03526) 3.76

192 LS (12 1971) ( 0. 03166) 3.83

METHOD OF ESTI MATI ON:  EXACT MAXI MUM LI KEL| HOOD

PARANMETER ESTI MATE STD ERROR T RATIO LAG
MAL 1 -. 37608 0. 44189E- 01 -8.51 1
M2 1 -.77810 0. 32668E- 01 -23.82 12

The model appear to fit very well with the data without having problems about normality. Due to
outliers and the large difference between the first part of the series and the subsequent tendency,
there are still some trouble in the squared residuals, as pointed out in the Ljung-Box test.

Al C -1635.4877 and BIC -6.2874

DURBI N- WATSON= 1. 8909

LJUNG BOX Q VALUE OF ORDER 24 IS 35.88 < 36.415

(Squared) LJUNG BOX Q VALUE OF ORDER 24 IS 44.99 > 36.415

The model finally chosen an ARIMA (0,1,1)x(0,1,1), is aso confirmed when goplied at the same
series, but with different unit measurement, as it will be shown later.

When used in
Quarterly production of gas conjunction with

(Mar. 1956 - Sept. 2006) differenci ng, |Ogg| ng
converts absolute
differences into relative
(i.e., percentage)
differences. Thus, the
series DIFF(LOG(Y))
represents the
percentage changein Y
from period to period.
30000 Strictly speaking, the
percentage changein Y
20000 : at period t isdefined as
(Y(O-Y (t-D)/Y(t-1),
10000 1 which isonly
approximately equa to

70000

60000

50000

40000 k

LOG(Y (1)) - LOG(Y (t-1)), but the approximation is almost exact if the percentage change is small,
as happened in this case.
The model, which was finally chosen is the ARIMA (0,1,1)(0,1,1), in which LOGS are Selected and
nothing more. Since there is just on outlier (131 AO [ 3 1988] with a t-value of 3.76) the problems
about non-linearity saw in the previous model, are solved.

PARAVETER ESTI MATE STD ERROR T RATIO LAG
MAL 1 -. 33646 0. 68486E- 01 -4.91 1
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MA2 1 -. 58153 0. 57901E- 01 -10. 04 4
AIC  -1040.8677 and BIC - 8. 0540
DURBI N- WATSON= 1. 8554

The Ljung-Box test used here is based on the autocorrelation plot, but, instead of testing
randomness at each distinct lag, it tests the “overall” randomness based on a number of lags.

LIJUNG BOX Q VALUE OF ORDER 16 IS 19.81 < 26.296
Squared LJUNG BOX Q VALUE COF ORDER 16 IS 19.68 < 26.296

_ MODEL
Annual gas production (1956 - 2005) FINALLY
CHOSEN:
900
0,1,1)(0,1,1
o _— (0,4,1)(0,L,1)
700 /_/ I n which LOGS
600 /\/ are Sel ected
500 W TH MEAN,
400 — W THOUT
/ TRADI NG DAY
300 e CORRECTI ON,
200 / W THOUT
100 EASTER
o — CORRECTI ON
> | © < S o ' N ' o NO OUTLI ERS
Q o - < ': o %
N~ N
548885558888 8§8¢§8GE DETECTED
PARAVETER ESTI MATE STD ERROR T RATIO LAG
MAL 1 0.78143 0.10259 7.62 1
MA2 1 -. 95004 0. 51320E-01 -18.51 12
AIC -59.4871 and BIC -4.7485
DURBI N- WATSON= 1. 4462
LJUNG BOX Q VALUE OF ORDER 24 IS 36. 96
( Squar ed) LJUNG BOX Q VALUE OF ORDER 24 IS 45. 01

Now, | want to check if the behaviour of the series about the price at which gas has been sold and
the price of the imported same raw material, may be forecast using the same ARIMA model.

IMPORT PRICE INDEXES OF MINERALS FUELS, ETC., QUARTERLY - By SITC sections

Quarterly price of imported minerals
(Mar. 1982 - Mar. 2007)
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Thered line shows the outliers corrected
series.

Source: Australian Bureau of Statistics (Jul 2007 Australian Economic Indicators)
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The modd finally chosen is an ARIMA(0,1,1)(0,0,0), so without seasonal part. Again, the logs
transformation is needed, but without anything else. Just three significant outliers are detected:

PARAVETER VALUE ST. ERROR T VALUE
ouT 1 ( 18) -. 49389 ( 0.08023) -6.16 TC  ( 2 1986)
ouT 2 ( 36) 0. 36072 ( 0. 08023) 4.50 TC  ( 4 1990)
QuUT 3 ( 76) 0. 20328 ( 0. 05581) 3.64 AO  ( 4 2000)
METHOD OF ESTI MATI ON:  EXACT MAXI MUM LI KELI HOOD

PARAVETER ESTI MATE STD ERROR T RATIO LAG

MAL 1 0. 30754 0. 95154E- 01 3.23 1

AIC  -183.2731

Bl C -4.5674

DURBI N- WATSON= 2. 0598
LJUNG BOX Q VALUE OF ORDER 16 IS  14.02 < 26.296
(Squared) LJUNG BOX Q VALUE OF ORDER 16 IS  13.59 < 26.296

As we can see, this modd fits very well our data, without non-linearity problems.

arice gun o AT OF SGUAPET PRSI S P o S OF O TENEHCED S trice gec g FATSL ACT OF DETEREMCHED SEPES
84 OF BESTALALS

Finaly, we want to test if there is a relations between the series about quarterly gas production and
the price of imported gas. Actually, we should expected an inverse relation between the two. So, |
suggest that we should not find cointegration between these series. As showed in the table below,
the hypothesis about the absence of cointegration between the two logged series is confirmed.
Before looking at the cointegration test
Is there cointegration between gas imported results, let us make a summary about how

i i ? . . !
price (red) ?(33 a‘;{:ﬁ;tgi g;)gas (bluey: we should interpret cointegration and what

March 1982 - September 2006 we mean for it.
The sarting point is the definition of

degree of integration among series. We
10,00 caled a series integrated of order p, if
DP(X,) =e,, that is the series obtained
after p differences is a stationary one.
Considering these set of variables such

W that b1X1t+b2X2t+"'+annt=o'
b=(b,b,,..b,),

and

8,00

6,00

4,00

Xi = (% s Xy 5o, X)'- 1T the condition
above stated is satisfied, we can say that
Xi = (X s X000 X)) 1S IN @ long run
equilibrium.

2,00

| Seriel Serie2
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Otherwise, changes in the equilibrium condition are called equilibrium error, which is defined as
g = bX,. When this equilibrium error appears to be stationary, we can say that the set of variables
Xi = (X X5 Xp)" IS 1N €Quilibrium. Therefore, for cointegration we mean a linear combination of

non-stationary variables. We will focus our attention on the case in which each variable is
integrated of order 1, that is (1), such that its first difference is of type 1(0), which is stationary.

Here, | will use Johansen methodology in order to test if there is cointegration among the variables
under study. Let us consider an autoregressive vector of order p, such that

Y, =AY +..+AY,_, +BX, +e,where Y, isak-dimensiona vector of non-stationary variables
of type I(1), X, isa vector of deterministic variables, and e, is a innovations vector. We can

p-1
rewrite the autoregressive vector as DY, =pY_,+& GDY_, +bX, +e,, where p :5 A-1,

il i=1
=- 5 A, , and | isthe identity matrix. According to Granger’s theorem, if the coefficient matrix
Ji+l
p has got rank r < k, then there are two matrices (of k x r dimensions) a and b, each of them of rank
r, such that p =ab', with stationary b'Y,. Here, r represents the cointegrating rank, where each

column of b is a cointegrating vector, whilst the elements presents in a are known as adjusting
parameters. The Johansen’s method estimates matrix p in order to verify if we can rgject the null
hypothesis due to the restricted rank of p. To verify the rank of the matrix p is applied a c? test,
before whom we should specify some elements of the model, as the presence of intercept and/or
trend in the cointegration space. We can chose among he following 5 possibilities applying
Johnson’s methodology using EViews:

1. neither deterministic trends nor intercept in the series under study, that isin Y, (VAR).

H,(r) :pY., + BX, =ab'y, ;
2. no deterministic trendsin Y, , but intercepts in the cointegrating equations (EMC)
Hi(r):pY. +BX, =a(b'Y. +1,);

3. Y, haslinear trends and the ECM has intercept H, (r) :pY,., + BX, =a(b'Y,_ ) +r +a.g,
where an is nontsingular matrix of dimension k x (k - r) such that & a= 0 and the rank of
alan isequd tok;

4. both Y, and ECM have liner trends H * (r) :pY,_, + BX, =a(b"Y,_,+r  +rt) +a.g,;
5. Y, has aquadratic trend, whilst ECM has a linear trend such that

H(r):pY.,+ BX, =a(b'Y,, +1,+r,f)+a. (g, +90) -
These five cases are link each other according to the following relationship

L] o . _— o

H2(r)C 5 Hl(r)c 5 Hl(r)C , H (r)C2 H(r), from which we can identify the c? distribution
r k-r r k-r

needed. Thus, the first step is to choose the series under study, that is Y,, then we can construct the

test statistics in order to test the eventua presence of cointegration. We will use the following

statistics, taking into account each of the cases selected.
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k
{CASES 3 and 5 nQ log((1- 1 ,)/(1- 1)) » c2,

ir+l

— ———" —

| CASES 1,2,and4 ng log((1- | )/(1- 1)) » c?

i=1

values for modelsH(r) and H' (r) respectively.

—_

[ Johansen Cointegration Test

Sample: 1982:1 2006:4

Included observations: 96

Test assumption: Mo deterministic trend in the data
Series: GASPRICED GASOLN

Lags interval: 1102

Likelihood 5 Percent 1 Percent  Hypothesized
Eigenvalue Ratio Critical Walue  Critical Walue Mo, of CE(s)
0.054337 37723 1263 16.31 Maone
0.000144 0013829 184 B.51 At most 1

"™ denotes rejection of the hypothesis at 5%(1%) significance level
L.R. rejects any cointegration at 5% significance level

Unnarmalized Cointegrating Coefficients:

GASPRICEQ GASOLN
-0.255307 0111260
0.050855 -0.015977

Mormalized Cointegrating Coeficients: 1 Cointegrating Equation(s)

GASPRICEQ  GASGLN
1.000000  -0.435789
(0.01758)

Log likelihood  36.09459

where | ,and| represent the biggest self-

The cointegration test is applied on the
logged series about respectively the price
of imported minerals and the Australian
production of gas from march 1982 to
September 2006.

Here, cointegration is not found, because
the unit root test does not reect the
hypothesis about the no existence of
cointegration

The next series used in the andysis is
about the pad price of household
contents and services, among which there
IS gas provision

Australian Bureau of Statistics: Australian Economic Indicators (2007)

CONSUMER PRICE INDEX of Household contents and services, QUARTERLY - By group
Original (1989-90 = 100.0)

The model finally
chosenisan ARIMA
(0, 1, 1)(0, 1, 0), which

Quaterly gas consumer price
(Sept. 1972 - Sept. 2006)

140 is different from the

o 1| ARIMA (2,1,2) model
Pl suggested by the

100 Pt TRAMO automatic

80 / procedure. As showed
60 / in the following table,
40 the unit root test

20 r/ confirms that TRAMO

o was deceived by the AR
coefficient.
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PARAMETER ESTI MATE STD ERROR T RATIO LAG
MAL 1 0.17981 0. 84352E- 01 2.13 1
ESTI MVATES OF REGRESSI ON PARAMETERS CONCENTRATED QUT OF THE LI KELI HOOD
PARAMETER VALUE ST. ERRCR T VALUE
MJ 0. 76967 ( 0. 07151) 10. 76
QuT 1 (131) -2.5270 ( 0. 69610) -3.63 LS ( 1 4107)
| Augmented Dickey-Fuller Unit Root Test on CONPRICEGASQ MODEL SUPPOSED: (O’ 1, 1)(0’ 1, O)
ADF Test Statistic  -1.136067 1% Critical Walue™ -4.0298
5%  Critical Walue 34442 Al C 294. 189
10% Critical Value -3.1467 Bl C -0. 6107

*Mackinnon critical values for rejection of hypothesis of a unit root.

Augmented Dickey-Fuller Test Equation
Dependent Yariable: D{CONPRICEGASQ)

hdethod:

Least Squares

Sarnple(adjusted); 1973:4 2006:3
Included observations: 132 after adjusting endpoints

“ariable Coeficient  Std. Error t-Statistic Prob.

COMPRICEGASQ-1) -0.00927%  0.008168 -1.136067  0.2581
D(CONPRICEGASQ(-1 -0.151864 0088662 -1.712835  0.0892
DICONPRICEGASQ(-Z 0249130 0088833  2.802902  0.0058
D{CONPRICEGASQ(-3 0210279 0089003 2362600  0.01%97
DICOMPRICEGASQ(-4 0299020  0.088950 3381656  0.0010

C

0795719 0287680 2765887  0.0065

G@TREND{1972:1) 0004152  0.007335 0566074 05724

DURBI N- WATSON= 1. 8128

LJUNG BOX Q VALUE OF ORDER 8 IS

93. 63

(SQUARED) LJUNG BOX Q VALUE OF ORDER

8 1S

36. 28

For any size level of the test, we can not
reject the unit root hypothesis.
As showed in the ACF and in the PCF

there

is dill some presence of path

dependence impossible to avoid aso using
an ARIMA (0,1,1)(0,1,2).

R-sguared 0.311444  Mean dependent var 0.757576
Adjusted R-squared 0.278393 3.D. dependent var 0.892045
S.E. of regression 0757768 Akaike info criterion 2334636
Surn sguared resid 7177675  Schwarz criterion 2487572
Log likelihood -147.0900  F-statistic 9.423222
Durbin-YWatson stat 1.922903  Prob(F-statistic) 0.000000
P o SAED P - ¥ o T DD LD SO -+ TFDw [T S0

L T

12,00
11,00
10,00
9,00
8,00
7,00
6,00
5,00
4,00
3,00
2,00

Cointegration between gas consumer price and production
of gas - Quarterly data (Sept. 1972 - Sept. 2006)

AAAAA TR

| production price

14

Now, let us check if the quarterly series
about gas production and this series about a
consumer price index on expenses, among
which there is also the gas expenditure,
might be cointegrated, as suggested in the
following graph.

Therefore, we can test whether they are
cointegrated, that is, whether a linear
function of these is I(0). As showed in the
table in the newt page, the aternative
hypothesis seems to be rgected, that is
there is integration.
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QUARTERLY GAS PRODUCTION CONSUMER PRICE INDEX ABOUT GAS
Testing for stationarity in the quarterly data The same happens for the series about consumer
about gas production after took the logarithm, price index: the seriesis an I(1) variable.
arrives to this result: the seriesisan 1(1)
variable.
| Correlogram of D{GASOLN) | Correlogram of D(CONPRICEGASQ)
Sample: 1972:1 2006:4 Sample: 19721 2005:4
Included observations: 136 Included observations: 136
Autocorrelation  Partial Correlation AC  PAC Q-Stat Prob Autocorrelation  Partial Correlation AT PAZ O-Stat Prob
= [l 1-0.144 -0.144 28854 0.089 1 0081 0081 05176 0.472
! 1 2 -0.431 -0.467 28920 0.000 2 0414 0411 24466 0.000
[ 1 3-0.002 0207 25521 0.000 3 0200 0193 30091 0.000
| ay 4 0284 0.048 40379 0.000 4 0408 0295 53710 0.000
[l 1 4 -0.144 0186 43354 0.000 5 0108 -0.014 55334 0.000
[ 'l 6 -0.144 -0.097 46352 0.000 6 0248 -0.031 64247 0.000
] [ 7 0142 0007 49281 0.000 7 0074 -0102 65045 0.000
1 [l g -0.001 -0.144 49231 0.000 g 0254 00857 74471 0.000
[N [y 9 -0.001 0.074 49232 0.000 9 0073 0.041 75256 0.000
[ [ 10 -0.001 0.001 49232 0.000 10 0140 0.010 73.629 0.000
[ o 11 -0.0071 -0.032 49282 0.000 11 -0.063 -0.184 79232 0.000
[ Ny 12 -0.001 0.080 49252 0.000 12 0320 0220 94722 0.000
[N vl 13 -0.001 -0.026 492582 0.000 13 -0.062 -0.018 95312 0.000
[ [ 14 0.000 0.004 49282 0.000 14 0195 0.057 101.19 0.000
1 [ 15 -0.001 0.040 49233 0.000 19 0001 0.018 10119 0.000
[ o 16 -0.0071 -0.031 49283 0.000 16 0,227 0.0458 10929 0.000
1 1 17 0.000 0.019 49283 0.000 17 0073 0106 11024 0.000
[ o 18 0.000 0.002 49233 0.000 18 0124 -0.051 11270 0.000
1 [ 19 -0.001 -0.024 49283 0.000 19 0148 0132 1619 0.000
[ ] 20 -0.001 0.015 49233 0.000 20 0223 0.090 124.22 0.000
1 [ 21 0.000 -0.015 49283 0.000 21 0132 0024 127.06 0.000
1 [N 22 0000 -0.012 49253 0.0 22 0195 0023 133.368 0.000
[N [ 23 0.000 0.007 49283 0.001 23 0027 -0136 133.47 0.000
1 [N 24 0000 -0.017 42253 0.002 24 0266 0019 14528 0.000
[ o 25 0.000 0.001 49283 0.003 25 0063 0.047 14596 0.000
1 [ 26 0.000 0.000 49.283 0.004 26 0.148 -0.030 14970 0.000
cl tle 27 0.000 -0.012 43283 0.005 27 0.001 -0.043 143.70 0.000
[ o 25 0.000 0.004 49283 0.005 23 0154 -0.058 153.82 0.000
R 1l 25 0.000 -0.004 49283 0.011 29 0.004 -0.053 153.82 0.000
Hl N 30 0.000-0.005 43233 0.015 30 D063 0.039 15452 0.000
R 1l 31 0.000 0.003 49283 0.020 31 0.028 -0.055 154.65 0.000
v N 32 0.000 -0.006 49.283 0.025 32 0111 0095 156.90 0.000
v 10 33 0.000-0.001 43283 0.034 33 -0.046 -0.076 157.28 0.000
H DL 34 0.000 0.000 43.283 0.044 34 0.049 0059 15771 0.000
[ 11 35 0.000 -0.005 49.283 0.055 . 35 0139 -0.112 161.22 0.000
[ Johansen Cointegration Test Also here, we can not find out any
cointegration between the price of gas and
Sample: 15721 2006:4 i i
Included ohservations: 132 Its pI'OdUCtIOI"I.
Test assumption: Linear deterministic trend in the data Unnormalized Cointegrating Coefficients:
Series: CONPRICEGASE GASGLN CONPRICEGA  GASOLN
Lags interval: 1104 -0.004540 0.359760
0001022 0207503
Likelihood 5 Percent 1 Percent  Hypothesized
Elgen\ralue Ratio Critical Yalug  Critical Yalue Mo DfCE(S) Marmalized Cointegrating Coefiicients: 1 Cointegrating Equationiz)
0.053053 15.20708 15.41 20.04 Mone COTE&‘%DGA ??g%'—;é ?0001 -
0.048844 6610178 176 .65 At maost 1° "1 3198) ’
*™) denotes rejection of the hypothesis at 5%(1%) significance level Log likelihood 1033164

L.R. rejects any cointegration at 5% significance level
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3.2CARS

The Manufacturing industry contributed a little over 11% to Australia’ s gross domestic product in
2004-05. Although the value of Manufacturing industry gross value added has grown by 19% over
the last ten years, the industry’s share of the total production of goods and services in the economy
has fallen from 14% to its current level over the period.

In the period 2000-01 to 200405, the largest increase in production was for Non-metallic minera
product manufacturing (26%), followed by Other manufacturing (15%) and Machinery and
equipment manufacturing (14%). The largest increases between 2001-02 and 2004-05 were
experienced in the production of cars and station wagons for fewer than ten persons and Portland
cement. Production of these commodities increased by 25% and 23% respectively. Production of
unfortified wine continued to increase over this period (22%) whereas the manufacture of beer
experienced a dlight decrease (3%). On the other hand, Between 2001-02 and 2005-06, the value of
exports for transport equipment (excluding road vehicles) fell by 43% ($0.8b). Of course, the major
commodity imported into Australia between 2001-02 and 2005-06 was petroleum, but road
vehicles (including air cushion vehicles) made up 12% of imports.

The automotive industry is one of Australia’ s key manufacturing sectors and an important source of
employment, and research and development. The increasing exposure of the Australian automotive
industry to international competition has seen it develop to where it is now competing successfully
in global markets. There is also a strong inter-dependence between the car makers and their
suppliers, and strong linkages with the rest of the economy. The Australian automotive industry
consists of four motor vehicle producers - Ford, Holden, Mitsubishi and Toyota - which produce
large passenger motor vehicles (PMV) and variants, light commercial vehicles and sports utility
vehicles. There are aso over 200 motor vehicle component manufacturers. The four motor vehicle
producers are based in Victoria and South Australia.

Nominal prices of transport equipment (including motor vehicles) arerising at a slower rate than the
consumer price index (CPl), indicating a fall in ‘real’ prices. Over the five years prior to 2000-01,
transport equipment prices grew by 7%, whereas the CPI increased by more than 11%. In addition,
average weekly earnings increased by over 17% over the same time period, indicating that vehicles
are becoming more affordable. Australian production contributes around 55% to total automotive
supply. The high proportion of imports in total supply highlights the high level of import
penetration in the Australian market. Household consumption and private sector investment provide
the primary sources of domestic demand for total automotive output.

What we are going to test

Monthly production of cars and station wagons (1961 - 1995) here if that the same ARIMA
<0000 model can be applied to
45000 model both demand and
40000 supply of cars, even if the
35000 | series seem to be very
30000 1 different in theirs origina
25000 g]ape

20000

15000

10000

5000

Source: ABS 8301.0 Jul 1961 -
0 Aug 1995
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Model finally chosen isan ARIMA (0,1,1)(0,1,1)

PARAMETER ESTI MATE STD ERROR T RATIO LAG
MAL 1 -.57221 0. 41690E- 01 -13.73 1
MA2 1 -. 79431 0. 35938E- 01 -22.10 12
Al C 7608. 407 and BIC 16. 3158

DURBI N- WATSON=
LJUNG BOX Q VALUE OF CRDER 24 IS

1.9775

71.68 > 36.415

(squared) LJUNG BOX Q VALUE OF ORDER 24 1S 28.19 < 36.415

10.000

30004--f-{-

B.0004--§-{-

(Cars prod . DIFFERENCED SERIES

4000 §--

200044

-2.000

-4.000

5000 4--f

-8.000 - -

-10.000 - -

-12.000

20 40 60 &0 100120140160 180 200 220 240 260 260300 320 340 360 380

Actually, there are some problens to apply this nodel to
this data, in the sense that the fit does not perform well as
before. In any case, | was not able to find a model able to
fit better this data, neither in their entire collection, nor
using a part of the series. The suggestion of the TRAMO
automatic procedure was an ARIMA (2,1,1) (0,1,1), but
the second AR coefficient proposed was too near the unit
root to be accepted, so | tested an ARIMA (1,1,1) (0,1,1),
which had a better performance in term of AIC (- 491.957)
and BIC (- 4.0263), but again problems with randomness:
LJUNG-BOX Q vaue of order 24 was 59.82 > 36.415,
and for the squared residuals LJUNG-BOX Q value of

order 24 was 57.74 > 36.415. Findly, | preferred to use the first model proposed, | mean the

ARIMA (0,1,1) (0,1,1).

Series Title: Motor vehicle sales. Passenger vehicles(thousands, SA): Australia

Annual cars' sales (1994-2004)

65

60

oy CACELEF O TE
e i R R

55

50

I

Thered line showed the outlier corrected

35

A
J M AN

series

30

25

MODEL FINALLY CHOSEN: ARIMA(0,1,1)(0,0,0) in whichlogs have been slected.
W THOUT MEAN, W THOUT TRADING DAY CORRECTI ON, W THOUT EASTER CORRECTI ON

QUTLI ERS
PARAMETER

QUT 1 ( 79)
ouT 2 ( 78)
ouT 3 ( 84)
ouT 4 ( 17)
QUT 5 ( 45)
oUT 6 ( 54)
QUT 7 (108)
QUT 8 ( 63)

VALUE

0
. 23754
. 16599
. 14218
. 11658
. 11728
. 88081E-01
. 95058E- 01

Scooco!

o

54456

ST. ERROR T VALUE
( 0.02823) 19.29 TC  ( 7 2000)
( 0.02822) -8.42 TC  ( 6 2000)
( 0. 02479) 6.69 AO (12 2000)
( 0. 02477) 5.74 A0 (5 1995)
( 0. 02788) 4.18 LS (9 1997)
( 0.02785) 4.21 TC ( 6 1998)
( 0.02477) -3.56 AO (12 2002)
( 0.02785) 3.41 TC  ( 3 1999)
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METHOD OF ESTI MATI ON: EXACT MAXI MUM LI KELI HOOD

PARAVETER ESTI MATE STD ERROR
MAL 1 -. 36635 0. 83559E- 01
Al C -509. 2271 and BIC -6.7410

DURBI N- WATSON= 1. 9736

T RATIO LAG
1

-4.38

LJUNG BOX Q VALUE OF CRDER 24 IS 12.56 < 36.415
LIJUNG BOX Q VALUE OF ORDER 24 IS 12.09 < 36.415

ol e AF LD DAL b LT L MDA
i 5 et e

§ ALF OF PRI

G ol FRETUAL WK (F DFFRRINCID

Thus, in the case of the price of cars we can apply the ARIMA (0,1,1) (0,1,1) obtaining an optimal

fit with the data and respect for the residuals randomness assumption

Quarterly produced cars price (March 1983 - March 2007)

140

N
120 &

/NW

100 /

_~

o838 8388

The model finally chosen by TRAMO automatic procedure is

an ARIMA (1,1,1)(0,0,0), with the following results

LEVELS are Sel ected, WTH MEAN, W THOUT TRADI NG DAY

CORRECTI ON, W TH EASTER CORRECTI ON

e proa A OF SCALARET RESDMIALS
A ALK OF SESIOUMLE

" I =

s price: BESERANLE

OUTLI ERS
97 AO (1 2007)
49 AO (1 1995) E
64 LS  ( 4 1998)
METHOD OF ESTI MATI ON: EXACT MAXI MUM LI KELI HOOD
PARAMETER ESTI MATE STD ERROR T RATIO
ARl 1 -. 89253 0. 63868E- 01 -13.97
MAL 1 -. 43893 0.12931 -3.39
AC 188.9918 and BIC -0. 6907
DURBI N- WATSON= 2. 0425
LJUNG BOX Q VALUE OF ORDER 16 IS 8.07 < 26.296

i B

(Squared) LJUNG BOX Q VALUE OF ORDER 16 IS 44.19 > 26.296
| propose a model that shows to fit better the data, that isan ARIMA (0,1,1)(0,1,0)
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PARAVETER VALUE ST. ERROR T VALUE
MU - . 35799E- 01 ( 0.10931) -0.33
QUT 1 ( 84) -2.2118 ( 0.36693) -6.03 LS  ( 4 2003)
QUT 2 ( 49) -1.4696 ( 0.20280) -7.25 AO  ( 1 1995)
QUT 3 ( 64) -2.1485 ( 0.36373) -5.91 LS  ( 4 1998)
QUT 4 ( 96) 1.3363 ( 0. 34378) 3.89 A0 (4 2006)
QT 5 ( 71) - 1. 2540 ( 0.21164) -5.93 AO  ( 3 2000)
QUT 6 ( 86) 1. 0686 ( 0. 20796) 5.14 A0 (2 2004)
QT 7 (77) 1.1171 ( 0. 32625) 3.42 TC (1 2002
QT 8 ( 9) -. 69270 ( 0.20471) -3.38 A0  ( 1 1985)
QT 9 ( 94) 1. 5004 ( 0.50941) 2.95 LS (2 2006)
_ METHOD OF ESTI MATI ON:  EXACT MAXI MUM LI KELI HOOD
cars price: ACF OF SQUARED RESIDUALS
£ ACF OF RESIDUALS PARAMETER ~ ESTIMATE STD ERROR T RATIO LAG
! ! ! oML 1 0.69343  0.75119E-01  9.23 1
]
Al C 184.231 and BIC -0. 5410
15 I P A DURBI N- WATSON= 2. 2293
‘ g g LJUNG BOX Q VALUE OF ORDER 16 IS 15.33 < 26.296
| ; ‘|| (Squared) LJUNG BOX Q VALUE OF ORDER 16 IS
. Lol el P ] 724 < 26. 296
IR !
U IR S
P S S— 1
a 9 18 2:? 36
3.3 WINE

Grapes are a temperate crop requiring predominantly winter rainfall and warm to hot summer
conditions for ripening. Almost al grape production in Australia depends on irrigation water as a
supplement to rainfall. An absence of late-spring frosts is essential if the loss of the developing fruit
is to be prevented. Grapes are grown for winemaking, drying, and to a lesser extent, for table use.
The better known grape producing areas include the Adelaide Hills, Barossa Valley, Clare Valley,
Riverland, McLaren Vale and Coonawarra (all in South Australia); Sunraysia and the Yarra Valley
(Victoria); the Hunter and Riverina (New South Wales); the Swan Valley and Margaret River
(Western Australia); and the Tamar Valley and Coal River Valley (Tasmania). The gross value of
grape production for 2004-05 fell by 11% from the previous year, to $1,508m.

In contrast, Australian wine has won an international reputation for quality and value. Australian
wines have taken key international awards, competing favourably against longer-established
national wine industries. Australia produces a full range of wine styles from full-bodied reds and
deep fruity whites through to sparkling, dessert and fortified styles. In globa terms, Australia was
ranked 7th in the list of world wine producers in 2003, producing 1,085 million litres of wine.
Wine-grape growing and winemaking are carried out in each of the six States and two mainland
Territories of Australia. The principal production areas are located in the south-east quarter of the
Australian continent, in the states of South Australia, New South Wales and Victoria. However,
wine is produced in over 60 regions, reflecting the wide range of climates and soil types availablein
the continent. In 2003-04 Shiraz was the most-produced variety, followed by Chardonnay and
Cabernet Sauvignon. Premium white varieties other than Chardonnay include Semillon, Riesling
and Colombard.
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Now, wine is very much a part of Australian life, closely associated with both business and leisure.
Wine consumption is often linked to the country's outdoor-oriented lifestyle as well as to the
cosmopolitan urban way of life of the bulk of the Australian population. Wine festivals are a feature
of cultura life in the maor wine producing regions of Australia and draw many Austraian
holidaymakers and international visitors each year. From an historical point of view, the end of the
Second World War saw a rapid influx of migrants from Europe who brought with them a strong
culture related to wine and provided an important impetus to the Australian wine industry. However
it is the period 1996 to 2004 that has seen spectacular growth in exports following rapidly
increasing appreciation of Australian wines overseas. Magor wine producers from abroad have
invested in Australian wineries and Australian companies have taken controlling interests in
wineries in countries such as France ard Chile.

In 2003-04 sales of Australian wine totaled approximately 999 million litres, with 414 million litres
sold domestically and 584 million litres exported. Australian wine exports were worth $2.5 hillion,
with represented an increase of 12.7% over the previous year.

Monthly Australian sales of red wine: thousands of liters.
Jan 1980 - Jul 1995. Source: ABS.

Monthly sales of wine (1980 - 1995)
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MODEL FINALLY CHOSEN: ARIMA (0,1,1)(0,1,1) in which logs are selected
W THOUT MEAN, W THOUT TRADI NG DAY CORRECTI ON, W THOUT EASTER CORRECTI ON

METHOD OF ESTI MATI ON: EXACT MAXI MUM LI KELI HOOD

PARAVETER ESTI MATE STD ERROR T RATIO  LAG
MAL 1 -. 81312 0. 47548E- 01 -17. 10 1

M2 1 - . 74146 0. 66648E- 01 -11.13 12

AIC  -261.4457 and BIC - 4. 3480

DURBI N- WATSON= 1. 9507

PARAVETER VALUE ST. ERROR T VALUE

ouT 1 ( 67) -. 34845 ( 0.09769)  -3.57 AO (7 1985)

LJUNG BOX Q VALUE OF ORDER 24 1S 11.66 < 36.415
(Squared) LJUNG BOX Q VALUE OF ORDER 24 IS 20.01 < 36.415
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It is very clear how much this model fit well with our data: the BIC and AIC are very low, there are
no problems with normality nor with linearity. Thus, this model also allows to forecast the values of
future lags of the series.

wine sales: FORECASTS ORIGINAL SERIES wine sales: ACF OF SQUARED RESIDUALS
& ACF OF RESIDUALS

5832 703

5103 613

4374 527

3645 439

2916351 1 -
2167264 4 - £ oo

1436176

Wine grapes (thousand tonnes): Australia 1961-2006

ine arapes: ORIGINAL SERIES In this case the green line represents
Wine grapes: OUTLIER CORRECTED SERIES the OUt' | ers CorreCted %rles, as | n the
T et FES ST I R R S following graph about consumer price
for alcohol and tobacco.
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The model finally chosenisan
ARIMA (1,1,0) with mean correction.

LI L L S I LS UL I I IS I S L S [ LI [ IS U R
2 4 6 & 10 12 14 16 15 20 22 24 26 28 30 32 34 36 35 40 42 44 46

GJTLI ERS Wine grapes: ACF OF SQUARED RESIDUALS
PARA'\/EI—ER VAL UE ST ERRCR T VAL UE & ACF OF RESIDUALS

MJ 0.50792E-01 (0. 01233) 4.12 3
QUT 1 (40) -2.2629 (0.10427) -21.70 [
AO (1 2000) i

O - oo ool
METHOD OF ESTI MATI ON:  EXACT MAXI MUM LI KELI HOOD
PARAMETER ESTIMATE  STD ERROR T RATIO LAG | ‘ | ‘
ARL 1 0. 56000 0.12350 4.53 1 ol ‘ IR

A C -54.0321 and BIC -3. 9265 ol
DURBI N- WATSON= 1. 9968 |
LJUNG BOX Q VALUE OF ORDER 8 IS 6. 30 |
(Squared) LJUNG BOX Q VALUE OF ORDER 8 | S w e
10. 69 < 15. 507
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Consumer Price Index: Alcohol and Tobacco
Australia— Quarterly data from June 1969 to March 2006

Quarterly consumer price of wine
(Sept. 1972 - Mar. 2007 )
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150 /

. /

) Pl
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Price alcahol: ORIGINAL SERIES
Price alcohol: QUTLIER CORRECTED SERIES

The green line represents the outliers corrected
series.

The nodel finally chosen is an ARIMA (1,1,1) (0,1,1), instead the model selected by the TRAMO
automatic procedure was an ARIMA @,1,1) (0,0,0), with a worst fit that our model, and, also,

trouble in the unit roots, as showed |ater.

METHOD OF ESTI MATI ON:  EXACT MAXI MUM LI KELI HOOD

PARAVETER ESTI MATE STD ERROR
ARL 1 - . 62954 0. 18066

MAL 1 -.26735 0. 22439

M2 1 -.79714 0. 69028E- 01
PARAVETER VALUE ST. ERROR

MJ 0.44825E-01  ( 0.02357)
oUT 1 (125) 9. 3880 ( 0. 55997)
ouT 2 ( 38) 4.7678 ( 0. 48083)
oUT 3 ( 26) 4.0179 ( 0.54974)
OUT 4 (104) 3.5928 ( 0.57737)
ouT 5 (127) 2.4041 ( 0. 55261)
QUT 6 (105) 3. 0381 ( 0. 60277)
ouT 7 (121) -1.6157 ( 0. 34801)
ouUT 8 ( 58) 2. 3452 ( 0.54732)
QUT 9 (113) -1.4652 ( 0. 34647)
oUT10 (106) 2.1771 ( 0.57924)
ouT11 (137) 2.0191 ( 0.57097)
ouT12 ( 86) 1.8923 ( 0. 54751)
AlC 278.845 and BIC -0.5227

DURBI N- WATSON= 2. 0024
LJUNG BOX Q VALUE OF ORDER 16 IS
LIJUNG BOX Q VALUE OF ORDER 16 IS
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T RATIO LAG

-3.48 1

-1.19 1

-11.55 4

T VALUE
1. 90

16.77 LS  ( 1 2000)
9.92 TC  ( 2 1978)
7.31 LS (2 1975)
6.22 LS  ( 4 1994)
4.35 LS  ( 3 2000)
5.04 LS (1 1995)
-4.64 A0 (1 1999)
4.28 LS  ( 2 1983)
-4.23 A0 (1 1997)
3.76 LS  ( 2 1995)
3.54 LS (1 2003)
3.46 LS  ( 2 1990)

15. 24 < 26. 296
16. 67 < 26.296
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| Augmented Dickey-Fuller Unit Root Test on D(PRICEWINE) Correlogram of D{ORG_PRICEWINE)
ADF Test Statistic  -4.308355 1% Critical Value” 3.4p04 neluted obeenvations: 143
5%  Critical Value -2.8832 Autocorrelation  Partial Correlation A PAC Q-Stat Prob
10% Critical Value -2.5782

0160 0160 37470 0.053
0324 0306 19203 0.000
0230 0185 27.064 0.000
0.044 -0105 27 345 0.000

1
"Mackinnaon critical values faor rejection of hypothesis of a unit root. g
4
5 0.079 -0.042 28293 0.000
B
7
g

Augmented Dickey-Fuller Test Equation
Dependent “ariable: DIPRICEWINE 2)
MWethod: Least Squares

0105 0096 29.847 0.000

-0.005 -0.022 29555 0.000

0095 0045 31.444 0.000
9 0.014 -0.018 31.473 0.000
10 0147 0144 34855 0.000
11 0.143 0114 33.089 0.000
12 0143 0050 41.314 0.000
13 0.041 -0118 41.586 0.000
14 -0.001 -0.122 41586 0.000
15 0078 0112 42570 0.000
16 0.019 0052 42631 0.000
17 0122 0104 45088 0.000
15 0,114 0035 47235 0.000
19 0,182 0147 52754 0.000
20 0185 0102 58.546 0.000
21 0204 0052 65651 0.000

Sample(adjusted): 1974:1 20071
Included observations: 133 after adjusting endpoints

“ariahle Coefiicient  Std. Error  t-Statistic Prab.

DFRICEWINE1))  -0.584333 0135628 -4.308355  0.0000
DPFRICEWINER1),Z) -0.353576 0132742 2663825  0.0087
DFRICEWINER2),Z) -0.029314 0131954 0222155 0.8245
DFRICEWINE(R3),Z) 0149935 0120496 1.244316 0 02157
DIFRICEWINER4),Z)  0.041436 0089542 0486337 06417

C 0.898569 0237716 3780006  0.0002 39 0114 -0.099 E7.8E5 0.000

23 0116 -0.080 70188 0.000

R-squared 0.503501  Mean dependent var 0.015035 24 -0.018 -0.053 70.242 0.000
Adjusted R-squared 0483954 5.0 dependent var 2033749 25 0038 0046 70.435 0.000
S.E. of regression 1.460971  Akaike info criterion 3.640143 26 D008 0.043 70510 0.000
Sum squared resid 2710734 Schwarz criterion 3.770535 gg gggg ggg; %]1;? gggg
Log likelihood -236.06%5  F-statistic 2575823 59 0.096 0005 75134 0.000
Durbin-YWatson stat 1.991534  ProbiF-statistic) 0.000000 30 0.045 -0.109 75.507 0.000

31 0139 0007 79.079 0.000
32 0131 0112 B82.263 0.000
33 0.076 0.025 53.364 0.000
34 0.077 0.000 84.498 0.000
35 0.041 0.005 B84.826 0.000
36 -0.016 -0.036 B4.575 0.000

The DurbinWatson statistic is a test for first-order serial correlation that is the DW statistic
measures the linear association between adjacent residuals from a regression model. If there is no
seria correlation, the DW statistic will be around 2. The DW statistic will fall below 2 if there is
positive serial correlation (in the worst case, it will be near zero). If there is negative correlation, the
statistics will lie somewhere between 2 and 4. Positive serial correlation is the most commonly
observed form of dependence. As a rule of thumb, with 50 or more observations and only a few
independent variables, a DW statistic below about 1.5 is a strong indication of positive first order
serid correlation.

4. CONCLUSIONS

We can summarize our analysis saying that series about production or sales are easy to forecast
because of their linear behaviour. The model that best fits with the data, independently of the nature
of goods sold or produced, isan ARIMA (0,1,1), that is an exponential smoothing model either in
the regular or in the seasonal part or in both of them Focusing our attention on the indexes price
series, we have discovered that, with small changes, we can again apply ARIMA (0,1,1) or mixed
ARIMA mode, like an ARIMA (1,1,1). Finaly, we found out that cointegration among series about
production and series about the price of this production is a complex one, and maybe it needs much
more knowledge about the phenomernon under study and its evolution over time.
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